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Forward Curve Dynamics and Asset Valuation

Overview

Wholesale electricity and fuel markets are rapidly becoming
highly competitive commaodity markets where the techniques
for establishing the value of assets and contracts differ from
techniques used in regulated environments. This document
discusses the use of simple models of forward curve dynamics
to dsfina valuation methods for assets whose value depends
on the market prices of traded commaodilies.

Forward curve dynamics describes how the full curve of

forward prices in a market changes over time. This cantrasts .

with comman practice in which models are defined in terms of
how only the spot price changes over time. The benefit of
maving from spot price dynamics to forward curve dynamics is
thet many details of the underlying physical supply system are
contained within the initial forward curve and so do not need to
ba explicilly included in the price modet. In addition, the ability
1o appty data on movements in the full forward curve in tuning
thé model parameters rather than relying solely on spot price
data permits easier and better mode! calibration. Once price
models are defined for relevant markets and their parameters
sel, the tools of finance theory can be brought 10 bear in order
to compute the fair market value of assets or contracts whose
cash flows depend on the prices in those markels.

This docurhent wilt discuss in detail the use of the one and two
factor versions of the N factor farward curve dynamics maodel,

dF _ & - {T=~)
%ﬂ_ = ; ﬁi (t)e dz:

where Fr denotes the forward price at time t for delivery at a
later lime T. The chief benefit of this family of models is that
analytical solutions are available for many guantities of interest.
The one and two factor versions also provide quile good fits to
observed market data and are relatively tractable for a wide
variety of numerical calculations. In particular, such models
can be translated into equivalent spol price dynamics models
s0 that existing tree methods can be used lo value assetls that
require full dynamic informatlon (e.g., American options).

Valuing Assels

Finance has provided a wealth of tools and thaory for computing
the falr market value of assets whose cash flows are dependent
on e prices of vartous traded commodities. Finance’s Risk
Neutral Valuation rules show the critical role that forward prices
and volatilities play in the valuation of such assets. Forward
prices are expectations of future commadity prices adjusted

for the risk associated with tha uncertainty in those prices. The
“forward curve” signifias a set ot forward prices for all future
delivary times of interest. These prices can be estimated from
futures exchange prices and from the prices al which tirm
contract commitments are traded. Volalility is a measure of tha’
uncertainty in a fulure commedity price al a particular time and

. can be estimated from the prices of iraded options or from modael,
“ils to spot or forward price changes ovat lims. The "volatility
term structure® signifies values of the volalility for ail-fulure
delivety times of interést. it should be noted that, for most
market participants; forward curve data is much more easily
obtained than volalility data.

Finance's Risk Neutral Vatuation rules provide a general frame-
work for asset valuation that simplifies into severa! special
cases. The Risk Neutrat Valuation rule for assets whese future
deliveries and payrnenls are known with certainty (e.g., torward
contracts) is lo consider all fulure deliveries of a commodity to
be worth the forward price for that delivery date and to discount
all future cash fiows using the interest rate on risk-free invest-
ments of comparable term, For example, a forward contract
that provides a payment of X for delivery of ¢ units of the
commodity at time 7 will be worth

VoFanwd = Q(F;)T _K')e—r;‘.r

where ry is the appropriate risk-free rate for zero-coupon
bonds paying off at time I. Notice that the current forward
curve Fy,is the only infarmalion aboul future commodity prices
needed to value such assets. When such assets are freely
traded, the prices at which they trade can be used to back out
corresponding lorward prices. Most market participants have
a fairty good handle on estimating the forward curva, at least
over short to medium time horizons.

The Risk Neutral Valuation rule for valuing assets whose cash
flows at various peints In ime depend only on the commodity
prices at that time {(6.g., forward contracts, European option
contracts) is to compute the expectation of future cash Hows
using a “risk neutral” probability distribution of fulure commodity
pricas and then discount those expected cash flows to the
present using the risk-free rate. The risk neutral probability
distribution is usually defined as the lognormal distribution! ot
future prices that at each point in time has its expécted value
equal to the forward price for that delivery date (instead of the
true expected fulure price) and has the varlance of the naturat
log of the price equal o tha true variance of the natural log of
the price. In particular, f an asset provides cash flow CF®,0)
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at each lime ¢ when the commedity price at that time is P, then
that asset will be worth

Vo, = Y {CF(B,n)e™

where <...> signities the (risk neutral) expectation aver the
uncenain price Py Py is assumed to be distributed at each time
r according to a lognomal distribution with

(P)=FK

var(In(P)) = o(t)t

(The relationship shown between the volatilityo(?) and the vark
ance of the natural logarithm of price defines the volatility.}
Notice that the value of such assets depends solely on the
forward curve Fg, and the volatility term structure ory) since they
fully define the risk neubrai distribution at each point in time. For
example, for a forward contract delfivering @ unita at time T for
price X, the cash flow would be Q (Pr- K) for which the (risk
neutral) expectation is Q (Fyp- K), leading to the result above
for forward contracts.

In the case of European call and put optlons, the expactation of
cash flows over the nisk neutral disiribution can be carried out
in closed form, leading lo the famous Black Equation.? For
example, a Europsan call option with strike price X and expira-
tion at time T would have terminal cash flow MAX{Py - K.a}
which has expeclation (FgrN(a) — K N¢b)) leading to

Vo =e™ (Fp N(a)~ K N(b))
where Nz) is the cumulative standard normal distiibution (tabu-

lated in various math references and included as a special
function In most major spreadsheets) and

_ (&, /K W Lo @T
o(DNT
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Similarly, the European put option with strike X and expiration
T has termira) cash flow MAX{X - P} which leads to value

Vo =" (KN (~b) - Fy N(-@))

It the forward curve and traded European option prices are

| avaitable, the Black Equation can be inverted to determine the

“implied” volatility term structure afi). In other cases®, the
volatility must be estimated by fitting price dynamics models to
historical spot or forward price changes. Accurate volatility
eslimation is a serious issua for most market parlicipanis since
there is rarely encugh option price data to create goad implied
volatility estimates.

The Risk Neutral Valuation rule in more general cases requires
information about the full dynamics of spot price changes to
carry out the calculations. Spot price dynamics arg usually
described using the tools of Ito’s stochastic calculus.” Applying
this mathematical representation, the change in spot price P,
over a small period of time dr is modied as

N
dE =P, -P=a(B,ndi+Y B(F1)dz
=l

where ofF,.1) describes anticipated changes in the spol price
over the lime inferval argd the AyF,.#) describes possible uncer-
tain changes in the price that could result from N types of new
informalion that could arrive during the time interval from ¢ to

| r+dr. The uncartainty enters the equatlon via the 4, , which are

uncertain vasiables with a mean of zero ang a standarc devia-
tion of +fat . The dz, at diftering times t are uncorrelated, but
the dr, at the same time can have correlation Pyt between gz,
and d#, The variety of spot price dynamics mod"els results from
ditfering choices of the number of uncertain factors ¥ and the
functions (F,1), B,(P.t), and pylt). A variely of ree methods
have been developed to carry out the valuation of assets that
depend on full spot price dynamics. These methods define an
uncertalnty tree of polential (risk neutral} spot price cutcomes
over lime which can be used to identify potential cash flows for
the asset. The asset value is then determiried by discounting
the expected cash flows back to the present using the risk-free
rate. The key advantage ¢f the tree approach is_that it allows
far intermediaie decisions to change the cash flows over tima,
For example, an American option can have an early exercise
decision that eliminates all future cash flows.

Why Forward Curve Dynamics?

The choice of a spat price dynamics model will affect the valu-
ation of complex assets (i.e., assets that canno! be valued
using Just the forward curve and volatility term siructure). For
exampie, the decision 1o exercise an American option wilf
depend not just an the price al a particular time but also on the
expactations of how that price is likely fo change over time. If
European aption prices are not available, the model choice will
also affect now spat and forward price data is used to estimate
the volatility term structure needed 1o value any asset with
decision flexibility (e.g.. all options). Models of spot price
dynamics are typically adopted ad-hoc from financial markets
and then fit la match the forward curve and volatility term strue-
ture of the commodity as closely as the model's free parame-
ters allow. In most cases, there are numerous financial models
of spot price dynamics to choose fram and it is not entirely
clear how 1o judge each medel’s assumptions in terms of the
commodity market at hand.

The difficulty in judging spot price model assumptions in
commodity markets is due to the fact that a commodity at two
different points of time should really be considered wo
different commadities. Unlike financiaj markets where —In the
absance of new information— the price of an asset at one
pomi of time is simply related to its price a shorl time before,
in commodity markels the price of the commodity at the later
time can differ drastically from the earlier price. As an extreme
example, consider electricity delivered at differing points.in
time. There is usually no economically feasible way to convert
electricity at one time to eléclricity at another time, and so
eleclricity mus! be gerierated on demand. Because of this non-
starability, electricity spot prices hours apart can differ dramat-
ically. Even in the case of storable commadities such as grain
or petroleumn products, detaiis of production capacities,
spailage or degradation rates, storage facility costs and
capacities, and ather underlying markel issues greatly compli-
cate the direct modeling of the changes in spot price over
time. Unfartunately, most financial madels of spol price
dynamics make strong assumptions aboul haw lhe spol prices
change over time. These assumplions are difficult to judge in
the context of commodity markets. '

The goal of the lorward curve dynarnics approach described in
this document is to make simplifying assumptions about how
the full forward curve changes over time rather than to make
simplitying assumptions about how the spot price changes,
Since the forward curve summarizes the relationship beiweeij




prices of the commodity at differing points of time. it alréady
contains detailed information about the underfying physice!
market complexities. This approach |leveragaes both the full
information content of the forward curve and tha wealth of
anglytical tools (such as Ito calculus and Risk Neutral Valuation}
developed in the financial markets.

Models of Forward Curve Dynamics ]
This section presents the general class of forward curve
dynamics madels that will Be used in the rest of this document
and derives their most important properties. This section is & bit
heavy-going and the reader may wish to skip it on a first
reading. The following section will focus on the specilic
members of this class appropriate for most situations and show
how they can be used.

To describe forward curve dynamics, changes in the (ull set of
forward prices F,r over time must be characterized. This can
be accomplished by using the tools of ito calculus. The basic
starting paint for the forward curve dynamics approach is 10
treat each forward price as a separate market price. This
assumption initially leads to consideration of a rather unwieldy
set of price equations »
dF, = a(Fp 0.t + Y B(Fpt,THdZ”

I=]
where everything can potentially depend on the delivery date
T of the commodity. A number of simplifications can then be
made due to he specific charactsrislics of forward price data,

The first simplificatlon Is to recognize that since the forward
price is the (risk neutral) expectation of futurse price, the
expscted change In forward price Fmust be zero. This eliml-
nates all of the afF;r,+, ) terms from the price dynamics equa-
tions. The next simplification is to notice that the forward curve
shifts in a faifly smooth manner, This implies that the fult set of
potential &,"can ba productively replaced by a much smaller
sat of uncenain faclors dz, , where each one affects the forward
curve over a range of delivery times. The smoothness of the
curve shifts can be understood by recognizing that storage
capability links the prices in differing times, so that an increase
in the price at one time will raise the prices of nearby times.
More generally, the curve shifts can be understood by realizing
that much of the news aitering the supply-demand balance will
persist aver a broad period of time. Another simplification is to
model each uncertainty term as F,p ;¢ T)dz’, so that the
resulting forward price distribution is lognormal and therefore
the forecasled forward prices are always positive. The final
simplification is to note that short dated forward prices are
observed to be much more volatile than long dated onas,
suggesting that the uncertainty terms be modeled with

ﬁ,‘ ¢, Ty= ﬁ'_(t)e—ﬂ;(f—f) ’

Collectively, \hese simplifications motivate the sludy of forward
curve dynamics models of the form

dF. / _ < -a(T
Yy = 2, Bl

where different models depend on the number ¥ of uncertain
factors and the forms of the functions fy#). These forward curve
dynamics models are extremely analytically tractable, can
exactly fit obsarved forward curves (as can all forward curve
dynamics models), can fit observed volatility data and histor-
ical data on forward pricé changes over time quite well, and can

be translated into equivalent spot price dynamics models to
leverage existing treer solution algorithms for valuing complex
assets. The one and two factar versions will be explored in
some delail in the following section, but first some facts about
this full set of models will be estabiished.

First, the risk neutral probability distribution of the spot price P,
corrasponding to these forward curve dynamics models will be
derived. This spot price distribution will show how the volatifity
term structure ofi) is reiated to the model paramelers. To carry
out this derivation the forward curve dynarnics model must first
be integrated ta relate the (uncertain) forward curve Fp at all
future times 1 1o the current forward curve Fgr, tha mode/ para-
melers, and oulcomes of the uncertain factors dz,.Namely,
N
F;r = Fyr cx‘{_*z_[dfpy(-")ﬁ. (-“)ﬁj(s)e-iqu’w-ﬂ :

iJed

+§ﬂﬁ,(s)e“‘*““"dz: ]

The relationship between the spot price P, and the forward
curve lhat P=F, can then be used to immediately find that

N
£ =k “{‘?Z[d’%(s)ﬁl(s)ﬁ Lg)e TN,

i, jw

J=1

+ fl J;ﬁ,-(s)e*“"”dd]

tn this expression, all of the uncertainty arises through the terms
N ! '
wi = B(e™"dy

which contain the uncertain factors dzt . Since the factors dz!
are joint nommally distributed with a mean of zero at each time,
are uncorrelated at differing times, and have comelations p,:‘,{t)
belween dz' and dz % at the same time, the w?, are joint nomally
distributed at aach time ¢ with

o
var(wl) = J. B, (s 44 "ds
COVHI(w:', Wf )= Jt: Py ()8, (s)ﬁj (-5')8—(“"',“'J x‘_')ds

The spot price distribution depends on the sum of the wi,
which is itself normaily distributed with a mean of zero and a
variance equal to'the sum of covar{wi, wi,) over all ij. This
allows the risk neutral probability distribution of P, to be written
as lhe lognormal distribution

P =F, exp (— Loy r +o(JEW )

where the volalility is related to the variance of the natural loga-
rithm of price {which is equal to the variance of the sum of the
wi) through

N
o = tvar(a(R))=+3 [ dspy (A (), (e *
(L]

and where ¥ is distribuled according to the standard normal
distribution. This equation for the volatility o) is the basis for
relating the volatility term structure to the model parameters or,
as will be shown below, for fitting the model parameters to
observed implied volatility data.
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Second, methods for fitting the model parameters to market
price data will be discussed. Two approaches can be taken lo
fit the model parameters to market data. In the first approach,
historical data on simultaneous changes in forward prices at
various delivery imes T are usad to fit the paramelers using the
forward curve dynamics equation. This approach is besl when
there Is access to historical forward curve data. In the second
approach; the implied volatility term structure is fit using the
above equalion relating ihe volatility to the model parameters.
This approach is best when the user has access to the prices of
options which trade in liquid markets and can therefore be used
to obtain good implied volatility estimates. in either appréach, a
specific parametrized functional form is assumed for the unknown
lunctions B1) and py(). (In most cases they are assumed
either constant or repeating on an annual basis.) In the more
common case of assuming constant (1) and py1), the first
approach atlempts lo fit parameters to match data on forward
curve changes at diﬂering delivery dates T,§ through

Lvar(dIn(F,))= Zpuﬁ B e -0

1 4=1
M
Loovar(d10(F,),d n(F))= Y p,B.8,e T 2"
L j=1
dIn(F;) =In(F, . }-In(F;)

while the sacond approach fits the parameters t¢ malch the
implied volatility through

o(t)’t = Zp!jﬁlﬁj

7= a; + a

_ e—(@ +a i
il

With either approach, the model parameters should be varied
so as to minimize tha diference between the right sides of the

equations (which depend on the model parameters) and 1he .-

lett sides of the equations {which depend on the market data}.
Most major spreadsheets contain tools that can be applied to
minimize a measure of the fit error (e.g., the sum over all data
points of the squared differences between the left and right
sides of the aquations) by varying the model parameters.

Finally, the spot price dynamics models corresponding to
these forward curve dynamics models will ba derived. These
spol price dynamics modsels are used to construcl dscision
trees for valuing more complex assets than can be valued
using the_forward curve and volstility alone {e.g., American
options). The easiast way to accomplish this is to return to the
first expression above for the risk neutral distribution of P, and
substitute in the definilions of w/, and o) to find that

N
P=F, exp[—  LLON I ]
Jud

-

where \
w = ID B, (s)e™ " dy!

” .
o)’ =1 [ dsp, ()8, (5)B;(s)e "™

1 =1

The expression for wé,can be differentiated with respect to time
to show that it fo!lows the dynamics eguation

dw! = —aw'dr+ B(ndz -

where wi{=0. Tree methods can be used to characterize the

joint outcomes of w, at each time t, which can then be turned
inta the corrasponding spol price cutcoms using

»
P=F, exp[— Yo+ Y w ]
i

to calculate the resulting cash flows at that time and the uncer-
tainty outcome. The value of lhe asset is then computed as the
expected present value of the cash flows where all discounting
is dana at the appropriate risk-free interest rate.

Forward Curve Dynamics Models for Everyday Use
Most practitioners limit themselves to the use of one or two
factor madels of pricé dynamics. This is due both 10 the
sparseness of data available for fitting the model paramelers
and {0 limits of computing power and memory. However, even
in the realm of one and two factor models, there are more than
enough models available io meet most analysis needs. In this
section, one factor and Iwo factor forward curve dynamics
models are presented. The models will differ in terms of their
assumptions as to what types of new information lyprcally
arrive concerning the commedity market.

Long-Term Supply-Demand Shitis

The simplest forward curve dynemics model assumes that all
new information affects the whole forward curve equally.
Intuitively, the assumption Iis that the new information
describes changes in the supply-demand balance that will
persist over the long term. Mathematically, lhe madel is

Fq / = B(tdz,

where the initial forward curve Fpy is assumed to be known and
the volatility temn sfucture is related to the model parametars

through 6(1)* = L[ B (s)?ds

Natice that the volatility Is constant and equal to B when 1) is
constant, Many commodities exhibit decreasing volatility over
time, which requires that ) decrease steadlly over time in
order to fit the volatility term structure.

The model parameters can be matched 10 market dala by”
fitting B(1) 1o the above volatility equation or by fitting it to
changes In the forward prices over time through

Lvar(dIn(F,))= +covar(dIn(F,. ), dIn(F))= Bty
dIn(F.) =In(F,, . )—In(F;)

which s ugually carried out assuming S¢) is constant.

The spot price dynamics model for this forward curve model is
P = Fyexp(—30 (1)t +w,)

dw, = )z,
w,=0

which in the financial literature is known as the “Random Walk
Madel®. A mare familliar (&nd equivalent) form for this model is

‘f: dln‘g )d + fi()dz,

r

which shows that théTorward curve characterizes the
axpecied ggagggs _m,,g,,;gg_qmr time. For valuing complex

asséts, sither the Bindiiiat Tres Method or the Finiie Difference
{n ringmla.l &FISE} Mttt € used for valuation.®
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This model is most appropriate when there is very litlle data
available (i.e.. as a first cut estimate), when the volatility term
structure is known and appears to be fairly flat, or when
changes in short dated forward prices are strongly correlated
and of similar magnitude to sirmultaneous changes in longer
dated forwerd prices.

Shont-Term Supply-Demand Shifts

An afternative to assuming that new inforrnation affects the whole
forward curve is to assume that new informetion only affacts the
near-term forwerd prices. This essumnption is based on the
observation thet near-lerm forward prices are typically much
morg volalile than the longer term ones for many commodities.
Intuitively, this assumas that most of the information coming in
only affects the short-term supply-demand balance end does
not affect longer term forecasts. Mathematically, this model is

T
where tha Initial forward curve Furis assumed 1o be known and
the volatifity tarm structure Is related to the model parematars
through

o(t)? =L e B(5)?ds
When B¢ is constant, the volatility is equal to

. 7
2at
which decreases smoothly over time and which fits the volatility
term structure of many commodities quile well over short to
mediurn time scales.

The model parameters can be maltched to market data by
fiting a and B/ to the above volatility equation or by fitting
them to changes In the forward prices over time through

Fvar(dn(F,))= By e
scovar(dIn(Fp).d In(Fy))= B ()2 e g5
din(Fz) <10(F, )~ (F;)

Both of these approaches are usually carried out assuming B¢
is constant.

The spot prlce dynamics model for this case is
= F,exp(—306 (1)1 +w,)

dw, =—awdt + B(t)dz, wy=0

which differs from the previous case due to the new term which
makes w, ravert back to zero with a time scale of a* rather than
allowing it to randomly walk to any value, It is this term which
causes the volatility term structure to decrease over time and
which leads to this model being called *mean raverting.” Hull
and White bave developed a free algorilhm for very efficiently
modeling the oulcomes of w, over time, which can be used 1o
value assets using this modal.*

This model is most appropriate when either the volatility term
structure is known and seen to be decreasing over time or
changes in short dated forward prices are reasonably corre-
lated with, but of much larger magnltude than, simultaneous
changes in longer dated forward prices.

Short- and Long-Term Suppiy-Demand Shifts

A better but more complicated assumption for how information
arrives is to assume thal it typically affects both short term and
long term supply-demand shifts. This model combinas the two
previous models into the following two faclor model

dFy Bs(He*Tdz’ + B, ()dz!
Fq
which includes uncertain faclors d=% and dzf, describing the |
arrivel of shori-term and long-term supply-demand shift infor-
mation, respectively. This model has a volalility term struciure
relaled to iis parameters through

G0Y = L[ 20 B (s + BL(5): 4260, (BB, (s s

In the case where the unknown functions 8, 1), Be(®), and p; o)
are constants, the user finds lhat ]

l1-¢

2 2

o -+ 8] S =
which fits the volatility term structure of many commodities
quite well over fairly wide-time scales. Notice that this rmodel
allows the short and long dated forward prices to move largely
independently of each other.

The model parameters can be matched to market data by fitting
a, B, Bsf®), and ppet) to the above volatility equation or by
fiting them to changes in the forward prices over time

e var(d In(F,p) =Py 1"+ Be(tf'e 279+ 2p,.5() By (P79

S covar (@ In(F,p),d In(F,0)=P (1 + B(tf o950 -
+PisOBUOPs( (e TI+esy)

AINF=10(F, ¢ - In(F ) |

Both approaches are usvally carried oul assuming B, A,
and p, oft) constants.

The spoi prics dynamlcs modsl for this case is
F=sF, exp(——cr(r) t+ w + w")

dw} = —aw'dt+ Bs()dg)
M =ﬁL(t)dZ:-
" wg = WDI' =0

which differs from the previous case in that there are now two
uncertain factors for which simuitangous outcomes must be
tracked. Notice that the shorl term factor is mean reverting, just
as in the previous case while the long term factor follows a
random walk, as in the first case. Hull and White have also
developed a tree algorithm for very efficiently modeling the joind
outcames of wS, and wt, over time, which can be used to value
assefs using this model.” This model is about at the mit of whal
can be reasonably solved and possibly beyond it for the cass of
assels whose value depends on twao or more commodity prices.

This model is most appropriate when either the veiatility term
structure is known and saen to level off after decreasing over
lime or when changes in short dated forward prices are nol
highly correlated with simultaneous changes in longer dated
forward prices.
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Short- and Medlum-Term Supply-Demand Shifis

A flnal, related modsl of nole is the two factor model corre--

sponding ta both short-term and medium-term informalion
arriving. This model is identical to the above two factor model
except for the addition of & siow decay at rate b for the long-
term uncertainty {making il really medium tenmn). The forward
curve dynamics equation is

dpi = B (e T dzf + B, (e de}
T

and the volatility is related to the modst paramaters through

3(1)? =L By(s) + e B (s
+ 26D g (5)B,(5) Be(s) Ys

In the case where the unknown funciions 8; (1), By®), and pm(r) '

are constants, the user finds Lhat

am’=ﬁ(‘2‘; ]ﬁ,[

The main difference in the behavior of this volatility term struc-
ture compared with the previous model's behavior is that the
volatility never levels off in the long term but conlinues 1o
decrease slowly.

] g-toroy
]+2pu‘ﬁlﬁs( @+ by J

The model parameters can be malched to market data by
fitting a, 5, A1), Bsf®), and pp5(1) to the above volatility equation
or by fitting them to changes in the forward prices over time
through

i var@n(F ) =P,()' e @9+ fefty ey
+2p; (U Br(t) Po(t) e BT
L covar@IngFy).d In(F,g) = B; (1P e 2 Te b9+ Bo(tf T oearsy)
+prs(t) Br(t) Bsd) (eoT e 6650 + e bTe-a(S4)
dInFp=lnfF,yq)-0(F,7

Both approaches are usually carried out assuming £;(). B,
and P, 1) are constants.

Tha spat price dynamics model for this case is
B = Fyexp(~30 (1)t +w; +w])
- dw =—awdt+ B(n)dg
dw = -bwidt + B (6)dz/
w, =w; =0
which differs from the previous case only in that now both uncer-

tain factors are mean reverting. The same tree methods
as above can be used with the same cavests,

This model would be appropriate when the volalility term struc-
ture decraases quickly and Ihen switches to a slower
decrease. The model would also be appropriate when changes
in shont daled forward prices are not highly correlated with
simultaneous changes in longer dated lorward prices and the
magnitude of the changes for lcng dated forwards decreases
with delivery date ak a slower rate than for short dated
lorwards. However, it is doubtful that good forward price esti-
mates will axlend to sufficiently distant delivery dates to allow
the user te astimale the parameters lor this model. In general, it

is recommended that one of the previous models be used
unless the data suggesting the application of this model is truly
compslling.

Example

Nealural gas is probably the most complex commedity for which
forward prices are readily available.® Natural gas prices are
highly seasonal and detfiverabllity constraints lead to drastically
differing prices in ditfering locales. Daily forward price dala for
ratural gas can be found in the financial pages of many news-
papers® For example, the forward price curve for nalural gas
deliveries fo Henry Hub on August 21, 1997, can be seer in
Figure 1. Nolice the significant peaks in the two winters, ifllus-
trating the seasonality of the commodity.

MNatural Gas Forward Prices

Figure 1: Natural gas forward prices on August 21, 1897.

An examination of the daily forward price changes reveals
substantial information about the markel price dynamics. The
volaiility of a particular forward price can be estimated as the-
square roat of the variance of daily thanges in the natural loga-
rithm of prices (“log prices”) mulliplied by 250 to convert it to
an annuai volatility.'® Figure 2 shows the volatility of the forward
prices in Figure 1 compuied over 20 trading days" of prior
data. Nolice lhat the volatility of the near-term prices is much:
higher than the volatility of the long-term ones. Notice also that
the volatility seems to level off after about a year or so. The
user can also examine how much the daily changes in log
prices are correlated between diftering contracts. Figure 3
shows the correlation of log price changes of various torward
prces with the front month price from the same data sat. Notice
thalt the laterprices ara not highly comelated with the tront ones.

Natural Gas Forward Price Volatiiity

Figure 2: Natural gas forward price volatiftles.
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Natural Gas Volstility Term Structure

Figure 3: Correlations of natural gas forward prices with spot.

Both the leveling off of the forward price volatilities and the low
correlation batween the long dated and near dated forward
prices, suggest that the Shor- and Long-Term Supply-Demand
Shift Madel is the most appropriate over the two-year lime scale
shown. The four parameters needed o describe this model™?
are the long-tern volalility 8, the shor-term volatility 8 , the
mean reversion parameter a, and the correlation betweaen fong-
and short-term curve shifts p; ;. These parameters can be fit®
to the jorward price volatility and correlation™ data of Figuras 2
and 3 using

i var(dIn(F;p )} = B,> + B2 9 + 2p, B, Bee™ @ "
Leovar(din(F,), 2In(F, ))
= ﬁz.z + ﬁsze-“(r—ﬂe-ﬂ“_n + Puﬁ:.ﬁ.s(e_ncr_” +e ")

din(F)= m(Ewrr)_ In(F;)

The values of the parameters can be found in Table 1 and the
modet fit can be seen compared to the data in Figures 2 and 3.
Notice the visibly &xcellent fit to the data despite the simplicity
of the model.

Once the model parameters have been fit, me_ volatility term
structure can be computed using

) 2 4 1"“8‘2“1 l“e-d
o=, + B, at +2p,:8,8; T

This, in furn, allows one to computg the prices of various
European options to Be computed. The volatility term shructure
corresponding to the model parameters in Table 1 can be seen
in Figure 4. '

Figure 4: Natural gas volatility term structure.

The mode! parameters can also be used to create tree-based
evaluation madels to determine the value of American options
and other complex assets. In this case, the dynamics equa-
tions for w¥, and wt,

dwrs =—awfdt +ﬂsdzf
dwl = B, dz}
w, =wp =0

would be usad to construct a two factor Hull-White tree to
obtain their joint outcomes at each point in time and then

P = F, exp(—10{&)* + W + W)

would be used to obtain the corresponding spot price_; outcomes
and hence the cash flows at various times and uncserainly
outcomas., )

To Summarize .
This document reviews financlal rutes for vaiuing assets whose
value depends on traded commeodities. The rulas show that
only information about the forward curve and volalility term
structure is needed to value a fairly wide range’ of assets.
Although torward curve data is relatively available, volatility
information is mare difficult to attain and often requires a price
dynamics model to interpret avallable data on changes in spot
or forward prices over time. Furthermore, other common assets
{e.g., American options) require additional Information from a
price dynamics model to value them.

Commonly used price dynamics models, adopted from the
financial markets, describe in simpiified terms how spot prices
change over time. Commodity markets typically have quite
complicated spot price behaviors, much of which is character-
ized in the shape of the forward price curve. This insight leads
to the forward curve dynamics approach which begins wilh
models of how the forward curve shifts over time and usas
thern as the basis for valuation.

In the forward curve dynamics approach, the forward curve is
an input 10 the vaiuation as is either the volatility term structure
(when available) or historic movernents of forward prices. If the
volatllity term structure is avaitable, then only it and the forward
curve are needed to value many assets. If the volatility term
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structure is nol available, then the forward curve dynamics
approach provides & modeling framework for using historical
shifts in the forward curve 1o estimale the volatility term struc-
ture. In either cagse, other common assets require models of the
full spat price dynamics to value them, and forward curve
dynamics provides such models based on the detailed shape
and behavior of the farward curve, _

The document discusses several forward curve dynamics
models and provides guidance was as to which modél is
appropriate baséd on particular aspects of the available data
inputs. The Long-Term Supply-Cemand Shift Modet is the basic
starting point for valuations, with extremely limited data avail-
able 1o calibrate it. This model is just the Random Walk Model

fram finance in another guise. In cases where there is a
reasonable amount of calibration data, the Long-Term Supply-
Demand Shift Model or the Short-Term Supply-Demand Shift
Model will be the best choice, dapending on the relative
magnitudes of variation in short dated and long dated forward
prices. In cases where there is sufficiant data to ensure that
the variations in short dated and long dated forwards are not
highly correlated or to ses tha voletility term structure level off,
the user may consider switching to the Short- and Long-Term
Supply-Demand Shift Modet if it will have significant impact an
the results. Finally, the document provides an example ot
applying these maodels to natural gas data. For that data set,
the Short- and Long-Term Supply-Demand Shift Model was the
most appropriate and provided excellent fit to the market data. m

For Further Information

EPRI's Power Markets & Resource
Management (PM&RM} Targst is
working to develap methods and tools
for calculating the market valua of
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Footnotes

! The lognormal distribution is a probability
distribution in which the naturat fogarithm ot
the variabie is distibuted according to the
narmal distribution. Accordingly, defining the
expectad value of the vanabte and the
varianca of its natural fogarithm hlly define
the distribution. One of the benefits of this
distribution is the fact that only pdsitive values
of the variable are allowed.

The Black Equation is the warsion of the
Black-Scholes Equatior. for commodity
markats.

Most exchange-traded options lor energy
commedities are Amerlcan “options on
fulwes” meaning that striking the option
leads to exchange of a futures contract
rather than the commodity Iiself. The prices
ol thesa American options are also
commonly invefted using tha Black Equation
o defing Implied volatilities which can lead
to an gvarastimate of the volatility but the
grror is not axpecled to ba severe.

N

-

! ito calculus provides nules for integrating
uncertain functions over time. These nules
ditfer from those of standard calculus due to
the effects of uncartainty accumulating over
time. In the contex of price modaling, o
caltulus defings the procedure by which a
model describing the instantanegus,
uncertain changas in a price gver time
("price dynamics”) can be used 10 calculale
the probability distributions af future prices.
Sea Hull, *Options, Fulures, and other
Dertvative Securities”, Prantice-Hall for an
introduction to ihese methoda.
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_* Sea the boxed set EPRI AP-107748 “Valuing

Generation Assels in Uncertain Markels” for
an introduction 10 and axamplas of both the
Binomial Tres and Finite Difference methods
for valuing assets. {Floase note: to apply the
Binomlal Tree mathod with timg-valuing
volatility, ona needs 10 use time-varylng tme
steps 50 that gver each Ume interval BiF As
is conslant.)

 Sag J. Hull & A, White, The Journal of
Osrivatives, Fall 1994, pp. 7-16. Caveat
isctor: almost all of the literature In this area
is geared towards interest rate or cross-
curfency derivatives.

Sae J. Hull & A. White, The Joumna) of
Oerlvativas, Winter 1994, pp. 37-48.

® Electricity Is expscted 10 be an even more
complex commeodity than natural gas but
forward price data is currently too limited to
make 3 good example.

# Futures exchange prices are good estimales
of the forward price (when interest rates are
much less uncerain than prices ol the
commaodity in question). In particular, the
New York Mercantile Exchange (NYMEX)
Henry Hub futures prices for natural gas ara
widely availahle and will be used far this
example.

10250 repfosents the approximate numbaer of
trading days In a year.

""when computing historical volatllifies one is
forcad to decide on how long a saries to
examine: too short and the result is overly
biased hy naar term events, 100 long and
irrelavant past events will distort the results.
20 days is an arbilrary choice meant lo
incorporats about a month's worth of data.

2Assuming thal the volatfiiles and correlation
do not change seesonally.

*Tha fit was done by eye bul a ieast-squares
fit didn't appreciably change the resulls.

"“Recall that the correlation betwesen two
variables is defined as their covariance
divided by the squara root of the product of
their variances.
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