

Boston | Headquarters

617 492 1400 tel 617 497 7944 fax 800 966 1254 toll free

1000 Winter St Waltham, MA 02451

Ameren Missouri Program Year 2020 Annual EM&V Report

Volume 2: Residential Portfolio Appendices

June 10, 2021

Table of Contents

Appendix A.	Detailed Impact Analysis Methodology	
Residenti	al Lighting	1
Gros	ss Impact Methodology	
Net	Impact Methodology and Results	2
HVAC Pro	gram	
Gros	ss Impact Methodology	3
Net	Impact Methodology	
Den	nographics and Firmographics Results	24
Home En	ergy Reports (HERs)	
Equ	ivalency Analysis	
Data	a Sources	
Data	a Cleaning Results	
Мос	deling Program Impacts	
Part	ticipation Uplift and Joint Savings Analysis	
Energy Ef	ficient Products (REP)	
Gros	ss Impact Methodology	
Net	Impact Methodology	
Energy Ef	ficient Kits	
Gros	ss Impact Methodology	
Net	Impact Methodology and Results	
Multifami	ily Market Rate (MFMR)	
Gros	ss Impact Methodology	
Net	Impact Methodology	61
Appliance	e Recycling (RAR)	66
Gros	ss Impact Methodology	66
Net	Impact Methodology and Results	
Single Fa	mily Income Eligible (SFIE)	
Gros	ss Impact Methodology	
Multifami	ily Income Eligible (MFIE)	
Gros	ss Impact Methodology	

Air Conditioner Tune-Up Savings Assumptions					
Non-participant Spillover (NPSO)					
Summ	ary of PY2019 NPSO Analysis	91			
Appendix B.	Income Eligible Pre-Period Consumption Data Analysis	94			
Analytic Me	thod	94			
Appendix C.	Data Collection Instruments	96			

Table of Tables

Table 1. Ex Post Savings Assumption Sources	1
Table 2. PY2020 Lighting Program NTGRs	2
Table 3. CapacityCool and CapacityHeat for Air Source Heat Pump Measures	4
Table 4. SEERExist, SEEREE and HSPFEE for Air Source Heat Pump Measures	5
Table 5. CapacityCool and CapacityHeat for Ductless Minisplit Heat Pump Measures	8
Table 6. HSPFBase for Ductless Minisplit Heat Pump Measures	8
Table 7. SEERExist for Ductless Minisplit Heat Pump Measures	8
Table 8. SEEREE and HSPFEE for Ductless Minisplit Heat Pump Measures	9
Table 9. CapacityCool and CapacityHeat for GSHP Measures	
Table 10. SEEREE for GSHP Measures	11
Table 11. CapacityCool for Central Air Conditioner Measures	
Table 12. SEEREE for Central Air Conditioner Measures	13
Table 13. HeatingConsumptionElectric for Advanced Thermostat Measures	15
Table 14. PY2020 HVAC Program NTGR	
Table 15. HVAC Program Participant Spillover Measures and Savings	21
Table 16. HVAC Participant Survey Demographics	24
Table 17. HVAC Trade Ally Survey Firmographics	25
Table 18. Pre-Participation Average Daily Consumption of HER Program Treatment and Control Grou Wave	
Table 19. Data Cleaning Results for Treatment and Control Groups by Wave	
Table 20. Unadjusted Per-Household Daily Net Electric Savings	
Table 21. LDV Model Billing Analysis Model Coefficients	
Table 22. Program Savings Adjustments	
Table 23. HeatingConsumptionElectric for Advanced Thermostat Measures	
Table 24. PY2020 REP Program Preliminary NTGRs	
Table 25. Faucet Aerator Input Values	45
Table 26. Low-Flow Shower Head Input Values.	46
Table 27. LED Lighting Input Values.	
Table 28. First Year and Future Trajectory ISR for EEK LEDs	
Table 29. Dirty Filter Alarm Input Values	
Table 30. Pipe Insulation Input Values	50

Table 31. PY2020 EEK Program Net-to-Gross Ratio	51
Table 32. Lighting Input Values	53
Table 33. Bathroom Faucet Aerator Input Values	54
Table 34. Kitchen Faucet Aerator Input Values	54
Table 35. Low Flow Showerhead Input Values	55
Table 36. Learning Thermostat Input Values	56
Table 37. Heat Pump Water Heater Input Values	57
Table 38. Clothes Washer Input Values	58
Table 39. Clothes Dryer Input Values	59
Table 40. Wall Insulation Input Values	59
Table 41. Window Input Values	61
Table 42. PY2020 Multifamily Market Rate Program NTGR	65
Table 43. Refrigerator Input Values	66
Table 44. Freezer Input Values	67
Table 45. Room Air Conditioner Deemed Savings Values	68
Table 46. Dehumidifier Deemed Saving Values	69
Table 47. Faucet Aerator Input Values	69
Table 48. Low-Flow Shower Head Input Values	71
Table 49. LED Lighting Input Values	72
Table 50. First Year and Future Trajectory ISR for RAR LEDs	73
Table 51. Dirty Filter Alarm Input Values	73
Table 52. Pipe Insulation Input Values	74
Table 53. PY2020 Residential Appliance Recycling Program Measure-Level Net-to-Gross Ratio	75
Table 54. Air Sealing Input Values for SFIE Measures	77
Table 55. Ameren Missouri TRM Appendix I Default Values for Ncool and Nheat	78
Table 56. 2015 RECS Building Characteristics Data for the Midwest Region	78
Table 57. Air Source Heat Pump Deemed Input Values for SFIE Measures	79
Table 58. Air Source Heat Pump Measure-Specific Input Values for SFIE Measures	79
Table 59. Central Air Conditioner Input Values for SFIE Measures	80
Table 60. Ceiling Insulation Input Values for SFIE Measures	81
Table 61. Dirty Filter Alarm Input Values for SFIE Measures	82
Table 62. Duct Insulation Input Values for SFIE Measures	82
Table 63. Wattage Table for SFIE Lighting Measures	83

Table 64. Lighting Input Values for SFIE Lighting Measures	83
Table 65. Low-Flow Faucet Aerator Input Values for SFIE Measures	84
Table 66. Low-Flow Showerhead Input Values for SFIE Measures	84
Table 67. Pipe Insulation Input Values for SFIE Measures	85
Table 68. Setback Thermostat Input Values for SFIE Measures	86
Table 69. Setback Thermostat Input Values for SFIE Measures	86
Table 70. Room Air Conditioner Input Values for SFIE Measures	87
Table 71. Tune-Up Input Values for SFIE Measures	88
Table 72. Programmable Thermostat Input Values	89
Table 73. Refrigerator Input Values	90
Table 74. PY2019 NPSO Eligible Measures	91
Table 75. NPSO Allocation by Program (MWh)	93
Table 76. NPSO Allocation by Program (MW)	93
Table 77. Pre-Period Consumption Data Availability	95
Table 78. Pre-Period Consumption	95
Table 79. Residential Program Evaluation Data Collection Instruments	96

Table of Figures

Figure 1. HVAC Program Participant Free Ridership Algorithm	
Figure 2. Consistency Check Process	20
Figure 3. Participant Eligibility for Spillover	
Figure 4. Midstream HVAC Distributor Free Ridership Algorithm	23
Figure 5. Wave 1 Pre-Period Average Daily Consumption	27
Figure 6. Wave 2 Pre-Period Average Daily Consumption	27
Figure 7. Wave 3 Pre-Period Average Daily Consumption	
Figure 8. Wave 4 Pre-Period Average Daily Consumption	
Figure 9. Multifamily Market Rate Program Free Ridership Algorithm	62
Figure 10. Questions Contributing to Consistency Check	63
Figure 11. Participant Eligibility for Spillover	65

Table of Equations

Equation 1. Residential Energy Savings Equation	1
Equation 2. Non-Residential Energy Savings Equation	1
Equation 3. Total Energy Savings Equation	1
Equation 4. Residential Demand Savings Equation	1
Equation 5. Air Source Heat Pump Energy and Demand Savings Equations (Replace on Fail)	3
Equation 6. Air Source Heat Pump Energy and Demand Savings Equations (Early Replacement—First Six Years)	3
Equation 7. Air Source Heat Pump Energy and Demand Savings Equations (Early Replacement—Next 12 Years)	3
Equation 8. Ductless Minisplit Heat Pump Energy and Demand Savings Equations (Replace on Fail)	7
Equation 9. Ductless Minisplit Heat Pump Energy and Demand Savings Equations (Early Replacement— First Six Years)	7
Equation 10. Ductless Minisplit Heat Pump Energy and Demand Savings Equations (Early Replacement— Next 12 Years)	
Equation 11. GSHP Energy and Demand Savings Equations (Replace on Fail)	9
Equation 12. GSHP Energy and Demand Savings Equations (Early Replacement – First Six Years)	10
Equation 13. GSHP Energy and Demand Savings Equations (Early Replacement – Next 12 Years)	10
Equation 14. Central Air Conditioner Energy and Demand Savings Equations (Replace on Fail)	11
Equation 15. Central Air Conditioner Energy and Demand Savings Equations (Early Replacement—First Six Years)	12
Equation 16. Central Air Conditioner Energy and Demand Savings Equations (Early Replacement–Next 12 Years)	12
Equation 17. ECM Energy and Demand Savings Equations	14
Equation 18. Advanced Thermostat Energy and Demand Savings Equations	15
Equation 19. Downstream NTGR	16
Equation 20. Midstream NTGR	17
Equation 21. PY2020 HVAC Program NTGR	17
Equation 22. PY2020 HVAC Program Downstream Channel Participant Spillover Rate	22
Equation 23. PY2020 HVAC Program Midstream Channel Participant Spillover Rate	22
Equation 24. Program Component FR Score	23
Equation 25. No Program Score	23
Equation 31. Lagged Dependent Variable Model Estimating Equation	30

Equation 27. POD Estimator	36
Equation 28. Participation Uplift Rate	37
Equation 29. Savings Adjustment	37
Equation 30. Heat Pump Water Heater Energy and Demand Savings Equations	38
Equation 31. Advanced Thermostat Energy and Demand Savings Equation	
Equation 32. Pool Pump Energy and Demand Savings Equations	41
Equation 33. Tier 1 Power Strips Energy and Demand Savings Equations	42
Equation 34. Tier 2 Power Strips Energy and Demand Savings Equations	43
Equation 35. EEK Faucet Aerator electric savings equation.	45
Equation 36. EEK Faucet Aerator demand savings equation.	45
Equation 37. Low Flow Shower Head Energy Savings.	46
Equation 38. Low Flow Shower Head Demand Savings.	46
Equation 39. LED Lighting Energy Savings.	47
Equation 40. LED Lighting Demand Savings	48
Equation 41. Dirty Filter Alarm Energy Savings	49
Equation 42. Dirty Filter Alarm Demand Savings	49
Equation 43. Pipe Insulation Energy Savings	50
Equation 44. Pipe Insulation Demand Savings	50
Equation 45. Lighting Energy and Demand Savings Equations	52
Equation 46. Low Flow Faucet Aerator Energy and Demand Savings Equations	54
Equation 47. Low Flow Showerhead Energy and Demand Savings Equations	54
Equation 48. Learning Thermostat Energy and Demand Savings Equations	55
Equation 49. Heat Pump Water Heater Energy and Demand Savings Equations	56
Equation 50. Clothes Washer Energy and Demand Savings Equations	58
Equation 51. Clothes Dryer Energy and Demand Savings Equations	58
Equation 52. Wall Insulation Energy and Demand Savings Equations	59
Equation 53. Windows Energy and Demand Savings Equations	60
Equation 54. Free Ridership	62
Equation 55. Program Influence Score	63
Equation 56. No Program Score	63
Equation 57. Program Influence Factor	64
Equation 73. Refrigerator recycling regression-based analysis for calculating electric savings	66
Equation 74. Refrigerator recycling regression-based analysis for calculating demand savings	66

	reezer recycling regression-based analysis for calculating electric savings.	.67
Equation 76. F	reezer recycling regression-based analysis for calculating demand savings.	.67
Equation 77. E	E Kit Faucet Aerator electric savings equation.	.69
Equation 78. E	E Kit Faucet Aerator demand savings equation.	.69
Equation 79. L	ow-Flow Shower Head Energy Savings.	.70
Equation 80. L	ow-Flow Shower Head Demand Savings	.70
Equation 81. L	ED Lighting Energy Savings	.72
Equation 82. L	ED Lighting Demand Savings	.72
Equation 83. D	virty Filter Alarm Energy Savings	.73
Equation 84. D	virty Filter Alarm Demand Savings	.73
Equation 85. P	ipe Insulation Energy Savings	.74
Equation 86. P	ipe Insulation Demand Savings	.74
Equation 58. A	ir Sealing Test In / Test Out Approach Energy and Demand Savings Equations	.76
Equation 59. A	ir Sealing Conservative Deemed Approach Energy and Demand Savings Equations	.77
Equation 60. A	ir Sealing Calculated Values for N_{cool} and N_{heat}	.78
	ir Source Heat Pump Energy and Demand Savings Equations (Early Replacement – First	
/		.78
Equation 62. A	ir Source Heat Pump Energy and Demand Savings Equations (Early Replacement – Next	
Equation 62. A 12 Years) Equation 63. C	ir Source Heat Pump Energy and Demand Savings Equations (Early Replacement – Next	.79
Equation 62. A 12 Years) Equation 63. C Six Years) Equation 64. C	ir Source Heat Pump Energy and Demand Savings Equations (Early Replacement – Next rentral Air Conditioner Energy and Demand Savings Equations (Early Replacement – First	.79 .80
Equation 62. A 12 Years) Equation 63. C Six Years) Equation 64. C 12 Years)	ir Source Heat Pump Energy and Demand Savings Equations (Early Replacement – Next rentral Air Conditioner Energy and Demand Savings Equations (Early Replacement – First rentral Air Conditioner Energy and Demand Savings Equations (Early Replacement – Next	.79 .80 .80
Equation 62. A 12 Years) Equation 63. C Six Years) Equation 64. C 12 Years) Equation 65. C	ir Source Heat Pump Energy and Demand Savings Equations (Early Replacement – Next central Air Conditioner Energy and Demand Savings Equations (Early Replacement – First central Air Conditioner Energy and Demand Savings Equations (Early Replacement – Next	.79 .80 .80 .81
Equation 62. A 12 Years) Equation 63. C Six Years) Equation 64. C 12 Years) Equation 65. C Equation 66. D	ir Source Heat Pump Energy and Demand Savings Equations (Early Replacement – Next central Air Conditioner Energy and Demand Savings Equations (Early Replacement – First central Air Conditioner Energy and Demand Savings Equations (Early Replacement – Next ceiling Insulation Energy and Demand Savings Equations.	.79 .80 .80 .81 .82
Equation 62. A 12 Years) Equation 63. C Six Years) Equation 64. C 12 Years) Equation 65. C Equation 66. D Equation 67. S	ir Source Heat Pump Energy and Demand Savings Equations (Early Replacement – Next central Air Conditioner Energy and Demand Savings Equations (Early Replacement – First central Air Conditioner Energy and Demand Savings Equations (Early Replacement – Next ceiling Insulation Energy and Demand Savings Equations	.79 .80 .80 .81 .82 .86
Equation 62. A 12 Years) Equation 63. C Six Years) Equation 64. C 12 Years) Equation 65. C Equation 66. D Equation 67. S Equation 68. R	ir Source Heat Pump Energy and Demand Savings Equations (Early Replacement – Next Pentral Air Conditioner Energy and Demand Savings Equations (Early Replacement – First Pentral Air Conditioner Energy and Demand Savings Equations (Early Replacement – Next Peiling Insulation Energy and Demand Savings Equations Puct Insulation Energy and Demand Savings Equations devices and Dem	.79 .80 .81 .82 .86 .86
Equation 62. A 12 Years) Equation 63. C Six Years) Equation 64. C 12 Years) Equation 65. C Equation 66. D Equation 67. S Equation 68. R Equation 69. R	ir Source Heat Pump Energy and Demand Savings Equations (Early Replacement – Next rentral Air Conditioner Energy and Demand Savings Equations (Early Replacement – First rentral Air Conditioner Energy and Demand Savings Equations (Early Replacement – Next reiling Insulation Energy and Demand Savings Equations	.79 .80 .81 .82 .86 .86 .86
Equation 62. A 12 Years) Equation 63. C Six Years) Equation 64. C 12 Years) Equation 65. C Equation 66. D Equation 67. S Equation 68. R Equation 69. R Equation 70. T	ir Source Heat Pump Energy and Demand Savings Equations (Early Replacement – Next eentral Air Conditioner Energy and Demand Savings Equations (Early Replacement – First eentral Air Conditioner Energy and Demand Savings Equations (Early Replacement – Next eeiling Insulation Energy and Demand Savings Equations	.79 .80 .81 .82 .86 .86 .87 .87

Appendix A. Detailed Impact Analysis Methodology

Residential Lighting

Gross Impact Methodology

Electricity and Demand Savings

To calculate ex post gross energy (MW) and demand (MWh) savings for the PY2020 Residential Lighting Program, the evaluation team applied the October 2020 Ameren Missouri TRM Appendix I (v4.0) and Appendix F (v4.0) deemed savings tables to the program-tracking database.

The team calculated electric energy and demand savings using the algorithms outlined in the following equations:

Equation 1. Residential Energy Savings Equation

 $\Delta kWh_{RES} = [(Watt_{Base} - Watt_{EE}) \times \% RES \times ISR \times (1 - LKG) * (HOU_{RES} \times WHFe_{RES}] \div 1,000$

Equation 2. Non-Residential Energy Savings Equation

 $\Delta kWh_{NRES} = [(Watt_{Base} - Watt_{EE}) \times (1 - \% \text{RES}) \times \text{ISR} (1 - LKG) * (HOU_{NRES} \times WHFe_{NRES}] \div 1,000$

Equation 3. Total Energy Savings Equation

 $\Delta kWh = \Delta kWh_{RES} + \Delta kWh_{NRES}$

Equation 4. Residential Demand Savings Equation

 $\Delta kW = \Delta kWh \ x \ CF$

Table 1 lists each of the savings calculation parameters, providing a description, the source of the PY2020 evaluation numbers, and the final parameter values used for computing ex post gross savings.

Parameter	Decerintian	Source of	Online Store		Upstream Lighting	
Parameter	Description	Assumption	Residential	Commercial	Residential	Commercial
WattBase	Minimum EISA-compliant efficiency baselines taken from applicable Appendix I lumen ranges	TRM Appendix I	Minimum efficiency baselines taken from applicable Appendix I lumen ranges			
WattEE	Actual product wattage	Looked-up for each bulb	Actual product wattage			
%RES	% of bulbs installed in residential applications, by channel	TRM Appendix F	100%	0%	96%	4%
LKG	% of bulbs installed outside service territory, by channel (i.e., leakage rate)	TRM Appendix F	0	0% 4%		%

Table 1.	Ex	Post	Savings	Assumption	Sources
TUDIO IL		1 000	Gattingo	/ wooumpaon	0001000

Parameter	Decerintian	Source of Assumption	Online Store		Upstream Lighting	
Farameter	Description		Residential	Commercial	Residential	Commercial
HOU	Hours of use for residential and commercial installations	TRM Appendix F	995	3,612	995	3,612
ISR	In-service rates at the channel by bulb type levels	TRM Appendix F	80.08% (Standard) Reflector) Specialty)	89.83% (Standard) Reflector) Specialty)
WHFe	Waste heat factor for residential and commercial installations	TRM Appendix F	0.99	1.1	0.99	1.1
CF	TRM Appendix I	TRM Appendix F	0.0001492 529	0.0001899 635	0.00014925 29	0.00018996 35

Note that several parameter values shown in TRM Appendix F were calculated as part of the PY2019 Lighting Program evaluation. These parameters include the %RES, ISRs, and LKG. Details on the derivation of these parameters are contained in the PY2019 evaluation report Appendix A.

Net Impact Methodology and Results

A NTGR represents the portion of the gross energy savings associated with a program-supported measure or behavior change that would not have been realized in the absence of the program. In other words, the NTGR represents the share of program-induced savings.

For the Lighting Program, the NTGR consists of participant free ridership (FR), participant spillover (PSO), and non-participant SO (NPSO), and is calculated as (1 - FR + PSO + NPSO). FR is the proportion of the program-achieved ex post gross savings that would have been realized absent the program. PSO occurs when participants take additional energy-saving actions that are influenced by program interventions but that did not receive program support. NPSO is the reduction in energy consumption and/or demand by nonparticipants because of the influence of the program.

For PY2020, the evaluation team relied on NTGR results estimated as part of the PY2019 evaluation (details on the derivation of the NTGRs can be found in the PY2019 evaluation report Appendix A). However, we reweighted last year's values to reflect the proportion of ex post gross savings across channel (and bulb type) present in the PY2020 program-tracking data. Table 2 shows the final NTGRs used for the PY2020 evaluation.

Channel	Free- Ridership	Participant Spillover	Non- Participant Spillover	NTGR	% Ex Post Gross
	(FR)	(PS0)	(NPSO)	(1-FR+PSO+NPSO)	
Upstream	42.9%	0.0%	7.4%	64.5%	98.7%
Online	12.7%	1.7%	0.0%	89.0%	1.3%
Overall Program	42.5%	0.0%	7.4%	64.8%	100.0%

Table 2.	PY2020	Lighting	Program	NTGRs
	112020	LIGHTING	TUSIUM	ITT GILS

HVAC Program

Gross Impact Methodology

Air Source Heat Pump Savings Assumptions

To calculate verified gross energy and demand savings for PY2020 Residential HVAC Program ASHP measures, the evaluation team applied Ameren Missouri TRM and Appendix F (v4.0) deemed savings tables to the program-tracking database.

The team used the following equations to calculate electric energy and demand savings:

Equation 5. Air Source Heat Pump Energy and Demand Savings Equations (Replace on Fail)

$$kWh = kWh_{Cooling} + kWh_{Heating}$$

$$kWh_{Cooling} = \frac{\left(EFLH_{Cool} \times Capacity_{Cool} \times \left(\frac{1}{SEER_{Base}} - \frac{1}{SEER_{EE}}\right)\right)}{1,000} \times HF$$

$$kWh_{Heating} = \frac{\left(EFLH_{Heat} \times Capacity_{Heat} \times \left(\frac{1}{HSPF_{Base}} - \frac{1}{HSPF_{EE}}\right)\right)}{1,000} \times HF$$

$$kW = kWh_{Cooling} \times CF$$

Equation 6. Air Source Heat Pump Energy and Demand Savings Equations (Early Replacement-First Six Years)

$$kWh = kWh_{Cooling} + kWh_{Heating}$$

$$kWh_{Cooling} = \frac{\left(EFLH_{Cool} \times Capacity_{Cool} \times \left(\frac{1}{DR \times SEER_{Exist}} - \frac{1}{SEER_{EE}}\right)\right)}{1,000} \times HF$$

$$kWh_{Heating} = \frac{\left(EFLH_{Heat} \times Capacity_{Heat} \times \left(\frac{1}{HSPF_{Exist}} - \frac{1}{HSPF_{EE}}\right)\right)}{1,000} \times HF$$

$$kW = kWh_{Cooling} \times CF$$

Equation 7. Air Source Heat Pump Energy and Demand Savings Equations (Early Replacement-Next 12 Years)

$$kWh = kWh_{Cooling} + kWh_{Heating}$$
$$kWh_{Cooling} = \frac{\left(EFLH_{Cool} \times Capacity_{Cool} \times \left(\frac{1}{SEER_{Base}} - \frac{1}{SEER_{EE}}\right)\right)}{1,000} \times HF$$

$$kWh_{Heating} = \frac{\left(EFLH_{Heat} \times Capacity_{Heat} \times \left(\frac{1}{HSPF_{Base}} - \frac{1}{HSPF_{EE}}\right)\right)}{1,000} \times HF$$

$$kW = kWh_{Cooling} \times CF$$

Where:

EFLHCool = Equivalent full load hours of air conditioning = 869

EFLHHeat = Equivalent full load hours of heating = 1,496

CapacityCool = Cooling capacity of ASHP (Btu/hr) = Actual from program tracked data; if unknown, assumed defaults from Appendix F (v4.0)

CapacityHeat = Heating capacity of ASHP (Btu/hr) = Actual from program tracked data; if unknown, assumed defaults from Appendix F (v4.0)

Table 3. CapacityCool and CapacityHeat for Air Source Heat Pump Measures

Measure	CapacityCool (Btu/hr)	CapacityHeat (Btu/hr)
ASHP SEER 15 ER Elec Resist Furnace: HVAC ER1	34,457	34,457
ASHP SEER 15 ER with ASHP: HVAC ER1	37,222	37,222
ASHP SEER 15 Replace on Fail Elec Resist Furnace: HVAC	35,872	35,872
ASHP SEER 15 Replace on Fail with ASHP: HVAC	34,680	34,680
ASHP SEER 16 Replace Electric Furnace / CAC: Early Replacement SF ER1	35,376	35,376
ASHP SEER 16 Replace ASHP: Early Replacement SF ER1	37,318	37,318
ASHP SEER 16 Replace Electric Furnace / CAC SF	35,429	35,429
ASHP SEER 16 Replace ASHP: Replace on Fail SF	39,000	39,000
ASHP SEER 15 MF ER Replace ASHP: HVAC ER1	34,500	34,500
ASHP SEER 15 MF ER Replace Elec Resist Furnace: HVAC ER1	33,000	33,000
ASHP SEER 16 MF ER Replace ASHP: HVAC ER1	39,600	39,600
ASHP SEER 16 Replace on Fail MF	39,600	39,600
ASHP SEER 16 Replace Electric Furnace / CAC: Early Replacement MF ER1	39,600	39,600
ASHP SEER 15 Replace on Fail MF	37,200	37,200
ASHP SEER 17 Replace Electric Furnace / CAC SF	33,600	33,600
ASHP SEER 18 Replace Electric Furnace / CAC SF	36,000	36,000
ASHP SEER 18 Replace Electric Furnace / CAC MF	48,000	48,000
ASHP SEER 17 Replace ASHP: Early Replacement SF ER1	39,600	39,600
ASHP SEER 17 Replace ASHP: Replace on Fail SF	39,600	39,600
ASHP SEER 18 Replace ASHP: Early replacement SF ER1	42,600	42,600
ASHP SEER 18 Replace on Fail SF	39,600	39,600
ASHP SEER 17 Replace Electric Furnace / CAC: Early Replacement SF ER1	37,200	37,200
ASHP SEER 18 Replace Electric Furnace / CAC: Early Replacement SF ER1	40,966	40,966
ASHP SEER 19: Replace Electric Furnace / CAC SF	33,600	33,600

Measure	CapacityCool (Btu/hr)	CapacityHeat (Btu/hr)
ASHP SEER 20: Replace Electric Furnace / CAC - early replacement SF ER1	37,200	37,200
ASHP SEER 20: Replace Electric Furnace / CAC SF	38,400	38,400
ASHP SEER 21: Replace Electric Furnace / CAC - early replacement SF ER1	37,200	37,200
ASHP SEER 21: Replace Electric Furnace / CAC SF	38,400	38,400
ASHP SEER 19: Replace ASHP: Early Replacement SF ER1	39,600	39,600
ASHP SEER 19: Replace ASHP: Replace on Fail SF	39,600	39,600
ASHP SEER 18: Replace Electric Furnace / CAC: Early Replacement MF ER1	48,000	48,000
ASHP SEER 18: Replace ASHP: Early Replacement MF ER1	39,600	39,600
ASHP SEER 19: Replace Electric Furnace / CAC: Early Replacement SF ER1	37,200	37,200
ASHP SEER 20: Replace ASHP: Early Replacement SF ER1	39,600	39,600
ASHP SEER 20: Replace ASHP: Replace on Fail SF	39,600	39,600
ASHP SEER 21: Replace ASHP: Early Replacement SF ER1	39,600	39,600
ASHP SEER 21: Replace ASHP: Replace on Fail SF	39,600	39,600

SEERBase = Seasonal Energy Efficiency Ratio of baseline cooling system (kBtu/kWh) = 14 if replacing ASHP, 13 if replacing CAC

HSPFBase = Heating Seasonal Performance Factor of baseline heating system (kBtu/kWh) = 8.2 if replacing ASHP, 3.41 if replacing electric resistance

SEERExist = Seasonal Energy Efficiency Ratio of existing cooling system (kBtu/kWh) = Actual from program tracked data; if unknown, assumed defaults from Appendix F (October 2020)

HSPFExist = Heating Seasonal Performance Factor of existing heating system (kBtu/kWh) = Actual from program tracked data; if unknown, assumed 6.58 if replacing ASHP, 3.41 if replacing electric resistance

SEEREE = Seasonal Energy Efficiency Ratio of efficient ASHP (kBtu/kWh) = Actual from program tracked data; if unknown, assumed defaults in Appendix F (October 2020)

HSPFEE = Heating Seasonal Performance Factor of efficient ASHP (kBtu/kWh) = Actual from program tracked data; if unknown, assumed defaults in Appendix F (October 2020)

Measure	SEERExist	SEEREE	HSPFEE	
ASHP SEER 15 ER Elec Resist Furnace: HVAC ER1	7.23	15.13	8.53	
ASHP SEER 15 ER with ASHP: HVAC ER1	7.47	15.12	8.48	
ASHP SEER 15 Replace on Fail Elec Resist Furnace: HVAC		15.19	8.43	
ASHP SEER 15 Replace on Fail with ASHP: HVAC		15.17	8.70	
ASHP SEER 16 Replace Electric Furnace / CAC: Early Replacement SF ER1	7.37	16.25	8.43	
ASHP SEER 16 Replace ASHP: Early Replacement SF ER1	7.79	16.35	8.89	
ASHP SEER 16 Replace Electric Furnace / CAC SF		16.17	8.78	
ASHP SEER 16 Replace ASHP: Replace on Fail SF		16.00	9.43	
ASHP SEER 15 MF ER Replace ASHP: HVAC ER1	7.45	15.13	9.06	

Table 4. SEERExist, SEEREE and HSPFEE for Air Source Heat Pump Measures

Measure	SEERExist	SEEREE	HSPFEE
ASHP SEER 15 MF ER Replace Elec Resist Furnace: HVAC ER1	7.44	15.25	8.75
ASHP SEER 16 MF ER Replace ASHP: HVAC ER1	8.33	16.00	9.50
ASHP SEER 16 Replace on Fail MF		16.00	9.80
ASHP SEER 16 Replace Electric Furnace / CAC: Early Replacement MF ER1	8.33	16.50	7.42
ASHP SEER 15 Replace on Fail MF		15.10	8.70
ASHP SEER 17 Replace Electric Furnace / CAC SF		17.00	9.70
ASHP SEER 18 Replace Electric Furnace / CAC SF		19.00	10.50
ASHP SEER 18 Replace Electric Furnace / CAC MF		19.00	10.00
ASHP SEER 17 Replace ASHP: Early Replacement SF ER1	8.33	17.00	9.50
ASHP SEER 17 Replace ASHP: Replace on Fail SF		17.00	9.80
ASHP SEER 18 Replace ASHP: Early Replacement SF ER1	7.90	18.99	9.68
ASHP SEER 18 Replace on Fail SF		18.00	9.80
ASHP SEER 17 Replace Electric Furnace / CAC: Early Replacement SF ER1	8.33	17.00	9.40
ASHP SEER 18 Replace Electric Furnace / CAC: Early Replacement SF ER1	7.70	18.58	9.89
ASHP SEER 19 Replace Electric Furnace / CAC SF		19.00	9.70
ASHP SEER 20 Replace Electric Furnace / CAC: Early Replacement SF ER1	8.33	20.00	9.40
ASHP SEER 20 Replace Electric Furnace / CAC SF		20.00	9.70
ASHP SEER 21 Replace Electric Furnace / CAC: Early Replacement SF ER1	8.33	21.00	9.40
ASHP SEER 21 Replace Electric Furnace / CAC SF		21.00	9.70
ASHP SEER 19 Replace ASHP: Early Replacement SF ER1	8.33	19.00	9.50
ASHP SEER 19 Replace ASHP: Replace on Fail SF		19.00	9.80
ASHP SEER 18 Replace Electric Furnace / CAC: Early Replacement MF ER1	6.54	18.00	10.00
ASHP SEER 18 Replace ASHP: Early Replacement MF ER1	8.33	18.00	9.50
ASHP SEER 19 Replace Electric Furnace / CAC: Early Replacement SF ER1	8.33	19.00	9.40
ASHP SEER 20 Replace ASHP: Early Replacement SF ER1	8.33	20.00	9.50
ASHP SEER 20 Replace ASHP: Replace on Fail SF		20.00	9.80
ASHP SEER 21 Replace ASHP: Early Replacement SF ER1	8.33	21.00	9.50
ASHP SEER 21 Replace ASHP: Replace on Fail SF		21.00	9.80

DR = Derating factor, to account for performance degradation of existing equipment compared to its nameplate rating. DR = (1-1.44%)Age, where "Age" is the age of the existing equipment in years (default = 12 years). We did not de-rate existing equipment with nameplate efficiency of 8 SEER or lower.

HF = Household factor, to adjust heating consumption for non-single-family households = 100% if single family, 65% if multifamily

CF = Coincidence factor = 0.0009474181

Ductless Minisplit Heat Pump Savings Assumptions

To calculate verified gross energy and demand savings for PY2020 Residential HVAC Program ductless minisplit heat pump measures, the evaluation team applied the Ameren Missouri TRM and Appendix F (v4.0) deemed savings tables to the program-tracking database.

The team used the following equations to calculate electric energy and demand savings:

Equation 8. Ductless Minisplit Heat Pump Energy and Demand Savings Equations (Replace on Fail)

$$kWh = kWh_{Cooling} + kWh_{Heating}$$

$$kWh_{Cooling} = \frac{\left(EFLH_{Cool} \times Capacity_{Cool} \times \left(\frac{1}{SEER_{Base}} - \frac{1}{SEER_{EE}}\right)\right)}{1,000} \times HF$$

$$kWh_{Heating} = \frac{\left(EFLH_{Heat} \times Capacity_{Heat} \times \left(\frac{1}{HSPF_{Base}} - \frac{1}{HSPF_{EE}}\right)\right)}{1,000} \times HF$$

$$kW = kWh_{Cooling} \times CF$$

0

Equation 9. Ductless Minisplit Heat Pump Energy and Demand Savings Equations (Early Replacement-First Six Years)

$$kWh = kWh_{Cooling} + kWh_{Heating}$$

$$kWh_{Cooling} = \frac{\left(EFLH_{Cool} \times Capacity_{Cool} \times \left(\frac{1}{DR \times SEER_{Exist}} - \frac{1}{SEER_{EE}}\right)\right)}{1,000} \times HF$$

$$kWh_{Heating} = \frac{\left(EFLH_{Heat} \times Capacity_{Heat} \times \left(\frac{1}{HSPF_{Exist}} - \frac{1}{HSPF_{EE}}\right)\right)}{1,000} \times HF$$

$$kW = kWh_{Cooling} \times CF$$

Equation 10. Ductless Minisplit Heat Pump Energy and Demand Savings Equations (Early Replacement-Next 12 Years)

$$kWh = kWh_{Cooling} + kWh_{Heating}$$

$$kWh_{Cooling} = \frac{\left(EFLH_{Cool} \times Capacity_{Cool} \times \left(\frac{1}{SEER_{Base}} - \frac{1}{SEER_{EE}}\right)\right)}{1,000} \times HF$$

$$kWh_{Heating} = \frac{\left(EFLH_{Heat} \times Capacity_{Heat} \times \left(\frac{1}{HSPF_{Base}} - \frac{1}{HSPF_{EE}}\right)\right)}{1,000} \times HF$$

$$kW = kWh_{Cooling} \times CF$$

Where:

opiniondynamics.com

EFLHCool = Equivalent full load hours of air conditioning = 635

EFLHHeat = Equivalent full load hours of heating = 1,034 if ductless ASHP measure, 0 if ductless air conditioner measure

CapacityCool = Cooling capacity of heat pump (Btu/hr) = Actual from program tracked data; if unknown, assumed defaults from Appendix F (v4.0)

CapacityHeat = Heating capacity of heat pump (Btu/hr) = Actual from program tracked data; if unknown, assumed defaults from Appendix F (v4.0)

Table 5. CapacityCool and CapacityHeat for Ductless Minisplit Heat Pump Measures

Measure	CapacityCool (Btu/hr)	CapacityHeat (Btu/hr)
Ductless Air Conditioner- ER1 SF	18,000	0
Ductless Air Conditioner- ROF SF	15,750	0
Ductless ASHP - ROF SF NC	18,000	18,000
Ductless ASHP - ROF SF	18,221	18,221
Ductless ASHP Replace Electric Resistance ER1 SF	18,840	18,840
Ductless ASHP Replace Electric Resistance ROF SF	19,200	19,200
Ductless ASHP ER1 SF	15,375	15,375

SEERBase = Seasonal Energy Efficiency Ratio of baseline cooling system (kBtu/kWh) = 14 if replacing ductless ASHP, 13 if replacing ductless AC

HSPFBase = Heating Seasonal Performance Factor of baseline heating system (kBtu/kWh)

Measure	HSPFBase
Ductless Air Conditioner- ER1 SF	0
Ductless Air Conditioner- ROF SF	0
Ductless ASHP - ROF SF NC	8.200
Ductless ASHP - ROF SF	8.200
Ductless ASHP Replace Electric Resistance ER1 SF	3.412
Ductless ASHP Replace Electric Resistance ROF SF	3.412
Ductless ASHP ER1 SF	6.580

 Table 6. HSPFBase for Ductless Minisplit Heat Pump Measures

SEERExist = Seasonal Energy Efficiency Ratio of existing cooling system (kBtu/kWh) = Actual from program tracked data; if unknown, assumed defaults from Appendix F (v4.0)

 Table 7. SEERExist for Ductless Minisplit Heat Pump Measures

Measure	SEERExist
Ductless Air Conditioner- ER1 SF	6.30
Ductless Air Conditioner- ROF SF	6.30
Ductless ASHP - ROF SF NC	7.20
Ductless ASHP - ROF SF	7.20
Ductless ASHP Replace Electric Resistance ER1 SF	7.61
Ductless ASHP Replace Electric Resistance ROF SF	6.80
Ductless ASHP ER1 SF	8.02

HSPFExist = Heating Seasonal Performance Factor of existing heating system (kBtu/kWh) = Actual from program tracked data; if unknown, assumed 5.44 if replacing ductless ASHP, 3.412 if replacing electric resistance

SEEREE = Seasonal Energy Efficiency Ratio of efficient heat pump (kBtu/kWh) = Actual from program tracked data; if unknown, assumed defaults in Appendix F (v4.0)

HSPFEE = Heating Seasonal Performance Factor of efficient heat pump (kBtu/kWh) = Actual from program tracked data; if unknown, assumed defaults in Appendix F (v4.0)

Measure	SEEREE	HSPFEE
Ductless Air Conditioner- ER1 SF	23.17	0.00
Ductless Air Conditioner- ROF SF	22.92	0.00
Ductless ASHP - ROF SF NC	19.00	10.60
Ductless ASHP - ROF SF	22.52	11.00
Ductless ASHP Replace Electric Resistance ER1 SF	22.43	9.44
Ductless ASHP Replace Electric Resistance ROF SF	23.19	11.23
Ductless ASHP ER1 SF	22.25	8.36

Table 8. SEEREE and HSPFEE for Ductless Minisplit Heat Pump Measures

DR = Derating factor, to account for performance degradation of existing equipment compared to its nameplate rating. DR = (1-1.44%)Age, where "Age" is the age of the existing equipment in years (default = 12 years). We did not de-rate existing equipment with nameplate efficiency of 8 SEER or lower.

HF = Household factor, to adjust heating consumption for non-single-family households = 100%

CF = Coincidence factor = 0.0009474181

Ground Source Heat Pump Savings Assumptions

To calculate verified gross energy and demand savings for PY2020 Residential HVAC Program GSHP measures, the evaluation team applied the Ameren Missouri TRM and Appendix F (v4.0) deemed savings tables to the program-tracking database.

The team used the following equations to calculate electric energy and demand savings:

Equation 11. GSHP Energy and Demand Savings Equations (Replace on Fail)

$$kWh = kWh_{Cooling} + kWh_{Heating}$$

$$kWh_{Cooling} = \frac{\left(EFLH_{Cool} \times Capacity_{Cool} \times \left(\frac{1}{SEER_{Base}} - \frac{1}{SEER_{EE}}\right)\right)}{1,000}$$
$$kWh_{Heating} = \frac{\left(EFLH_{Heat} \times Capacity_{Heat} \times \left(\frac{1}{HSPF_{Base}} - \frac{1}{HSPF_{EE}}\right)\right)}{1,000}$$
$$kW = kWh_{Cooling} \times CF$$

Equation 12. GSHP Energy and Demand Savings Equations (Early Replacement - First Six Years)

$$kWh = kWh_{Cooling} + kWh_{Heating}$$

$$kWh_{Cooling} = \frac{\left(EFLH_{Cool} \times Capacity_{Cool} \times \left(\frac{1}{DR \times SEER_{Exist}} - \frac{1}{SEER_{EE}}\right)\right)}{1,000}$$

$$kWh_{Heating} = \frac{\left(EFLH_{Heat} \times Capacity_{Heat} \times \left(\frac{1}{HSPF_{Exist}} - \frac{1}{HSPF_{EE}}\right)\right)}{1,000}$$

$$kW = kWh_{Cooling} \times CF$$

Equation 13. GSHP Energy and Demand Savings Equations (Early Replacement - Next 12 Years)

 $kWh = kWh_{Cooling} + kWh_{Heating}$ $kWh_{Cooling} = \frac{\left(EFLH_{Cool} \times Capacity_{Cool} \times \left(\frac{1}{SEER_{Base}} - \frac{1}{SEER_{EE}}\right)\right)}{1,000}$ $kWh_{Heating} = \frac{\left(EFLH_{Heat} \times Capacity_{Heat} \times \left(\frac{1}{HSPF_{Base}} - \frac{1}{HSPF_{EE}}\right)\right)}{1,000}$ $kW = kWh_{Cooling} \times CF$

Where:

EFLHCool = Equivalent full load hours of air conditioning = 869

EFLHHeat = Equivalent full load hours of heating = 1,496

CapacityCool = Cooling capacity of heat pump (Btu/hr) = Actual from program tracked data; if unknown, assumed defaults from Appendix F (v4.0)

CapacityHeat = Heating capacity of heat pump (Btu/hr) = Actual from program tracked data; if unknown, assumed defaults from Appendix F (v4.0)

Measure	CapacityCool (Btu/hr)	CapacityHeat (Btu/hr)
GSHP - EER 23 - replace electric furnace / CAC - Heating	49,745	49,745
GSHP - EER 23 - replace electric furnace / CAC ER1 - Heating	45,750	45,750
GSHP EER 23 ER1 - Heating	51,319	51,319
GSHP EER 23 Replace on Fail GSHP	51,652	51,652

Table 9. CapacityCool and CapacityHeat for GSHP Measures

SEERBase = Seasonal Energy Efficiency Ratio of baseline cooling system (kBtu/kWh) = 14.1

HSPFBase = Heating Seasonal Performance Factor of baseline heating system (kBtu/kWh) = 10.58 if replacing heat pump, 3.41 if replacing electric resistance

SEERExist = Seasonal Energy Efficiency Ratio of existing cooling system (kBtu/kWh) = Actual from program tracked data; if unknown, assumed 12 if replacing heat pump, 6.54 if replacing CAC

HSPFExist = Heating Seasonal Performance Factor of existing heating system (kBtu/kWh) = Actual from program tracked data; if unknown, assumed 9.55 if replacing heat pump, 3.41 if replacing electric resistance

SEEREE = Seasonal Energy Efficiency Ratio of efficient GSHP (kBtu/kWh) = Actual from program tracked data; if unknown, assumed defaults in Appendix F (v4.0)

Measure	SEEREE
GSHP - EER 23 - replace electric furnace / CAC - Heating	27.75
GSHP - EER 23 - replace electric furnace / CAC ER1 - Heating	29.56
GSHP EER 23 ER1 - Heating	27.41
GSHP EER 23 Replace on Fail GSHP	27.54

Table 10. SEEREE for GSHP Measures

HSPFEE = Heating Seasonal Performance Factor of efficient GSHP (kBtu/kWh) = Actual from program tracked data; if unknown, assumed 15.14

DR = Derating factor, to account for performance degradation of existing equipment compared to its nameplate rating. DR = (1-1.44%)Age, where "Age" is the age of the existing equipment in years (default = 12 years). We did not de-rate existing equipment with nameplate efficiency of 8 SEER or lower.

CF = Coincidence factor = 0.0009474181

Central Air Conditioner Savings Assumptions

To calculate verified gross energy and demand savings for PY2020 Residential HVAC Program CAC measures, the evaluation team applied the Ameren Missouri TRM and Appendix F (v4.0) deemed savings tables to the program-tracking database.

The team used the following equations to calculate electric energy and demand savings:

Equation 14. Central Air Conditioner Energy and Demand Savings Equations (Replace on Fail)

$$kWh = \left[\frac{\left(EFLH_{cool} \times Capacity_{cool} \times \left(\frac{1}{SEER_{Base}} - \frac{1}{SEER_{EE}}\right)\right)}{1,000}\right] \times HF$$

$$kW = kWh \times CF$$

Equation 15. Central Air Conditioner Energy and Demand Savings Equations (Early Replacement—First Six Years)

$$kWh = \left[\frac{\left(EFLH_{Cool} \times Capacity_{Cool} \times \left(\frac{1}{DR \times SEER_{Exist}} - \frac{1}{SEER_{EE}}\right)\right)}{1,000}\right] \times HF$$

$$kW = kWh \times CF$$

Equation 16. Central Air Conditioner Energy and Demand Savings Equations (Early Replacement-Next 12 Years)

$$kWh = \left[\frac{\left(EFLH_{cool} \times Capacity_{cool} \times \left(\frac{1}{SEER_{Base}} - \frac{1}{SEER_{EE}}\right)\right)}{1,000}\right] \times HF$$

$$kW = kWh \times CF$$

Where:

EFLHCool = Equivalent full load hours of air conditioning = 869

CapacityCool = Cooling capacity of CAC (Btu/hr) = Actual from program tracked data; if unknown, assumed defaults from Appendix F (v4.0)

Measure	CapacityCool (Btu/hr)
CAC - SEER 15 ER1: SF	38,991
CAC - SEER 15 ROF: SF	39,839
CAC - SEER 15 ER1: MF	27,907
CAC - SEER 15 ROF: MF	25,000
CAC - SEER 16 ER1: SF	35,735
CAC - SEER 16 ROF: SF	36,194
CAC - SEER 16 ER1: MF	30,857
CAC - SEER 16 ROF: MF	32,571
CAC - SEER 17 ER1: SF	36,977
CAC - SEER 17 ROF: SF	38,408
CAC - SEER 17 ER1: MF	29,455
CAC - SEER 17 ROF: MF	48,000
CAC - SEER 18 ER1: SF	36,000
CAC - SEER 18 ROF: SF	36,000
CAC - SEER 18 ER1: MF	24,000
CAC - SEER 18 ROF: MF	24,000
CAC - SEER 19 ER1: SF	36,000
CAC - SEER 19 ROF: SF	36,000

Measure	CapacityCool (Btu/hr)
CAC - SEER 20 ER1: SF	36,000
CAC - SEER 20 ROF: SF	36,000
CAC - SEER 20 ER1: MF	24,000
CAC - SEER 21+ ER1: SF	36,000
CAC - SEER 21+ ROF: SF	36,000

SEERExist = Seasonal Energy Efficiency Ratio of existing cooling system (kBtu/kWh) = Actual from program tracked data; if unknown, assumed defaults in Ameren Missouri TRM Appendix F (v4.0)

SEERBase = Seasonal Energy Efficiency Ratio of baseline equipment (kBtu/kWh) = 13

SEEREE = Seasonal Energy Efficiency Ratio of efficient CAC (kBtu/kWh) = Actual from program tracked data; if unknown, assumed defaults in Ameren Missouri TRM Appendix F (v4.0).

Measure	SEERExist	SEEREE
CAC - SEER 15 ER1: SF	7.53	15.11
CAC - SEER 15 ROF: SF		15.12
CAC - SEER 15 ER1: MF	7.26	15.14
CAC - SEER 15 ROF: MF		15.08
CAC - SEER 16 ER1: SF	7.51	16.03
CAC - SEER 16 ROF: SF		16.04
CAC - SEER 16 ER1: MF	7.98	16.04
CAC - SEER 16 ROF: MF		16.00
CAC - SEER 17 ER1: SF	7.55	17.60
CAC - SEER 17 ROF: SF		17.55
CAC - SEER 17 ER1: MF	6.93	17.14
CAC - SEER 17 ROF: MF		17.00
CAC - SEER 18 ER1: SF	8.33	18.00
CAC - SEER 18 ROF: SF		18.00
CAC - SEER 18 ER1: MF	8.33	18.00
CAC - SEER 18 ROF: MF		18.00
CAC - SEER 19 ER1: SF	8.33	19.00
CAC - SEER 19 ROF: SF		19.00
CAC - SEER 20 ER1: SF	8.33	20.00
CAC - SEER 20 ROF: SF		20.00
CAC - SEER 20 ER1: MF	8.33	20.00
CAC - SEER 21+ ER1: SF	8.33	21.00
CAC - SEER 21+ ROF: SF		21.00

Table 12. SEEREE for Central Air Conditioner Measures

DR = Derating factor, to account for performance degradation of existing equipment compared to its nameplate rating. DR = (1-1.44%)Age, where "Age" is the age of the existing equipment in years

(default = 12 years). We did not de-rate existing equipment with nameplate efficiency of 8 SEER or lower.

HF = Household factor, to adjust heating consumption for non-single-family households = 100%

CF = Coincidence factor = 0.0009474181

Electronically Commutated Motor Savings Assumptions

To calculate verified gross energy and demand savings for PY2020 Residential HVAC Program electronically commutated motor (ECM) measures, the evaluation team applied the Ameren Missouri TRM and Appendix F (v4.0) deemed savings tables to the program-tracking database. Because of a July 2019 change in code requiring ECMs on all new furnaces, in PY2020 the evaluation team deemed the EUL of ECMs to be six years, the remaining useful life of the existing equipment replaced.

The team calculated electric energy and demand savings using the algorithms outlined in Equation 17.

Equation 17. ECM Energy and Demand Savings Equations

$$kWh = kWh_{Heating Mode} + kWh_{Cooling Mode} + kWh_{Auto Circulation} + kWh_{Continuous Circulation}$$

$$kWh_{Heating\ Mode} = (1 - \%\ with\ New\ ASHP) \times \left(400\frac{kWh}{year} \times \frac{EFLH_{Heat}}{WI\ EFLH_{Heat}}\right)$$

$$kWh_{Cooling\ Mode} = (1 - \%\ with\ New\ Central\ Cooling) \times \left(70\frac{kWh}{year} \times \frac{EFLH_{Cool}}{WI\ EFLH_{Cool}}\right)$$

$$kWh_{Auto\ Circulation} = \left(25\frac{kWh}{year} \times \frac{EFLH_{Cool}}{WI\ EFLH_{Cool}}\right) + \left(2960\frac{kWh}{year} \times RT\right) - 30\frac{kWh}{year}$$

$$kWh_{Continuous\ Circulation} = \left(25\frac{kWh}{year} \times \frac{EFLH_{Cool}}{WI\ EFLH_{Cool}}\right) + \left(2960\frac{kWh}{year} \times RT\right) - 30\frac{kWh}{year}$$

$$kWh_{Continuous\ Circulation} = \left(25\frac{kWh}{year} \times \frac{EFLH_{Cool}}{WI\ EFLH_{Cool}}\right) + \left(2960\frac{kWh}{year} \times RT\right) - 30\frac{kWh}{year}$$

Where:

% with New ASHP = 16.34%

400 = Wisconsin heating savings (kWh/year)

EFLHHeat = Effective full load heating hours = 2,009

WI EFLHHeat = Wisconsin effective full load heating hours = 2,545.25

% with New Central Cooling = 80.14%

70 = Wisconsin cooling savings (kWh/year)

EFLHCool = Effective full load cooling hours = 1,215

WI EFLHCool = Wisconsin effective full load cooling hours = 542.50

25 = Cooling savings for all systems (kWh/year)

2,960 = Wisconsin circulation savings (kWh/year)

RT = Percent additional run time factor = 8.81%

30 = Standby losses (kWh/year)

CF = Coincidence factor = 0.0004660805

Advanced Thermostat Savings Assumptions

To calculate verified gross energy and demand savings for PY2020 Residential HVAC Program advanced thermostat measures, the evaluation team applied the Ameren Missouri TRM and Appendix F (v4.0) deemed savings tables to the program-tracking database.

The team calculated electric energy and demand savings using the algorithms outlined in Equation 18.

Equation 18. Advanced Thermostat Energy and Demand Savings Equations

 $kWh = kWh_{Heating} + kWh_{Cooling}$

 $kWh_{Heating} = \% ElectricHeat \times HeatingConsumption_{Electric} \times HF \times HeatingReduction \times ISR + (\Delta Therms \times Fe \times 29.3)$

$$kWh_{Cooling} = \%AC \times \left(\frac{EFLH_{Cool} \times CapacityCool \times \frac{1}{SEER}}{1000}\right) \times CoolingReduction \times ISR$$

 Δ *Therms* = %*FossilHeat* × *HeatingConsumption*_{*Gas*} × *HF* × *HeatingReduction* × *ISR*

$$kW = kWh_{Cooling} \times CF$$

Where:

%ElectricHeat = Percentage of heating savings assumed to be electric = 100% if electric heating system; 0% if natural gas heating; 16% if unknown

HeatingConsumption_{Electric} = Estimate of annual household heating consumption for electrically heated single family homes, in kWh

Heating Equipment	HeatingConsumptionElectric
Electric Heat Pump	8,355
Electric Resistance	14,202
Natural Gas System	0
Unknown	11,456

Table 13. HeatingConsumptionElectric for Advanced Thermostat Measures

HF = Household factor, to adjust heating consumption for non-single-family households = 100% if single family, 65% if multifamily

HeatingReduction = Assumed percentage reduction in total household heating energy consumption due to advanced thermostat = 6.67%

ISR = In-service rate = 100%

ΔTherms = Therm savings if natural gas heating system, calculated using equation defined above

Fe = Furnace fan energy consumption as a percentage of annual fuel consumption = 3.14%

29.3 = Conversion factor of kWh per therm

%AC = Fraction of customers with thermostat-controlled air conditioning = 100%

EFLHCool = Equivalent full load hours of air conditioning = 869

CapacityCool = Capacity of air cooling system in Btu/hr = 36,552

SEER = Seasonal Energy Efficiency Ratio rating of the cooling equipment in kBtu/kWh = 13.55

1/1000 = Conversion factor of kBtu per Btu

CoolingReduction = Assumed percentage reduction in total household cooling energy consumption due to advanced thermostat = 8.0%

%FossilHeat = percentage of heating savings assumed to be natural gas = 0% if electric heating system; 100% if natural gas heating; 84% if unknown

HeatingConsumptionGas = Estimate of annual household heating consumption for gas-heated single family homes, in therms = 682

CF = Coincidence factor = 0.0009474181

Net Impact Methodology

The net-to-gross analysis and the development of the net-to-gross ratios (NTGRs) for the HVAC Program was conducted at the channel level.

The Downstream Channel NTGR includes channel-specific participant FR (PFR) and SO (PSO) derived from the PY2020 participant surveys. We relied on TA SO (TASO) estimated from the PY2019 TA surveys. For the PY2020 Downstream Channel NTGR was computed as:

Equation 19. Downstream NTGR

 $NTGR_{Down} = (1 - PFR_{Down}) + PSO_{Down} + TASO_{Down}$

The Midstream Channel's NTGR also includes channel specific PFR and PSO derived from the PY2020 participant surveys. Because of the nature of the Midstream Channel and significant role of the distributors,

it also includes distributor FR (DFR) derived from the PY2020 distributor interviews. Note that for the Midstream Channel, the evaluation team did not estimate distributor SO.¹

Opinion Dynamics recommended weighting the PFR and DFR equally when deriving the channel-level NTGR. However, because the Midstream Channel was new for PY2020 and the methodology for computing Midstream NTGRs was untested—especially the DFR component—there was concern that the DFR estimates could unreasonably influence the channel-level NTGRs. To avoid surprises, in this first year of estimating Midstream NTGRs, the statewide Independent Auditor agreed to an 80%/20% weighting of PFR and DFR.² Thus, the PY2020 Midstream NTGR was computed as:

Equation 20. Midstream NTGR

$$NTGR_{Mid} = (1 - (0.8 \times PFR_{Mid}) + (0.2 \times DFR_{Mid})) + PSO_{Mid}$$

Non-Participant SO (NPSO) is also applied at the program level to derive the final net electricity and demand savings. The NPSO rates applied to PY2020 were originally derived from a large-scale (n=4,804) non-participant survey conducted as part of the PY2019 evaluation. For PY2020, we use the PY2019 NPSO rates and re-weight to account for the PY2020 ex post gross savings distribution across measures and channels. In the end, the overall program NTGR is:

Equation 21. PY2020 HVAC Program NTGR

$$NTGR = ((NTGR_{Down} + NTGR_{Mid}) \div 2) + NPSO$$

Table 14 shows the elements of the channel-by-measure level NTGRs used to derive net impacts PY2020.

Measure/Enduse	Participant Free Ridership (PFR)	Distributor Free Ridership (DFR)	Participant Spillover (PSO)	Trade Ally Spillover (TASO)	Net-to-Gross Ratio (NTGR)
Downstream					
CACs	39.5%				61.4%
ASHP			0.6%		
GSHP	37.0%		0.6%	0.2%	63.9%
DMSHP	-			0.3%	
ECM ^a					68.4%
Advanced Thermostats	29.6%		0.6%		71.3%
Midstream	Midstream				
CACs	36.0%				63.4%
ASHP	39.6%	39.6%	0.1%		60 F%
DMSHP					60.5%
Advanced Thermostats	28.0%				72.1%

Table 14. PY2020 HVAC Program NTGR

¹ Since contractors initiate the Midstream application, the main avenue for distributor SO would be distributors selling 18+ SEER units to *non*-participating contractors who then install units into eligible customers' homes. This type of SO is captured in the NPSO values that the evaluation team estimated for PY2019, which are applied to the PY2020 results as noted above.

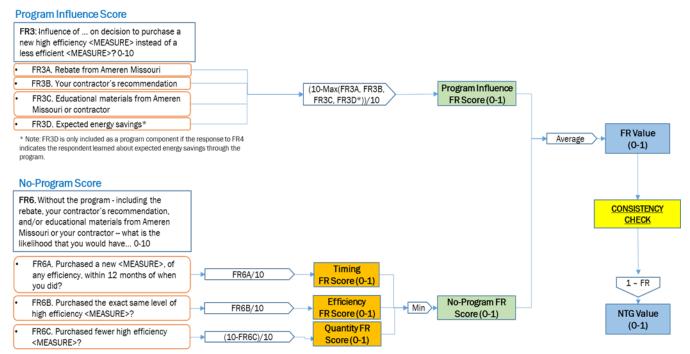
² The evaluation team feels the approach for estimating DFR worked as designed and moving forward recommends that we apply equal weight to PFR and DFR.

Measure/Enduse	Participant Free Ridership (PFR)	Distributor Free Ridership (DFR)	Participant Spillover (PSO)	Trade Ally Spillover (TASO)	Net-to-Gross Ratio (NTGR)
Overall Program	37.2%	2.4%	0.5%	0.3%	63.90%

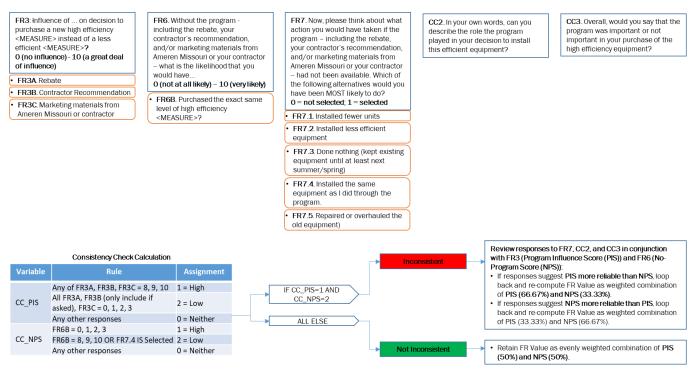
^a The evaluation team used PY2018 NTGR for ECMs as that was the last time that a robust ECM NTGR was estimated.

Details of how each of the elements are computed follows.

Participant Free Ridership (Downstream and Midstream)


Developing individual participant-level FR scores consists of estimating two separate FR scores for each participant—both capturing different aspects of FR—which are then be combined into a single FR score:

- Program Influence FR Score: Consists of respondents' quantification of the importance of the program factors (including the program rebate, contractor's recommendation, educational materials from Ameren Missouri or contractor, and expected energy savings³) on their decision to implement the energy efficiency measure.
- No-Program FR Score: Consists of respondents' answers to a series of counterfactual questions revealing what their intentions regarding installing high-efficiency equipment would have been in the absence of the program. Includes timing, efficiency, and quantity.


When scored, each component assesses the degree of FR associated with each component on a scale of 0 to 1, where 0 means the respondent is not at all a FR for the component and a 1 means the respondent is a complete FR for the component. The two scores are then averaged to derive a combined total FR score. Figure 1 presents a diagram of the HVAC Program Participant FR algorithm, including references to survey question numbers.

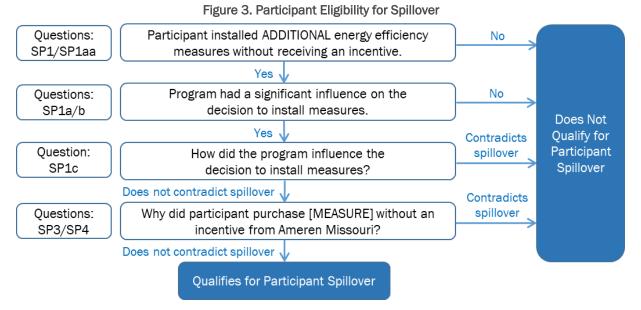
³ Expected energy savings are only considered if the respondent learned about the expected energy savings through the program.

To address the possibility of conflicting or inconsistent responses, the survey included a consistency check. The consistency check is based on the logic that if a respondent says one or more elements of the program were highly influential in their decision to purchase their new HVAC system (FR3A-C), they should not, at the same time, say that they would have purchased equipment with the exact same level of efficiency (FR6) or the exact same equipment (FR7) without the program. Figure 2 presents the process for conducting the consistency checks and recoding cases as needed.

Figure 2. Consistency Check Process

Participant Spillover

To determine if a survey respondent was eligible for SO savings, the survey contained a series of questions about additional energy efficiency home upgrades that the respondent might have taken without receiving an incentive and the degree to which the program influenced their decision to make the upgrades. The survey included two program influence questions:


- SP1a: How much did your experience with the HVAC Program influence your decision to make these energy efficient improvements on your own? [SCALE 0-10; 0 means "no influence" and 10 means "greatly influenced"]
- SP1b: How likely is it you would have made these energy efficiency improvements if you had not received a rebate through the HVAC Program? [SCALE 0-10; 0 means "definitely would not" and 10 means "definitely would"]

To supplement these numeric responses, the survey contained open-ended questions about how the program influenced the decision to make the upgrades and why the participant made the installations without a program incentive. A respondent's additional energy efficiency installations are deemed eligible for SO if two conditions are met: (1) the Program Influence Factor (see below) is greater than 5.0, and (2) the open-ended responses do not contradict that the installations were eligible for SO.

The Program Influence Factor is defined as follows:

Program Influence Factor = (SP1a Response + (10 – SP1b Response)) ÷ 2

Figure 3 presents a diagram of the participant SO eligibility determination methodology used for this evaluation, including references to question numbers.

Based on results from the participant survey, we identified 20 respondents who had installed measures that qualified for PSO in PY2020. Our engineering analysis of SO measures for these participants yielded total spillover savings of 8,435 kWh for the Downstream Channel and 473 kWh for the Midstream Channel, for a total of 8,907 kWh (see Table 15).

Channel	Spillover Measure	Number of Unique Participants	Total kWh
	Air Purifier	2	1,230
	Clothes Washer	4	370
	Dehumidifier	4	816
	Refrigerator	3	167
	Dishwasher	4	61
	Tier 1 APS	1	56
Devuestus euro	Low-Flow Faucet Aerator	3	178
Downstream	Low-Flow Showerhead	4	244
	Heat Pump Water Heater	1	2,640
	Programmable Thermostat	1	335
	Pool Pump	1	1,800
	Air Sealing	5	409
	Insulation	3	74
	Windows	3	54
	Clothes Washer	1	48
	Refrigerator	1	51
Midstream	Dishwasher	1	14
	Air Sealing	3	186

Table 15. HVAC Program Participant Spillover Measures and Savings

Channel	Spillover Measure	Number of Unique Participants	Total kWh
	Insulation	1	31
	Windows	1	142
	Total	20	8,907

Note: Represents total number of participants reporting spillover.

Dividing the estimated total SO in our sample for each program (8,435 kWh for the Downstream Channel and 473 kWh for the Midstream Channel) by total program ex post gross savings of the overall participant sample for each channel (1,459,391 kWh for Downstream; 354,284 kWh for Midstream) yields a SO rate of 0.58% for the Downstream Channel and 0.13% for the Midstream Channel, as shown in Equation 22 and Equation 23.

Equation 22. PY2020 HVAC Program Downstream Channel Participant Spillover Rate

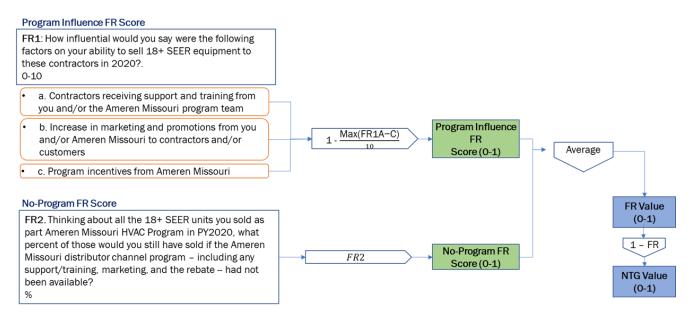
$$PSO \ \%_{Energy} = \frac{Total \ participant \ sample \ SO \ (kWh)}{Total \ participant \ sample \ savings \ (kWh)} = \frac{8,435 \ kWh}{1,459,391 \ kWh} = 0.58\%$$

Equation 23. PY2020 HVAC Program Midstream Channel Participant Spillover Rate

$$PSO \ \%_{Energy} = \frac{Total \ participant \ sample \ SO \ (kWh)}{Total \ participant \ sample \ savings \ (kWh)} = \frac{473 \ kWh}{354,284 \ kWh} = 0.13\%$$

Distributor Free Ridership (Midstream)

The midstream distributor FR (DFR) score is calculated for each distributor as the average of two elements: (1) the Program Influence FR Score, and (2) the No-Program FR Score:


 $DFR_{Mid} = Mean(Program Influence FR Score, No Program FR Score_i)$

Both elements assess the degree of FR on a scale from 0 to 1, where 0 means the respondent is not at all a FR and a 1 means that the respondent is a complete FR.

The final program-level midstream DFR is calculated as the mean of the distributor-level scores weighted by the ex post gross MWh savings associated with each interviewed distributor.

The following provides details on how each of these elements are computed. The FR algorithm is graphically depicted in Figure 4.

Figure 4. Midstream HVAC Distributor Free Ridership Algorithm

The Program Influence FR Score is assessed by asking respondents about the importance of various program elements on their ability to sell 18+ SEER equipment to contractors who account for the majority of their program-incented units. The elements include: ⁴

- **FR1a:** Contractors receiving support and training from you and/or the Ameren Missouri program team
- FR1b: Increase in marketing and promotions from you and/or Ameren Missouri to contractors and/or customers
- **FR1c:** Program incentives from Ameren Missouri

The Program Component FR Score is then computed as:

Equation 24. Program Component FR Score

Program Component FR Score =
$$1 - \frac{Max(FR1a, FR1b, FR1c)}{10}$$

The No Program FR Score is the counterfactual. For this component of the scoring, we ask respondents what percent of 18+ SEER units for which the distributor received an incentive in 2020 would still have been sold if the Ameren Missouri program—including training/support, marketing and promotions, and the rebate—had not been available (FR2).

Equation 25. No Program Score

No Program Score = *FR*2

⁴ Each of the three items are scored on a scale from 0 (not at all influential) to 10 (extremely influential),

Trade Ally Spillover

TASO was only applied to the Downstream Channel. The TASO used for PY2020 was based on the PY2019 TA interviews. The methods used for estimating PY2019 TASO are included in the PY2019 evaluation Appendix A.

Non-Participant Spillover

The NPSO rate used for the PY2020 evaluation was derived as part of a large-scale non-participant survey conducted as part of the PY2019 evaluation. For PY2020, we used the PY2019 NPSO rates and re-weighted to account for the PY2020 ex post gross savings distribution across measures and channels. The methods used for estimating the original PY2019 NPSO are included in the PY2019 evaluation Appendix A.

Demographics and Firmographics Results

The evaluation team asked participants to provide information about their household characteristics. Participants could opt out of all demographic questions so not all percentages may add up to 100%. Table 16 provides the demographics results from the participant survey.

Characteristic	Downstream (Percent of Participants)	Midstream (Percent of Participants)
Age		
Under 25	<1%	0%
26-44	20%	23%
45-64	43%	42%
65+	36%	35%
Homeownership		
Own	99%	100%
Rent	1%	0%
Education		
High School or less	9%	5%
Some College	14%	13%
College graduate	41%	48%
Graduate or Professional Degree, e.g., JD, MBA, MD, PhD	32%	34%
Income		
Less than \$50,000	11%	5%
\$50,000 to less than \$100,000	27%	27%
\$100,000 to less than \$150,000	22%	20%
Greater than \$150,000	21%	28%
Housing Type		
Single Family Detached Home	92%	96%
Single Family Attached Home Such as a Townhouse or Row House	5%	2%
Apartment or Condominium	3%	2%

Table 16. HVAC Participant Survey Demographics

Characteristic	Downstream (Percent of Participants)	Midstream (Percent of Participants)
Mobile Home	<1%	0%
Gender		
Female	43%	28%
Male	52%	66%
Prefer not to answer	5%	6%
Race/ Ethnicity		
White or Caucasian	8%	91%
Black or African American	3%	1%
Asian	1%	2%
American Indian or Alaskan Native	<1%	1%
Pacific Islander	<1%	0%
Prefer not to answer	7%	6%

Table 17 provides the firmographic results from the TA survey.

Table 17. HVAC Trade Ally Survey Firmographics

Characteristic	Percent of Trade Allies
Number of Employees	
Less than 10	64%
10 to less than 20	7%
20 to less than 50	14%
50 to less than 100	7%
Greater than 100	7%
Don't know/ Prefer not to answer	0%
Size of Company	
Local	86%
Regional	14%
National	0%
International	0%
Years Offering Services to Residential Mar	kets
Less than 5	14%
5 to less than 10	0%
10 to less than 20	21%
20 to less than 50	43%
50 to less than 100	14%
Greater than 100	7%
Don't know/ Prefer not to answer	0%

Home Energy Reports (HERs)

The following subsections discuss the detailed methodology for estimating savings from Ameren Missouri's HERs Program.

Equivalency Analysis

The evaluation team performed an equivalency analysis to ensure that the treatment and control groups for each of the four waves participating in the HER Program in PY2020 were equivalent in terms of energy consumption (see Table 18). We compared average daily consumption (ADC) of electricity between treatment and control groups during their pre-participation periods to assess whether these groups were equivalent before cleaning billing data to ensure quality and completeness. Because we rely on an intent-to-treat (ITT) approach, we used the population of treatment and control customers in this equivalency analysis. We found that the two groups were equivalent for each of the waves. We used consumption data for the year prior to program participation to calculate ADC for each wave.

Table 18. Pre-Participation Average Daily Consumption of HER Program Treatment and Control Groups by Wave

Wave	Treatment (Pre-Participation) Consumption	Control (Pre-Participation) Consumption
Wave 1	47.02	46.94
Wave 2	64.66	64.82
Wave 3	41.04	40.98
Wave 4	33.08	33.09

Figure 5 through Figure 8 present the pre-participation period electric consumption for both treatment and control groups for each of the waves. These figures exhibit equivalency in ADC between these groups.

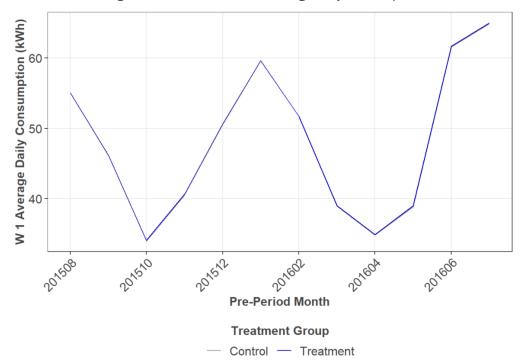
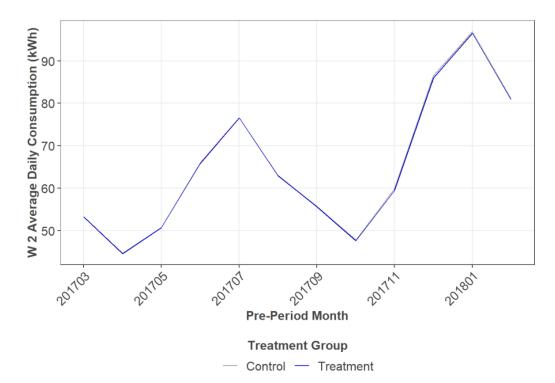



Figure 5. Wave 1 Pre-Period Average Daily Consumption

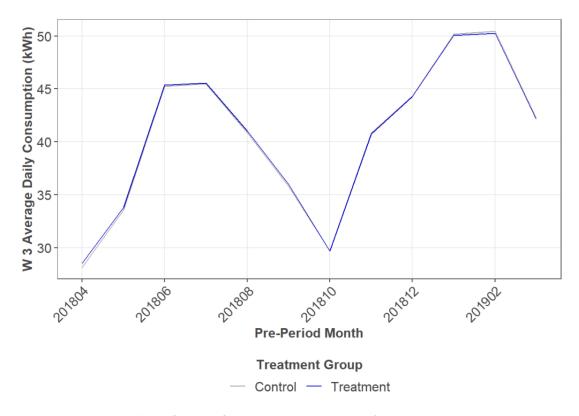
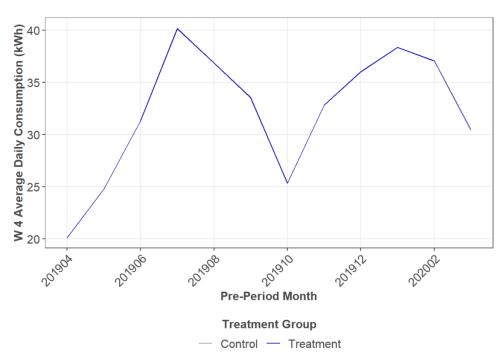



Figure 7. Wave 3 Pre-Period Average Daily Consumption

Figure 8. Wave 4 Pre-Period Average Daily Consumption

Data Sources

Participant data and treatment/control assignments were sourced from previous program year evaluation participant tracking files for Waves 1–3, and from the participant tracking file for the pre-implementation equivalency analysis for Wave 4. Note that the evaluation team did not receive information on participants that opted out of receiving HERs, nor did we have information on which participants were net metered. As such, the modeled results presented in the remainder of this section do not account for either. Billing data was sourced from both historic HER program evaluations (2015–2018) and from billing data provided by AMO on an ongoing basis throughout the year (2018–2021).

Data Cleaning Results

This section shows the results of the evaluation team's data cleaning effort for the consumption analysis (see Table 19). The final customers count includes all customers that the implementation team assigned to a treatment or control group that have sufficient consumption data. The primary reason for dropping customers was insufficient data in the pre-period (i.e., lacking at least nine months of data before the treatment period). For Wave 4, which only received treatment from April through December 2020, a nine-month post-period sufficiency requirement would necessitate dropping a very large proportion of customers. To retain more customers for the Wave 4 analysis, the evaluation team relaxed the standard for Wave 4 to seven months of post-period data.

Wave	Metric	Unique Customers		
wave	Metric	Treatment	Control	
	Initial	71,903	24,059	
Wave 1	Final	70,934	24,052	
	% Remaining	99%	100%	
	Initial	31,680	8,762	
Wave 2	Final	31,521	8,760	
	% Remaining	100%	100%	
	Initial	151,203	60,561	
Wave 3	Final	129,341	51,907	
	% Remaining	86%	86%	
	Initial	44,882	24,949	
Wave 4	Final	30,146	16,807	
	% Remaining	67%	67%	

Table 19. Data Cleaning Results for Treatment and Control Groups by Wave

Modeling Program Impacts

Energy Savings

We conducted a statistical analysis to determine program impacts using monthly electric billing data for all Ameren Missouri customers who received a HER (the treatment group) and a randomly selected group of customers who did not receive a HER (the control group). The evaluation team used an ITT approach in PY2020, and we estimated savings using a lagged dependent variable (LDV) model.

Lagged Dependent Variable Model

The evaluation team used an LDV model to estimate the electric savings experienced by the HER Program's treatment group for PY2020. The LDV model uses information from the pre-participation period to calculate pre-period usage variables, which help control for each customers' individual usage patterns. We used three levels of pre-participation period consumption for each customer: overall pre-participation period ADC, summer pre-participation period ADC, and winter pre-participation period ADC. Since this is an RCT, the LDV model uses the control group to control the model for exogenous factors that might affect ADC. We employed the following estimating equation:

Equation 26. Lagged Dependent Variable Model Estimating Equation

 $\begin{aligned} ADC_{it} &= \alpha + \beta_1 Treatment_i + \beta_2 PreUsage_i + \beta_3 PreWinter_i \\ &+ \beta_4 PreSummer_i + \beta_5 MonthYear_t + \beta_6 PreUsage_i \cdot MonthYear_t + \beta_7 PreWinter_i \\ &\cdot MonthYear_t + \beta_8 PreSummer_i \cdot MonthYear_t + \varepsilon_{it} \end{aligned}$

Where:

 ADC_{it} = Average daily consumption (kWh or therms) for household *i* at time *t*

 α = Model intercept

 β_1 = Coefficient for the change in consumption for the treatment group

 β_2 = Coefficient for the average daily usage across household *i* available pretreatment meter reads

 β_3 = Coefficient for the average daily usage over the months of December through March across household *i* available pretreatment meter reads

 β_4 = Coefficient for the average daily usage over the months of June through September across household *i* available pretreatment meter reads

 β_5 = Vector of coefficients for month-year dummies

 β_6 = Vector of coefficients for month-year dummies by average daily pretreatment usage

 β_7 = Vector of coefficients for month-year dummies by average daily winter pretreatment usage

 β_8 = Vector of coefficients for month-year dummies by average daily summer pretreatment usage

Treatment = Variable to represent treatment and control groups (0 = control group, 1 = treatment group)

PreUsage = Average daily usage for household *i* over the entire pre-participation period

 $PreWinter_i$ = Average daily usage for household *i* over the pre-participation months of December through March

 $PreSummer_i$ = Average daily usage for household *i* over the pre-participation months of June through September

 $MonthYear_t$ = Vector of month-year dummies

ε_{it} = Error

We used the LDV model to estimate the electric savings from the PY2020 HER Program. The unadjusted per household savings are shown in Table 20.

Wave	Unadjusted Net Savings (% per household)	Unadjusted Net Savings (kWh per household)
Wave 1	0.92%	157
Wave 2	1.13%	250
Wave 3	0.70%	92
Wave 4	0.61%	74

Table 20. Unadjusted Per-Household Daily Net Electric Savings

Billing Analysis Model Coefficients

Table 21 provides the billing analysis model coefficients for the LDV model.

Wave	Term	Estimate	Standard Error
1	(Intercept)	6.74	0.20
1	treat	-0.43	0.04
1	pre_adc	-0.42	0.02
1	pre_adc_summ	0.08	0.01
1	pre_adc_win	1.17	0.01
1	my022020	0.49	0.27
1	my032020	1.03	0.27
1	my042020	-0.70	0.27
1	my052020	-3.57	0.28
1	my062020	0.82	0.28
1	my072020	4.28	0.28
1	my082020	2.00	0.28
1	my092020	-5.45	0.28
1	my102020	-1.30	0.28
1	my112020	0.26	0.28
1	my122020	0.60	0.37
1	pre_adc:my022020	0.11	0.02
1	pre_adc:my032020	1.02	0.02
1	pre_adc:my042020	1.67	0.02
1	pre_adc:my052020	1.72	0.02
1	pre_adc:my062020	0.90	0.03
1	pre_adc:my072020	0.58	0.02
1	pre_adc:my082020	0.88	0.03
1	pre_adc:my092020	1.48	0.02
1	pre_adc:my102020	1.57	0.03

Table 21. LDV Model Billing Analysis Model Coefficients

Wave	Term	Estimate	Standard Error
1	pre_adc:my112020	1.08	0.03
1	pre_adc:my122020	0.36	0.03
1	pre_adc_summ:my022020	-0.06	0.01
1	pre_adc_summ:my032020	-0.31	0.01
1	pre_adc_summ:my042020	-0.44	0.01
1	pre_adc_summ:my052020	-0.21	0.01
1	pre_adc_summ:my062020	0.47	0.01
1	pre_adc_summ:my072020	0.67	0.01
1	pre_adc_summ:my082020	0.45	0.01
1	pre_adc_summ:my092020	0.10	0.01
1	pre_adc_summ:my102020	-0.35	0.01
1	pre_adc_summ:my112020	-0.28	0.01
1	pre_adc_summ:my122020	-0.05	0.02
1	pre_adc_win:my022020	-0.08	0.01
1	pre_adc_win:my032020	-0.82	0.01
1	pre_adc_win:my042020	-1.31	0.01
1	pre_adc_win:my052020	-1.53	0.01
1	pre_adc_win:my062020	-1.35	0.01
1	pre_adc_win:my072020	-1.24	0.01
1	pre_adc_win:my082020	-1.35	0.01
1	pre_adc_win:my092020	-1.51	0.01
1	pre_adc_win:my102020	-1.33	0.01
1	pre_adc_win:my112020	-0.90	0.01
1	pre_adc_win:my122020	-0.35	0.01
2	(Intercept)	4.52	0.31
2	treat	-0.68	0.07
2	pre_adc	0.55	0.03
2	pre_adc_summ	-0.27	0.01
2	pre_adc_win	0.68	0.01
2	my022020	0.60	0.43
2	my032020	2.23	0.43
2	my042020	-0.23	0.43
2	my052020	-4.37	0.43
2	my062020	0.32	0.43
2	my072020	4.10	0.43
2	my082020	1.95	0.43
2	my092020	-11.30	0.43
2	my102020	-0.87	0.44
2	my112020	1.76	0.44
2	my122020	0.40	0.58

Wave	Term	Estimate	Standard Error
2	pre_adc:my022020	0.11	0.04
2	pre_adc:my032020	0.74	0.04
2	pre_adc:my042020	1.08	0.04
2	pre_adc:my052020	0.85	0.04
2	pre_adc:my062020	-0.16	0.04
2	pre_adc:my072020	-0.46	0.04
2	pre_adc:my082020	-0.21	0.04
2	pre_adc:my092020	0.53	0.04
2	pre_adc:my102020	0.70	0.04
2	pre_adc:my112020	0.65	0.04
2	pre_adc:my122020	0.59	0.05
2	pre_adc_summ:my022020	-0.08	0.02
2	pre_adc_summ:my032020	-0.24	0.02
2	pre_adc_summ:my042020	-0.23	0.02
2	pre_adc_summ:my052020	0.15	0.02
2	pre_adc_summ:my062020	0.94	0.02
2	pre_adc_summ:my072020	1.14	0.02
2	pre_adc_summ:my082020	0.93	0.02
2	pre_adc_summ:my092020	0.58	0.02
2	pre_adc_summ:my102020	-0.02	0.02
2	pre_adc_summ:my112020	-0.15	0.02
2	pre_adc_summ:my122020	-0.18	0.02
2	pre_adc_win:my022020	-0.06	0.01
2	pre_adc_win:my032020	-0.65	0.01
2	pre_adc_win:my042020	-0.99	0.01
2	pre_adc_win:my052020	-1.09	0.01
2	pre_adc_win:my062020	-0.81	0.01
2	pre_adc_win:my072020	-0.70	0.01
2	pre_adc_win:my082020	-0.80	0.01
2	pre_adc_win:my092020	-1.02	0.01
2	pre_adc_win:my102020	-0.90	0.01
2	pre_adc_win:my112020	-0.67	0.01
2	pre_adc_win:my122020	-0.39	0.02
3	(Intercept)	1.45	0.07
3	treat	-0.25	0.02
3	pre_adc	0.58	0.01
3	pre_adc_summ	-0.23	0.01
3	pre_adc_win	0.65	0.01
3	my022020	0.29	0.09
3	my032020	0.85	0.09

Wave	Term	Estimate	Standard Error
3	my042020	0.26	0.09
3	my052020	-0.99	0.10
3	my062020	1.04	0.10
3	my072020	3.07	0.10
3	my082020	1.78	0.10
3	my092020	-3.34	0.10
3	my102020	0.02	0.10
3	my112020	0.95	0.10
3	my122020	0.37	0.13
3	pre_adc:my022020	0.25	0.02
3	pre_adc:my032020	0.89	0.02
3	pre_adc:my042020	1.20	0.02
3	pre_adc:my052020	1.02	0.02
3	pre_adc:my062020	0.18	0.02
3	pre_adc:my072020	-0.13	0.02
3	pre_adc:my082020	0.15	0.02
3	pre_adc:my092020	0.96	0.02
3	pre_adc:my102020	1.21	0.02
3	pre_adc:my112020	0.88	0.02
3	pre_adc:my122020	0.33	0.03
3	pre_adc_summ:my022020	-0.12	0.01
3	pre_adc_summ:my032020	-0.29	0.01
3	pre_adc_summ:my042020	-0.31	0.01
3	pre_adc_summ:my052020	-0.01	0.01
3	pre_adc_summ:my062020	0.71	0.01
3	pre_adc_summ:my072020	0.95	0.01
3	pre_adc_summ:my082020	0.71	0.01
3	pre_adc_summ:my092020	0.26	0.01
3	pre_adc_summ:my102020	-0.27	0.01
3	pre_adc_summ:my112020	-0.26	0.01
3	pre_adc_summ:my122020	-0.07	0.01
3	pre_adc_win:my022020	-0.14	0.01
3	pre_adc_win:my032020	-0.74	0.01
3	pre_adc_win:my042020	-1.09	0.01
3	pre_adc_win:my052020	-1.18	0.01
3	pre_adc_win:my062020	-0.94	0.01
3	pre_adc_win:my072020	-0.81	0.01
3	pre_adc_win:my082020	-0.93	0.01
3	pre_adc_win:my092020	-1.23	0.01
3	pre_adc_win:my102020	-1.13	0.01

Wave	Term	Estimate	Standard Error
3	pre_adc_win:my112020	-0.78	0.01
3	pre_adc_win:my122020	-0.30	0.01
4	(Intercept)	0.32	0.14
4	treat	-0.20	0.04
4	pre_adc	1.57	0.03
4	pre_adc_summ	-0.38	0.01
4	pre_adc_win	-0.36	0.01
4	my052020	-1.09	0.17
4	my062020	1.76	0.17
4	my072020	4.22	0.17
4	my082020	2.68	0.17
4	my092020	-4.65	0.17
4	my102020	0.04	0.17
4	my112020	1.53	0.17
4	my122020	0.48	0.20
4	pre_adc:my052020	0.13	0.04
4	pre_adc:my062020	-0.67	0.04
4	pre_adc:my072020	-0.90	0.04
4	pre_adc:my082020	-0.67	0.04
4	pre_adc:my092020	0.41	0.04
4	pre_adc:my102020	0.35	0.04
4	pre_adc:my112020	-0.23	0.04
4	pre_adc:my122020	-0.38	0.05
4	pre_adc_summ:my052020	0.20	0.02
4	pre_adc_summ:my062020	0.92	0.02
4	pre_adc_summ:my072020	1.11	0.02
4	pre_adc_summ:my082020	0.89	0.02
4	pre_adc_summ:my092020	0.38	0.02
4	pre_adc_summ:my102020	-0.14	0.02
4	pre_adc_summ:my112020	-0.05	0.02
4	pre_adc_summ:my122020	-0.03	0.02
4	pre_adc_win:my052020	-0.23	0.02
4	pre_adc_win:my062020	0.00	0.02
4	pre_adc_win:my072020	0.09	0.02
4	pre_adc_win:my082020	-0.01	0.02
4	pre_adc_win:my092020	-0.44	0.02
4	pre_adc_win:my102020	-0.16	0.02
4	pre_adc_win:my112020	0.33	0.02
4	pre_adc_win:my122020	0.65	0.02

^a All treatment coefficients are statistically significant at the 90% confidence level.

Demand Reductions

We calculated demand impacts based on the Missouri TRM, which applies a peak adjustment factor to modeled energy savings results. The factor value used to arrive at PY2020 HER demand savings is 0.000466081 kW.

Participation Uplift and Joint Savings Analysis

We also determined whether the Ameren Missouri HER Program treatment generated participation uplift in other PY2020 programs (i.e., an increase in participation in other energy efficiency programs in PY2020 as a result of the Ameren Missouri HER Program). To complete this analysis, we calculated whether more treatment than control group members participated in other residential energy efficiency initiatives after receiving HERs compared to participation before receiving HERs. We cross-referenced the HER Program database—both treatment and control groups — with the databases of other residential energy efficiency programs offered by Ameren Missouri in PY2020. We include the following residential programs in our analysis for 2020:

- Appliance Recycling
- Efficient Products
- Peak Time Savings
- Single Family Income Eligible
- Multifamily Income Eligible
- Multifamily Market Rate
- Heating, Ventilation, and Air Conditioning
- Online Retail Lighting
- Upstream Lighting

Through this analysis, we calculated the number of customers who participated in both the HER Program and other energy efficiency programs in PY2020 for each wave. To ensure the participation uplift is attributable solely to the HER Program, we calculated participation uplift using a post-only difference (POD) estimator. We identified the total number of treatment and control group customers who participated in an Ameren Missouri energy efficiency program in PY2020. Any positive difference between the treatment and control population that was statistically significant was the net participation due to the HER Program. We ignored any negative POD.

To arrive at the participation uplift rate, the evaluation team calculated the POD estimator for each wave for each program using Equation 27:

Equation 27. POD Estimator

POD = Current PY Treatment Group Participation Rate in EE Program -

Current PY Treatment Group Participation Rate in EE Program

We multiplied the positive and significant POD statistic by the total number of treatment customers in the relevant wave to obtain the participation uplift value. The uplift value is the total number of participants that, according to this analysis, participated in other energy efficiency programs due to HER treatment. There is an

uplift value for each energy efficiency program and wave where at least some participation in the program occurred. Equation 28 was used to calculate participation uplift.

Equation 28. Participation Uplift Rate

Participation Uplift = (POD for Wave) x (Total Number of HER Treatment Participants in Wave)

Finally, we calculated the savings adjustment value. We multiplied the participation uplift by the per participant energy efficiency program savings value of the treatment group participants in the associated program and wave of to obtain the savings adjustment. The savings adjustment is the value used to adjust the current HER Program energy savings downward to control for the double-counting of savings. There is a savings adjustment value for each energy efficiency program and wave where at least some participation in the program occurred.

Equation 29. Savings Adjustment

Savings Adjustment = (Participation Uplift for Wave) x (Per Participant EE Program Savings of Treatment Group of Wave)

We observed a statistically significant uplift effect for at least one wave for six programs. Table 22. Program Savings Adjustments shows the uplift, per-participant savings, and savings adjustments for programs and waves that had significant and positive uplift for treatment customers in PY2020.

Program	Wave	Per Participant Savings	Uplift	Statistical Significance (90%)	Savings Adjustment
HVAC	2	1,965	96.89	yes	190,389
Lighting	1	698	46.62	yes	32,541
MFMR	3	1,602	46.73	yes	74,861
RAR	1	123	52.27	yes	6,429
RAR	2	123	18.07	yes	2,223
RAR	3	123	37.58	yes	4,622
RAR	4	123	20.82	yes	2,561
REP	3	496	204.82	yes	101,591
REP	4	496	98.41	yes	48,811
RES_DR	3	4	147.18	yes	589
RES_DR	4	4	96.47	yes	386

Table 22	Drogram	Sovindo	Adjuctmonto
Table ZZ.	Program	Savings	Adjustments

Energy Efficient Products (REP)

Gross Impact Methodology

Heat Pump Water Heater Savings Assumptions

To calculate verified gross energy and demand savings for PY2020 Residential Efficient Products (REP) Program heat pump water heater measures, the evaluation team applied the Ameren Missouri TRM and Appendix F (v4.0) deemed savings tables to the program-tracking database.

The team calculated electric energy and demand savings using the algorithms outlined in Equation 30.

Equation 30. Heat Pump Water Heater Energy and Demand Savings Equations

$$kWh = \begin{bmatrix} \left(\frac{1}{EF_{Base}} - \frac{1}{EF_{EE}}\right) \times GPD \times Household \times 365.25 \times \gamma Water \times (T_{out} - T_{In}) \times 1.0 \\ 3,412 \end{bmatrix} + kWh_{Cool} \\ - kWh_{Heat} \end{bmatrix} * ISR$$
$$kWh_{Cool} = \begin{bmatrix} \left(\left(1 - \frac{1}{EF_{EE}}\right) \times GPD \times Household \times 365.25 \times \gamma Water \times (T_{out} - T_{In}) \times 1.0\right) \times LF \times WHF_{C} \times LM \\ COP_{Cool} \times 3,412 \end{bmatrix}$$

×%Cool

 $kWh_{Heat} = kWh_{Electric Resistance Heating} + kWh_{Heat Pump Heating}^{5}$

$$kWh_{ER \ Heating} = \left[\frac{\left(\left(1 - \frac{1}{EF_{EE}}\right) \times GPD \times Household \times 365.25 \times \gamma Water \times (T_{out} - T_{In}) \times 1.0 \right) \times LF \times WHF_{H}}{COP_{Electric \ Resistance} * 3,412} \right]$$

 $\times \% ElectricHeat_{ER}$

.

$$= \left[\frac{\left(\left(1 - \frac{1}{EF_{EE}}\right) \times GPD \times Household \times 365.25 \times \gamma Water \times (T_{out} - T_{In}) \times 1.0\right) \times LF \times WHF_{H}}{COP_{Heat\ Pump} * 3,412}\right]$$

 \times %*ElectricHeat*_{HP}

Where:

 EF_{Base} = Energy factor of standard electric water heater according to federal standards = 0.945 EF_{EE} = Energy factor of efficient equipment = 3.44

⁵ kWh_{Haet} was calculated for an unknown electric heating system type in accordance with Appendix F (v4.0), which calculates a weighted average kWh_{Heat} value based on the percentage of homes with electric resistance heating and heat pump heating. Percentages deemed in Appendix F are based on PY2018 Efficient Products Program-tracking data.

GPD = Gallons per day = 17.6

Household = Average number of people per household = 2.65

365.25 = Days per year

γWater = Specific weight of water in pounds per gallon = 8.33

Tout = Tank temperature = 125°F

T_{In} = Incoming water temperature from well or municipal system = 57.898°F

1.0 = Heat capacity of water in Btu/Ib-°F

3,412 = Conversion factor from Btu to kWh

ISR = 100%

LF = Location factor = 0.81

 WHF_c = Portion of reduced waste heat that results in cooling savings = 53%

 $COP_{Cool} = COP \text{ of } CAC = 2.8$

LM = Latent multiplier to account for latent cooling demand = 1.33

%Cool = Percentage of homes with central cooling = 100%

 WHF_{H} = Portion of reduced waste heat that results in increased heating load = 43%

COP_{Electric Resistance} = COP of electric resistance heating system = 1.0

 $COP_{Heat Pump} = COP$ of heat pump heating system = 1.92

%ElectricHeat_{Electric Resistance} = Percentage of homes with electric resistance heating = 22.3%

%ElectricHeat_{Heat Pump} = Percentage of homes with heat pump heating = 26.9%

CF = Coincidence factor = 0.0000887318

Advanced Thermostats Savings Assumptions

To calculate verified gross energy and demand savings for PY2020 REP Program advanced thermostat measures, the evaluation team applied Ameren Missouri TRM and Appendix F (v4.0) deemed savings tables to the program-tracking database.

The team calculated electric energy and demand savings using the algorithms outlined in Equation 31.

Equation 31. Advanced Thermostat Energy and Demand Savings Equation

$$kWh = kWh_{Heating} + kWh_{Cooling}$$

 $kWh_{Heating} = \% ElectricHeat \times HeatingConsumption_{Electric} \times HF \times HeatingReduction \times ISR + (\Delta Therms \times Fe \times 29.3)$

$$kWh_{Cooling} = \%AC \times \frac{\left(EFLH_{Cool} \times CapacityCool \times \frac{1}{SEER}\right)}{1000} \times CoolingReduction \times ISR$$

 $\Delta Therms = \% FossilHeat \times HeatingConsumption_{Gas} \times HF \times HeatingReduction \times ISR$

$$kW = kWh_{Cooling} \times CF$$

Where:

%ElectricHeat = Percentage of heating savings assumed to be electric = 100% if electric heating system; 0% if natural gas heating; 33% if unknown⁶

HeatingConsumption_{Electric} = Estimate of annual household heating consumption for electrically heated single family homes, in kWh (Table 23)

Heating Equipment	HeatingConsumption _{Electric}
Electric Heat Pump	8,355
Electric Resistance	14,202
Natural Gas System	0
Unknown	11,456

Table 23. HeatingConsumption Electric for Advanced Thermostat Measures

HF = Household factor, to adjust heating consumption for non-single family households = 100% if single family, 65% if multifamily

HeatingReduction = Assumed percentage reduction in total household heating energy consumption due to advanced thermostat = 6.67%

ISR = In-service rate = 98.8%

ΔTherms = Therm savings if natural gas heating system, calculated using equation defined above

Fe = Furnace fan energy consumption as a percentage of annual fuel consumption = 3.14%

29.3 = Conversion factor of kWh per therm

%AC = Fraction of customers with thermostat-controlled air conditioning = 100%

EFLHCool = Equivalent full load hours of air conditioning = 869

CapacityCool = Capacity of air cooling system in Btu/hr = 36,552

SEER = Seasonal Energy Efficiency Ratio rating of the cooling equipment in kBtu/kWh = 13.55

1/1000 = Conversion factor of kBtu per Btu

⁶ Note that the evaluation team deviated from the TRM Appendix F for this parameter. For PY2020 we applied a weighted average assumption based on available heating equipment types present in the program data.

CoolingReduction = Assumed percentage reduction in total household cooling energy consumption due to advanced thermostat = 8.0%

%FossilHeat = percentage of heating savings assumed to be natural gas = 0% if electric heating system; 100% if natural gas heating; 67% if unknown⁷

HeatingConsumption_{Gas} = Estimate of annual household heating consumption for gas-heated single family homes, in therms = 682

CF = Coincidence factor = 0.0009474181

Pool Pump Savings Assumptions

To calculate verified gross energy and demand savings for PY2020 REP Program pool pump measures, the evaluation team applied the Ameren Missouri TRM and Appendix F (v4.0) deemed savings tables to the program-tracking database.

The team calculated electric energy and demand savings using the algorithms outlined in Equation 32.

Equation 32. Pool Pump Energy and Demand Savings Equations

$$\begin{pmatrix} \frac{kWh}{Year} \end{pmatrix} = Days_{Oper} \times \left[\left(\frac{kWh_{ss}}{Day} \right) - \left(\frac{kWh_{ds}}{Day} \right) \right] \times ISR$$

$$\begin{pmatrix} \frac{kWh_{ds}}{Day} \end{pmatrix} = \left(\frac{kWh_{hs}}{Day} \right) + \left(\frac{kWh_{ls}}{Day} \right)$$

$$\begin{pmatrix} \frac{kWh_{ss}}{Day} \end{pmatrix} = \frac{RT_{ss} \times GPM_{ss} \times 60}{EF_{ss} \times 1000}$$

$$\begin{pmatrix} \frac{kWh_{hs}}{Day} \end{pmatrix} = \frac{RT_{hs} \times GPM_{hs} \times 60}{EF_{hs} \times 1000}$$

$$\begin{pmatrix} \frac{kWh_{ls}}{Day} \end{pmatrix} = \frac{RT_{ls} \times GPM_{ls} \times 60}{EF_{ls} \times 1000}$$

$$kW = kWh \times CF$$

Where:

 $Days_{Oper} = Days per year of operation = 121.6$

RT_{ss} = Runtime in hours per day using single-speed (ss) pump = 11.4

 RT_{hs} = Runtime in hours per day in high speed (hs) using a dual-speed (ds) pump = 2.0

 RT_{ls} = Runtime in hours per day in low speed (ls) using a dual-speed (ds) pump = 9.8 for multi-speed pump; 10.0 for variable-speed pump

⁷ Note that the evaluation team deviated from the TRM Appendix F for this parameter. For PY2020 we applied a weighted average assumption based on available heating equipment types present in the program data.

 GPM_{ss} = Gallons per minute using single-speed (ss) pump = 64.4

 GPM_{hs} = Gallons per minute in high speed (hs) using a dual-speed (ds) pump = 56.0 for multi-speed pump; 50.0 for variable-speed pump

GPM_{Is} = Gallons per minute in low speed (Is) using a dual-speed (ds) pump =31.0 for multi-speed pump; 30.6 for variable-speed pump

 EF_{ss} = Energy factor using single-speed (ss) pump, in gallons per Watt-hour = 2.1

 EF_{hs} = Energy factor in high speed (hs) using a dual-speed (ds) pump, in gallons per Watt-hour = 2.4 for multi-speed pump; 3.8 for variable-speed pump

 EF_{Is} = Energy factor in low speed (Is) using a dual-speed (ds) pump, in gallons per Watt-hour = 5.4 for multi-speed pump; 7.3 for variable-speed pump

ISR = In-service rate = 100%

CF = Coincidence factor = 0.0002354459

Tier 1 Power Strips Savings Assumptions

To calculate verified gross energy and demand savings for PY2020 REP Program Tier 1 power strip measures, the evaluation team applied the Ameren Missouri TRM and Appendix F (v4.0) deemed savings tables to the program-tracking database.

The team calculated electric energy and demand savings using the algorithms outlined in Equation 33.

Equation 33. Tier 1 Power Strips Energy and Demand Savings Equations

$$kWh = (kWh_{Office} \times Weighting_{Office} + kWh_{Ent} \times Weighting_{Ent}) \times ISR$$

$$kW = kWh \times CF$$

Where:

kWhoffice = Estimated energy savings from using and APS in a home office = 31.0 kWh

Weighting_{Office} = Relative penetration of use in home office = 36%

kWh_{Ent} = Estimated energy savings from using an APS in a home entertainment system = 75.1 kWh

Weighting_{Ent} = Relative penetration of use in home office = 64%

ISR = In-service rate = 93.8%⁸

CF = Coincidence factor = 0.0001148238

Tier 2 Power Strips Savings Assumptions

⁸ Note that this value differs from the TRM Appendix F. For this measure, the evaluation team adopted the Tier 2 APS ISR derived from the PY2019 Efficient Products evaluation.

To calculate verified gross energy and demand savings for PY2020 REP Program Tier 2 power strip measures, the evaluation team applied the Ameren Missouri TRM and Appendix F (v4.0) deemed savings tables to the program-tracking database.

The team calculated electric energy and demand savings using the algorithms outlined in Equation 34.

Equation 34. Tier 2 Power Strips Energy and Demand Savings Equations

 $kWh = (ERP \times BaselineEnergy_{AV}) \times ISR$

 $kW = kWh \times CF$

Where:

ERP = Energy reduction percentage of qualifying tier 2 power strip = 37.5%, average ERP of all product classes given in TRM

BaselineEnergy_{AV} = Baseline audio visual (AV) energy consumption, in kWh = 432

ISR = In-service rate = 93.8%

CF = Coincidence factor = 0.0001148238

Net Impact Methodology

A NTGR represents the portion of the gross energy savings associated with a program-supported measure or behavior change that would not have been realized in the absence of the program. In other words, the NTGR represents the share of *program-induced* savings.

For the PY2020 REP Program, the NTGR consists of participant free ridership (FR), participant spillover (PSO), and non-participant SO (NPSO). For the REP Program, preliminary NTGRs are computed as (1 - FR + PSO). FR is the proportion of the program-achieved ex post gross savings that would have been realized absent the program. PSO occurs when participants take additional energy-saving actions that are influenced by program interventions but that did not receive program support (Table 24).

For PY2020, the evaluation team relied on NTGR results estimated as part of the PY2019 evaluation (details on the derivation of the NTGRs can be found in the PY2019 evaluation report Appendix A). However, we reweighted last year's values to reflect the proportion of ex post gross savings across channel and measure present in the PY2020 program-tracking data. Table 24 shows the preliminary NTGRs used for the PY2020 evaluation.

Channel	Measure/Enduse	Free Ridership (FR)	Participant Spillover (PSO)	NTGR (1-FR+PSO)
	Advanced Thermostats		2.8%	73.5%
Online Store	Tier 1 Power Strips	16.6%	2.8%	86.2%
	Tier 2 Power Strips	16.6%	2.8%	86.2%
Mail-in	Advanced Thermostats	29.3%	2.8%	73.5%
	Heat Pump Water Heaters	40.4%	2.8%	62.4%

Table 2/	DV2020	DFD	Drogram	Preliminary NTGRs
	FIZUZU	REF	riugiaiii	

Channel	Measure/Enduse	Free Ridership (FR)	Participant Spillover (PSO)	NTGR (1-FR+PSO)
	Pool Pumps	35.6%	2.8%	67.2%
	Total	30.7%	2.8%	72.1%

NPSO represents the reduction in energy consumption and demand by non-participants because of the influence of the program. For PY2020, the evaluation team relied on NPSO estimates derived as part of the PY2019 evaluation (details on the derivation of the NTGRs can be found in the PY2019 evaluation report Appendix A). In general, NPSO is computed as a proportion of total ex post gross savings and is applied at the program level. Thus, NPSO is not shown in Table 24.

Energy Efficient Kits

Gross Impact Methodology

Energy Efficient Kit Faucet Aerator Saving Assumption

To calculate verified gross energy and demand savings for PY2020 EEK Program the faucet aerator measure, the evaluation team applied Ameren Missouri TRM Appendix F v4.0 to the program-tracking database.⁹

The team used the following equations to calculate electric and demand energy savings:

Equation 35. EEK Faucet Aerator electric savings equation.

ΔkWh = %ElectricDHW * ((GPM_base * L_base - GPM_low * L_low) * Household * 365.25 *DF / FPH) * EPG_electric * ISR

Equation 36. EEK Faucet Aerator demand savings equation.

$$\Delta kW = \Delta kWh * CF$$

Table 25. Faucet Aerator Input Values

Input	Bathroom	Kitchen	Source
%ElectricDHW	0.42	0.42	Appendix F
GPM_base	2.2	2.2	Appendix F
L_base	1.6	4.5	Appendix F
GPM_low	1.5	1.5	Appendix F
L_low	1.6	4.5	Appendix F
Household	4.286	4.286	Appendix F
DF	0.9	0.75	Appendix F
FPH	2.2839	1.1875	Appendix F
EPG	0.0615328	0.0789713	Appendix F
ISR	0.48	0.4	Appendix F
Coincidence Factor (CF)	0.0000887318	0.0000887318	Appendix F
Leakage	0.72	0.72	Appendix F

Where:

%ElectricDHW = Proportion of water heating supplied by electric resistance heatingGPM_base = Average flow rate, in gallons per minute, of the baseline faucet "as-used"L_base = Average baseline length of daily faucet use per capita in minutes

⁹ Ameren TRM Appendix F - Deemed Savings Table_Clean_2020_10_16.xlsx

GPM_low = Average flow rate, in gallons per minute, of the low-flow faucet aerator "as-used"

L_low = Average retrofit daily length faucet use per capita for faucet of interest in minutes

Household = Average number of people per household

DF = Drain Factor

FPH = Faucets per Home

EPG = Energy per gallon of water used by faucet supplied by electric water heater

ISR = In-service rate of faucet aerators

Leakage = Leakage rate, percent of homes in Ameren Missouri territory

Coincidence Factor = Summer peak coincidence demand (kW) to annual energy (kWh) factor

Energy Efficient Kit Low-Flow Shower Head Saving Assumption

To calculate verified gross energy and demand savings for PY2020 EEK program the low flow shower head measure, the evaluation team applied Ameren Missouri TRM Appendix F v4.0 to the program-tracking database.

The team used the following equations to calculate electric energy and demand savings:

Equation 37. Low Flow Shower Head Energy Savings.

ΔkWh = %ElectricDHW * ((GPM_base * L_base - GPM_low * L_low) * Household * SPCD * 365.25 / SPH) * EPG_electric * ISR

Equation 38. Low Flow Shower Head Demand Savings.

 $\Delta kW = \Delta kWh * CF$

Where:

 $\Delta kWh = as calculated above$

Input	Value	Source
%ElectricDHW	0.42	Appendix F
GPM_base	2.35	Appendix F
L_base	7.8	Appendix F
GPM_low	1.5	Appendix F
L_low	7.8	Appendix F
Household	4.286	Appendix F
SPCD	0.832	Appendix F
SPH	2.142	Appendix F
EPG	0.1089	Appendix F

Input	Value	Source
ISR	0.54	Appendix F
Coincidence Factor (CF)	0.0000887318	Appendix F
Leakage	0.72	Appendix F

Where:

%ElectricDHW = Proportion of water heating supplied by electric resistance heating

GPM_base = Average flow rate in gallons per minute of the baseline showerhead

L_base = Shower length in minutes with baseline showerhead

GPM_low = Average flow rate in gallons per minute of the low-flow showerhead

L_low = Shower length in minutes with low-flow showerhead

Household = Average number of people per household

SPCD = Shower per capita per day

SPH = Showerheads per household so that per showerhead savings fractions can be determined

EPG = Energy per gallon of hot water supplied by electric

ISR = In-service rate of showerhead

Coincidence Factor = Summer peak coincidence demand (kW) to annual energy (kWh) factor.

Leakage = Leakage rate, percent of homes in Ameren Missouri territory

Energy Efficient Kit LED – 10W (Halogen Baseline) Savings Assumption

To calculate verified gross energy and demand savings for PY2020 EEK program the 10W LED measure, the evaluation team applied Ameren Missouri TRM Appendix F v4.0 to the program tracking database.

The team used the following equations to calculate electric energy and demand savings:

Equation 39. LED Lighting Energy Savings.

 $\Delta kWhres =$

(Wattbase - Wattee) * %RES * ISR * (1 - LKG) * (Hoursres * WHFres) /1,000

Equation 40. LED Lighting Demand Savings

$\Delta kW = \Delta kWh * CF$

Table 27. LED Lighting Input Values.

Input	Value	Source
Watts _{Base}	43	Appendix F
Watts _{EE}	9	Appendix F
ISR (cumulative)	0.92	Appendix F
Hours _{Res}	995.18	Appendix F
WHF	0.99	Appendix F
Coincidence Factor (CF)	0.0001492529	Appendix F
%Res	1	Appendix F
Leakage	0.28	Appendix F

Where:

Watts_{Base} = Wattage of the baseline bulb that was installed prior to the efficient bulb

Watts_{EE} = Wattage of efficient light bulb

%Res = Percentage of light bulbs handed out to residential customers

ISR = In-service rate, percentage of units rebated that are actually in service based on estimated future installation rate trajectory

Leakage = Leakage rate, units installed outside of Ameren Missouri territory.

Hours_{Res} = Average hours of use per year

WHF = Waste heat factor for energy to account for electric heating increase from the reduction of waste heat from efficient lighting

Coincidence Factor = Summer peak coincidence demand (kW) to annual energy (kWh) factor

Leakage = Leakage rate, percent of homes in Ameren Missouri territory

LED In-Service Rate

In 2019, the evaluation team estimated the ISRs for LEDs offered through the EEK Program using the installation trajectory approach recommended by the UMP.¹⁰ Similar to our approach to estimating ISRs for the Residential Lighting Program, we developed both a first year ISR and cumulative ISR reflecting future installations over a six-year period (see Residential Lighting Gross Impact Methodology Section). The first year and cumulative ISRs for LEDs provided through the EEKs are presented in Table 28.

¹⁰ National Renewable Energy Laboratory (NREL). The Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures. Chapter 6: Residential Lighting Protocol. October 2017. https://www.nrel.gov/docs/fy17osti/68562.pdf.

First Year ISR	Cumulative ISR
0.772	0.920

Energy Efficient Kit Dirty Filter Alarm Savings Assumption

To calculate verified gross energy and demand savings for PY2020 EEK program the Dirty Filter Alarm measure, the evaluation team applied Ameren Missouri TRM Appendix F v4.0 to the program-tracking database.

The team used the following equations to calculate electric and demand energy savings:

Equation 41. Dirty Filter Alarm Energy Savings

 $\Delta kWh_{heating} = \%Heating * kW * EFLH_{heat} * EI * Utility Adjustment * ISR$

 $\Delta kWh_{cooling} = \%AC * kW * EFLH_{cool} * EI * Utility Adjustment * ISR$

Equation 42. Dirty Filter Alarm Demand Savings

 $\Delta kW = \Delta kWh^* CF$

Table 29. Dirty Filter Alarm Input Values

Input	Value	Source
kW Motor	0.5	Appendix F
EFLH _{heat}	1496	Appendix F
EFLH _{cool}	869	Appendix F
El	0.15	Appendix F
ISR	0.44	Appendix F
Coincidence Factor (CF)	0.0004660805	Appendix F
%Heating	0.9565	Appendix F
%Cooling	0.9565	Appendix F
Leakage	0.72	Appendix F

Where:

kW Motor = Average motor full load electric demand (kW)

EFLH_{heat} = Equivalent full load hours heating (hours/year)

EFLH_{cool} = Equivalent full load hours cooling (hour/year)

El = Percentage of energy efficient change

ISR = In-service rate, percentage of units rebated that are actually in service

CF = Summer peak coincidence demand (kW) to annual energy (kWh) factor

%Heating = Percentage of heating that used the filter

%Cooling = Percentage of cooling that uses the filter

Leakage = Leakage rate, percent of homes in Ameren Missouri territory

Energy Efficient Kit Pipe Insulation Wrap Saving Assumption

To calculate verified gross energy and demand savings for PY2020 Appliance Recycling Program EE Kit Pipe Insulation Wrap measure, the evaluation team applied Ameren Missouri TRM Appendix F v4.0 to the program-tracking database.

The team used the following equations to calculate electric and demand energy savings:

Equation 43. Pipe Insulation Energy Savings

$$\Delta kWh = ((C_{Base}/R_{Base} - C_{EE}/R_{EE}) * L * \Delta T * Hours)/(\eta DHW_{Elec} * 3,412)$$

Equation 44. Pipe Insulation Demand Savings

$$\Delta kW = \Delta kWh * CF$$

Input	Value	Source
C _{Base}	.196	Appendix F
R _{Base}	1	Appendix F
Cee	0.458	Appendix F
R _{EE}	4.54	Appendix F
L	1	Appendix F
ΔΤ	60	Appendix F
Hours	8766	Appendix F
ηDHW_{Elec}	0.98	Appendix F
Coincidence Factor (CF)	.0000887318	Appendix F
ISR	0.56	Appendix F
%Electric	0.42	Appendix F
Leakage	0.9187	Appendix F

Table 30. Pipe Insulation Input Values

Where:

C_{Base} = Circumference (Feet) of uninsulated pipe

 R_{Base} = Thermal resistance coefficient (hr-°F-ft²)/Btu) of uninsulated pipe

C_{EE} = Circumference of insulated pipe

 R_{EE} = Thermal resistance coefficient (hr-°F-ft²)/Btu) of insulated pipe

L = Length of pipe from water heating source covered by pipe wrap (ft)

 ΔT = Average temperature difference (°F) between supplied water and outside air

Hours = Hours per year

ηDHW_{Elec} = Recovery efficiency of electric hot water heater

CF = Summer peak coincidence demand (kW) to annual energy (kWh) factor

ISR = In-service rate, percentage of units rebated that are actually in service

%Electric = Percentage of hot water heaters that are electric

Leakage = Leakage rate, percent of homes in Ameren Missouri territory

Net Impact Methodology and Results

The evaluation team relied on NTGR values from surveys conducted in PY2019 for the PY2020 kit products (Table 31).

Measure/Enduse	Free-Ridership (FR)	Participant Spillover (PSO)	NTGR (1-FR+PSO)
LED Light Bulbs	63.64%		36.36%
Low-Flow Showerheads	32.02%	3.47%	71.46%
Dirty Filter Alarm	14.83%	3.47%	88.65%
Kitchen Faucet Aerators	19.22%	3.47%	84.25%
Pipe Insulation (Hot Water)	31.16%	3.47%	72.31%
Bathroom Faucet Aerators	21.55%	3.47%	81.92%
Overall Program Weighted Average	38.2%	2.2%	64.0%

Table 31. PY2020 EEK Program Net-to-Gross Ratio

Source: Ameren Missouri Program Year 2019 Annual EM&V Report. Volume 2: Residential Portfolio Report

Multifamily Market Rate (MFMR)

Gross Impact Methodology

This appendix contains details on the savings assumptions used to estimate verified gross electric energy and electric demand savings from for the MFMR Program in PY2020.

Lighting Savings Assumptions

To calculate verified gross energy and demand savings for PY2020 MFMR lighting measures, the evaluation team used the lighting algorithm and some deemed values from Appendix F (v4.0) with project-specific values from the program-tracking database and rebate approval forms (RAFs).

The team used the following equations to calculate electric energy and demand savings:

Equation 45. Lighting Energy and Demand Savings Equations $kWh = (Watts_{Base} - Watt_{EE}) \times ISR \times (1 - LKG) \times (Hours \times WHF)/1,000$ $kW = kWh \times CF$

Lighting	Enduse	Verified Inputs	Source
	EXT Lighting BUS	Custom	Tracking Data and Rebate Approval Forms
WattsBase	Lighting BUS	Custom	Tracking Data and Rebate Approval Forms
	Lighting Res	Custom	Tracking Data and Rebate Approval Forms
	EXT Lighting BUS	Custom	Tracking Data and Rebate Approval Forms
WattsEE	Lighting BUS	Custom	Tracking Data and Rebate Approval Forms
	Lighting Res	Custom	Tracking Data and Rebate Approval Forms
	EXT Lighting BUS	1.00	Appendix F
ISR	Lighting BUS	1.00	Rebate Approval Forms
	Lighting Res	0.9512, 0.9818 ¹¹	Appendix F
	EXT Lighting BUS	Custom	Tracking Data
Hours	Lighting BUS	Custom	Tracking Data
	Lighting Res	Custom	Tracking Data
	EXT Lighting BUS	1.00	Appendix F
WHF	Lighting BUS	1.00 (unconditioned spaces_, 1.071 (conditioned spaces)	Appendix F
	Lighting Res	0.99	Appendix F
	Lighting Res	0.0001493	Appendix F
05	EXT Lighting BUS	0.0000056	Appendix F
CF	Lighting BUS	0.0001900	Appendix F
	Miscellaneous BUS	0.000137912	Appendix F
	EXT Lighting BUS	0	Appendix F
Leakage	Lighting BUS	0	Appendix F
	Lighting Res	0, 0.0165	Appendix F and Rebate Approval Forms

Table 32. Lighting Input Values

Hot Water Savings Assumptions

To calculate verified gross energy and demand savings for PY2020 MFMR hot water measures (aerators, showerheads), the evaluation team applied Appendix F (v4.0) and actuals from the program-tracking database.

The team used the following equations to calculate electric energy and demand savings:

 $^{^{11}}$ ISR=0.9512 is for measure code 500900_2019_12_; ISR=0.9818 is for measure codes 404850_2019_12_ and 404950_2019_12.

¹² Miscellaneous BUS enduse is applied for the coincidence factor when lighting is operated 24/7.

Equation 46. Low Flow Faucet Aerator Energy and Demand Savings Equations

$$kWh = \%ElectricDHW \times \left((GPM_{base} \times L_{base} - GPM_{low}) \times Household \times 365.25 \times \frac{DF}{FPH} \right) \times EPG_{electric} \times ISR$$

$$kW = kWh \times CF$$

Bathroom Faucet Aerator	Verified Inputs	Source
%ElectricDHW	1	Appendix F
GPM_base	2.2	Tracking Data
L_base	1.6	Appendix F
GPM_low	0.5	Tracking Data
L_low	1.6	Appendix F
Household	2.1	Appendix F
DF	0.9	Appendix F
FPH	1.4	Appendix F
EPG_electric	0.06153283	Appendix F
ISR	1.00	Appendix F
CF	8.873E-05	Appendix F

Table 33. Bathroom Faucet Aerator Input Values

Table 34. Kitchen Faucet Aerator Input Values

Kitchen Faucet Aerator	Verified Inputs	Source
%ElectricDHW	1	Appendix F
GPM_base	2.2	Tracking Data
L_base	3.7	Appendix F
GPM_low	1.5	Tracking Data
L_low	3.7	Appendix F
Household	2.1	Appendix F
DF	0.75	Appendix F
FPH	1	Appendix F
EPG_electric	0.07897128	Appendix F
ISR	1.00	Appendix F
CF	8.873E-05	Appendix F

Equation 47. Low Flow Showerhead Energy and Demand Savings Equations

 $kWh = (\%ElectricDHW \times ((GPM_{base} \times L_{base} - GPM_{low}) \times Household \times 365.25 \times \frac{SPCD}{SPH}) \times EPG_{electric} \times ISR$

$$kW = kWh \times CF$$

Low Flow Showerhead	Verified Inputs	Source
%ElectricDHW	1	Appendix F
GPM_base	2.5	Tracking Data
L_base	8.66	Appendix F
GPM_low	1.25	Tracking Data
L_low	7.8	Appendix F
Household	2.07	Appendix F
SPCD	0.66	Appendix F
SPH	1.4	Appendix F
EPG_electric	0.11	Appendix F
ISR	0.91	Appendix F
CF	8.873E-05	Appendix F

Table 35	. Low Flow	v Showerhead	Input	Values
----------	------------	--------------	-------	--------

Learning Thermostat Savings Assumptions

To calculate verified gross energy and demand savings for PY2020 MFMR learning thermostat measures the evaluation team applied Appendix F (v4.0) and actuals from the program-tracking database.

The team used the following equations to calculate electric energy and demand savings:

Equation 48. Learning Thermostat Energy and Demand Savings Equations

$$kWh = kWh_{Heating} + kWh_{Cooling}$$

 $kWh_{Heating} = \% ElectricHeat \times HeatingConsumption_{Electric} \times HF \times HeatingReduction \times ISR + (\Delta Therms \times Fe \times 29.3)$

$$kWh_{Cooling} = \%AC \times \left(\frac{EFLH_{Cool} \times CapacityCool \times \frac{1}{SEER}}{1000}\right) \times CoolingReduction \times ISR$$

 $\Delta Therms = \% FossilHeat \times HeatingConsumption_{Gas} \times HF \times HeatingReduction \times ISR$

$$kW = kWh_{Cooling} \times CF$$

Learning Thermostat	Verified Inputs	Source
%ElectricHeat	1	Appendix F
HeatingConsumption_Electric	14,201.97	Appendix F
HF	0.65	Appendix F
HeatingReduction	0.067, 0.088	Appendix F
Eff_ISR	0.988	Appendix F
deltaTherm	0	Appendix F; Assume electric heating
%AC	1	Appendix F; Assume Air Conditioner present
EFLH_cool	869	Appendix F
Capacity_cool	18,000, 24,000	Appendix F
SEER	8, 10	Tracking Data
CoolingReduction	0.08	Appendix F
CF	0.000947418	Appendix F

Table 36. Learning Thermostat Input Values

Heat Pump Water Heater Savings Assumptions

To calculate verified gross energy and demand savings for PY2020 MFMR Program heat pump water heater measures, the evaluation team applied Appendix F (v4.0) and actuals and deemed values from the program-tracking database and rebate approval forms.

The team calculated electric energy and demand savings using the algorithms outlined in Equation 49.

Equation 49. Heat Pump Water Heater Energy and Demand Savings Equations

$$kWh = \frac{\left(\frac{1}{EF_{Base}} - \frac{1}{EF_{EE}}\right) \times GPD \times Household \times 365.25 \times \gamma Water \times (T_{out} - T_{In}) \times 1.0}{3,412} + kWh_{Cool}$$

$$kWh_{Cool}$$

$$= \left[\frac{\left(\left(1 - \frac{1}{EF_{EE}}\right) \times GPD \times Household \times 365.25 \times \gamma Water \times (T_{out} - T_{In}) \times 1.0\right) \times LF \times WHF_{C} \times LM}{COP_{Cool} \times 3,412}\right]$$

×%Cool

 $kWh_{Heat} = kWh_{Electric Resistance Heating} + kWh_{Heat Pump Heating}$

kWh_{ER Heating}

$$= \left[\frac{\left(\left(1 - \frac{1}{EF_{EE}}\right) \times GPD \times Household \times 365.25 \times \gamma Water \times (T_{out} - T_{In}) \times 1.0\right) \times LF \times WHF_{H}}{COP_{Electric \ Resistance} * 3,412}\right]$$

 $\times \% ElectricHeat_{ER}$

$$kWh_{HP \ Heating} = \left[\frac{\left(\left(1 - \frac{1}{EF_{EE}}\right) \times GPD \times Household \times 365.25 \times \gamma Water \times (T_{out} - T_{In}) \times 1.0\right) \times LF \times WHF_{H}}{COP_{Heat \ Pump} * 3,412}\right]$$

 \times %*ElectricHeat*_{HP}

$$kW = kWh_{Cooling} \times CF$$

Heat Pump Hot Water Heater	Verified Inputs	Source
EFBase	Custom	Rebate Approval Forms
EFee	Custom	Rebate Approval Forms
GPD	17.6	Appendix F
Household	2.65	Appendix F
γWater	8.33	Appendix F
TOut	125	Appendix F
TIn	57.898	Appendix F
LF	0.81	Appendix F
WHFc	53%	Appendix F
COPcool	Custom	Rebate Approval Forms
LM	1.33	Appendix F
%Cool	Custom	Rebate Approval Forms
WHFh	43%	Appendix F
COP_Electric Resistance	1	Appendix F
COP_Heat Pump	1.92	Appendix F
%ElectricHeat_Electric Resistance	Custom	Rebate Approval Forms
%ElectricHeat_Heat Pump	Custom	Rebate Approval Forms
CF	8.8732E-5	Appendix F

Clothes Washer Savings Assumptions

To calculate verified gross energy and demand savings for PY2020 MFMR Program clothes washer measures, the evaluation team applied Appendix F (v4.0) and actuals and deemed values from the rebate approval forms.

The team calculated electric energy and demand savings using the algorithms outlined in Equation 50.

Equation 50. Clothes Washer Energy and Demand Savings Equations

$$\Delta kWh = \left[\left(Capacity * \frac{1}{MEFbase} * Ncycles \right) \\ * \left(\%CWbase + (\%DHWbase * \%Electric_{DHW}) + (\%Dryerbase * \%Electric_{Dryer}) \right) \right] \\ - \left[\left(Capacity * \frac{1}{MEFeff} * Ncycles \right) \\ * \left(\%CWeff + (\%DHWeff * \%Electric_{DHW}) + (\%Dryereff * \%Electric_{Dryer}) \right) \right]$$

 $\Delta kW = \Delta kWh x CF$

Clothes Washer	Verified Inputs	Source
Capacity	Custom	Rebate Approval Forms
MEFbase	1.7	Appendix F
Ncycles	2.2	Appendix F
%CWbase	2190	Appendix F
%DHWbase	6.5%	Appendix F
%ElectricDHW	100%	Appendix F
%DryerBase	100%	Appendix F
%ElectricDryer	100%	Appendix F
MEFeff	2.2	Appendix F
%CWeff	3.5%	Appendix F
%DHWeff	14.1%	Appendix F
%Electricoнw	100%	Appendix F
%Dryereff	1	Appendix F
CF	0.0001379439	Appendix F

Table 38. Clothes	Washer	Input Values
-------------------	--------	---------------------

Clothes Dryer Savings Assumptions

To calculate verified gross energy and demand savings for PY2020 MFMR Program clothes dryer measures, the evaluation team applied Appendix F(v4.0) and actuals and deemed values from the rebate approval forms.

The team calculated electric energy and demand savings using the algorithms outlined in Equation 51.

Equation 51. Clothes Dryer Energy and Demand Savings Equations.

$$\Delta kWh = \left(\frac{Load}{CEFbase} - \frac{Load}{CEFeff}\right) * Ncycles * \% Electric$$
$$\Delta kW = \Delta kWh \ x \ CF$$

Clothes Dryer	Verified Inputs	Source
Load	Custom	Rebate Approval Forms
CEFbase	3.1	Appendix F
CEFeff	3.9	Appendix F
Ncycles	1483	Appendix F
%Electric	100%	Appendix F
CF	0.0001379439	Appendix F

Table 39. Clothes Dryer Input Values

Wall Insulation Savings Assumptions

To calculate verified gross energy and demand savings for PY2020 MFMR Program wall insulation measures, the evaluation team applied Version 8 of the Illinois TRM (IL TRM v8) and actuals and deemed values from the RAFs.

The savings equations, input parameters, and input values are described below.

Equation 52. Wall Insulation Energy and Demand Savings Equations

 $\Delta kWh = kWh_{HeatingElec} + kWh_{Cooling} + kWh_{HeatingGas}$

$$kWh_{HeatingElec} = \frac{\left(\left(\frac{1}{R_{old}} - \frac{1}{R_{Wall}}\right) \times A_{Wall} \times \left(\left(1 - FramingFactor_{Wall}\right) \times HDD \times 24\right)\right)}{n_{heat} \times 3412} \times ADJ_{WallHeat}$$

× %ElectricHeat

$$kWh_{Cooling} = \frac{\left(\left(\frac{1}{R_{old}} - \frac{1}{R_{Wall}}\right) \times A_{Wall} \times \left((1 - FramingFactor_{Wall}) \times CDD \times 24 \times DUA\right)\right)}{n_{cool} \times 1000} \times ADJ_{WallCool} \times \%Cool$$

$$kWh_{HeatingGas} = \Delta Therms * F_e * 29.3$$

$$\Delta Therms = \frac{\left(\left(\frac{1}{R_{old}} - \frac{1}{R_{Wall}}\right) \times A_{Wall} \times \left(\left(1 - FramingFactor_{Wall}\right) \times HDD \times 24\right)\right)}{n_{heat} \times 100,000} \times ADJ_{WallHeat} \times \%GasHeat$$

$$kW = \left(\frac{kWh_{Cooling}}{FLH_{cooling}}\right) \times CF$$

Table 40. Wall Insulation Input Values

Wall Insulation	Verified Inputs	Source
%ElectricHeat	100%	IL TRM v8 ¹³
R_old	3.9	IL TRM v8

^{13 2020} Illinois Statewide Technical Reference Manual for Energy Efficiency Version 8.0; https://ilsag.s3.amazonaws.com/2020_IL-TRM_Version_8.0_dated_October-17-2019_Final_Volumes_1-4_Compiled.pdf

Wall Insulation	Verified Inputs	Source
R_wall	7.6	IL TRM v8
A_wall	1	IL TRM v8
FramingFactor	25%	IL TRM v8
CDD	Custom	Rebate Approval Forms
DUA	0.75	IL TRM v8
nCool	Custom	Rebate Approval Forms
nHeat	Custom	Rebate Approval Forms
HDD	Custom	Rebate Approval Forms
ADJ_wall	0.74	IL TRM v8
ADJ_WallCool	0.80	IL TRM v8
ADJ_WallHeat	0.60	IL TRM v8
%Cool	100%	IL TRM v8
%GasHeat	0%	IL TRM v8
Fe	3.14%	IL TRM v8
CF	0.000466081	IL TRM v8

Windows Savings Assumptions

To calculate verified gross energy and demand savings for PY2020 MFMR Program window measures, the evaluation team applied the 2017 Missouri TRM and actuals and deemed values from the RAFs.

The savings equations, input parameters, and input values are described below.

Equation 53. Windows Energy and Demand Savings Equations

$$\Delta kWh = \Delta kWh_{Heating} + \Delta kWh_{Cooling}$$

$$\Delta kWh_{Cooling} = Infiltration_{cooling} + Conduction_{cooling} + Solar_{cooling}$$

$$\Delta kWh_{Cooling} = Infiltration_{heating} + Conduction_{heating} + Solar_{heating}$$

$$Infiltration_{cooling} = \frac{(CFM_{pre} - CFM_{post}) * 60 * EFLH_{cooling} * \Delta T_{avgcooling} * 0.018 * LM}{1000 * n_{cooling}}$$

$$Conduction_{cooling} = \frac{(U_{base} - U_{Eff}) * A_{window} * EFLH_{cooling} * \Delta T_{avgcooling}}{1000 * n_{cooling}}$$

$$Solar_{cooling} = \frac{(SHGC_{base} - SHGC_{Eff}) * A_{window} * \varphi_{cooling}}{1000 * n_{cooling}}$$

$$Infiltration_{heating} = \frac{(CFM_{pre} - CFM_{post}) * 60 * EFLH_{heating} * \Delta T_{avg}, heating * 0.018}{3,412 * n_{heating}}$$

$$Conduction_{heating} = \frac{(U_{base} - U_{Eff}) * A_{window} * EFLH_{heating} * \Delta T_{avg}, heating}{3,412 * n_{heating}}$$
$$Solar_{heating} = \frac{(SHGC_{base} - SHGC_{Eff}) * A_{window} * \varphi_{heating}}{3,412 * n_{heating}}$$

Windows	Verified Inputs	Source
CFMpre	Custom	Rebate Approval Forms
CFMpost	Custom	Rebate Approval Forms
EFLHcool	1,171	2017 AMO TRM
ΔT_avgcooling	5.8	2017 AMO TRM
LM	3.0	2017 AMO TRM
ηcooling	Custom	Rebate Approval Forms
Ubase	Custom	Rebate Approval Forms
Ueff	0.27	2017 AMO TRM
A_window	Custom	Rebate Approval Forms
SHGCbase	Custom	Rebate Approval Forms
SHGCeff	Custom	Rebate Approval Forms
Ψcooling	40,996	2017 AMO TRM
EFLHheat	1,433	2017 AMO TRM
ΔT_avgheating	11.8	2017 AMO TRM
ηheating	Custom	Rebate Approval Forms
Ψheating	66,592	2017 AMO TRM
CF	0.001231928	2017 AMO TRM

Table 41. Window Input Values

Custom Measures

For some measures, the implemented team developed customized savings estimation methods—such as engineering analysis or building simulation model—with project-specific information about the building envelop, equipment specifications, operating schedules, and controls schemes.

To calculate verified gross energy and demand savings for these custom measures, the evaluation team collected project documentation to (1) review the methods and assumptions used to develop the ex ante savings, (2) verify the purchase/installation of the measures (e.g., through invoice or post-installation documentation), and (3) validate or update the ex post savings estimates based on evaluation findings.

Net Impact Methodology

Participant Free Ridership

The FR assessment consists of two scores:

- A Program Influence component, based on the participant's perception of the program's influence on the decision to carry out the energy-efficient project; and
- A No-Program component, based on the participant's intention to carry out the energy-efficient project without program funds.

When scored, each component assesses the degree of FR associated with the project on a scale of 0 to 1, where 0 means the respondent is not at all a FR for the project and a 1 means the respondent is a complete FR for the project. The two scores are then averaged to derive a combined total FR score.

Equation 54. Free Ridership Free Ridership (FR) = Mean(Program Influence, No Program Score)

As different and opposing biases potentially affect the two main components, the No-Program component typically indicates higher FR than the Program Influence component. Therefore, combining these decreases the biases. Figure 9 presents a diagram of the FR algorithm we will use, including references to question numbers.

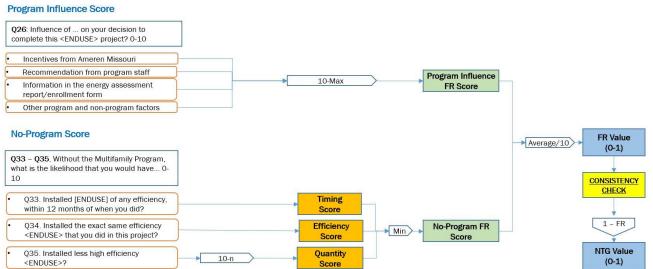


Figure 9. Multifamily Market Rate Program Free Ridership Algorithm

Calculation of the Program Influence Score

Program influence is assessed by asking respondents, on a scale from 0 (not at all influential) to 10 (extremely influential), how important they found various program elements to be on their decision to purchase the highefficiency measure. Elements included as potential influences on customer decision-making: information; financial incentives; recommendations from contractors and program staff.

The Preliminary Program Influence Score equals the maximum influence rating for any program element rather than, for example, the mean influence rating. This is based on the rationale that if any given program element had a great influence on the respondent's decision, then the program itself had a great influence, even if other elements had less influence. An inverse relationship occurs between high program influence and FR: the greater the program influence, the lower the FR.

Equation 55. Program Influence Score Program Influence Score (PI) = 10 - Preliminary Program Influence Score

Calculation of the No-Program Score

The No-Program (NP) Score is based on three measures of the likelihood of a participant purchasing the exact same item(s) at the same time in the absence of the program. Each of these likelihood measures are assessed on a 0-10 scale in which 0 means "not at all likely" and 10 means "very likely."

First, the participant is asked about their likelihood of purchasing an item of *any efficiency* within 12 months for the Timing (T) Score. A respondent stating the likelihood of purchasing an item of *any efficiency* within 12 months as a 5 on a scale of 0 to 10, is assigned a Timing Score of 5. Participants who were influenced by the program to replace still-functioning equipment will likely give a low score to this question, while participants who needed to replace burned out equipment will give a high score.

Next, the respondent is asked to gauge their likelihood of purchasing the *exact same item* (e.g., make, model, efficiency) had the program not existed. This measure forms the Efficiency (E) Score. A respondent stating the likelihood of purchasing the same exact item as a 5 on a scale of 0 to 10 is assigned an Efficiency Score of 5. Additionally, if multiple quantities of an item are purchased, the respondent is asked about the likelihood of purchasing fewer energy-efficient items. The response to this question is subtracted from 10 to compute the Quantity (Q) Score.

The No-Program Score is the minimum of the Timing, Efficiency, and (if applicable) Quantity Scores. Finally, the No-Program Score is averaged with the Program Influence Score to calculate the Final FR Value.

Equation 56. No Program Score No Program Score (NP) = Min(T, E, Q)

Consistency Checks

To address the possibility of conflicting or inconsistent responses, the interview included a consistency check. The consistency check is based on the logic that if a respondent says one or more elements of the program were highly influential in their decision to select and install the equipment included in their project (Q26), they should not, at the same time, say that they would have been highly likely to install equipment with the exact same level of efficiency (Q34) without the program (see Figure 10).

Figure 10. Questions Contributing to Consistency Check

Q26: Influence of ... on decision to purchase a new high efficiency <MEASURE> instead of a less efficient <MEASURE>? O (no influence) - 10 (a great deal of influence)

- Incentives from Ameren Missouri
- Recommendation from program staff
- Information in the energy assessment report
- Other program and non-program factors

Q34. If the Multifamily Program hadn't been available, what is the likelihood that you would have...

0 (not at all likely) - 10 (very likely)

 Purchased the exact same level of high efficiency <MEASURE>? To resolve any identified inconsistencies, the evaluation team assessed responses to a combination of closedended and open-ended questions, the first being the triggered consistency check question:

You provided a rating of <Q34> for how likely you would have been to select and install equipment with the same level of efficiency without the program, but also mentioned the <Q26 responses> were very important in the selection and installation of the efficient equipment. Can you please confirm the role the program played in your decision to select and install efficient equipment rather than a less efficient alternative? [OPEN END]

Would you like to change the 0 to 10 rating you previously gave for <Q26 responses>?

In addition, we looked at responses to the following questions in the NTG Module to provide additional context on participant decision-making:

Q30. How did the Multifamily Program change the efficiency level of the project? [OPEN END]

How did the Multifamily Program change the quantity of efficient equipment installed? [OPEN END]

How did the Multifamily Program change the timing of the project? [OPEN END]

Q37. Please think one more time about what action you would have taken if the program had not been available. Which of the following alternatives would you have been **most** likely to do?

Participant Spillover

To determine if a respondent was eligible for SO savings, the interview guide contained a series of questions about additional energy efficiency upgrades that the respondent might have taken without receiving an incentive and the degree to which the program influenced their decision to make the upgrades. The interview guide included two program influence questions:

- Q41. How much did your experience with the Ameren Missouri Multifamily Program influence your decision to make these energy efficiency improvements on your own? [SCALE 0-10; 0 means "no influence" and 10 means "greatly influenced"]
- How likely is it you would have still made these energy efficiency improvements if you had not received an incentive from the Ameren Missouri Multifamily Program? [SCALE 0-10; 0 means "definitely would not" and 10 means "definitely would"]

To supplement these numeric responses, the interview guide contained open-ended questions about how the program influenced the decision to make the upgrades and why the participant made the installations without a program incentive. A respondent's additional energy efficiency installations are deemed eligible for SO if two conditions are met: (1) the Program Influence Factor (see below) is greater than 5.0 and (2) the open-ended responses do not contradict that the installations were eligible for SO.

The Program Influence Factor is defined as follows:

Equation 57. Program Influence Factor

 $Program Influence Factor = (Q41 Response + (10 - Q42 Response)) \div 2$

Figure 11 presents a diagram of the participant SO eligibility determination methodology used for this evaluation, including references to question numbers.

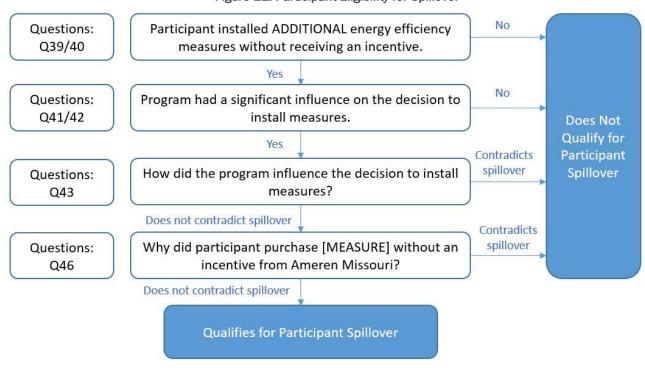


Figure 11. Participant Eligibility for Spillover

Results

The evaluation team interviewed six MFMR participants to develop individual FR and PSO scores. Table 42 presents the results of our NTG analysis.

Program	Free Ridership (FR)	Participant Spillover (PSO)	NTGR (1-FR+PSO)
MFMR Program	0.06	0.00	0.94

Table 42. PY2020 Multifamily Market Rate Program NTGR

Overall, the program played a key role in allowing respondents to expand the scope of their projects. Five participants noted they expanded the scope of their project as a result of engagement with the program; some added additional equipment to their project scope while others expanded the amount of equipment installed or treated more areas of the property. Additionally, three participants mentioned the program influenced the timing of their project by allowing them to replace many pieces of equipment at once, rather than through a piecemeal approach over several months or years. Lastly, two respondents reported the program influenced the efficiency level of the equipment they installed by freeing up necessary capital to select efficient technologies that are more expensive.

We found no participant spillover as part of the in-depth interviews conducted for the PY2020 evaluation.

Appliance Recycling (RAR)

Gross Impact Methodology

Refrigerator Recycling Regression Analysis

To calculate verified gross energy and demand savings for PY2020 Appliance Recycling Program refrigerator measure, the evaluation team applied Ameren Missouri TRM v4.0 Appendix I and Appendix F deemed savings tables to the program-tracking database .¹⁴

The team used the following equations to calculate electric and demand energy savings:

Equation 58. Refrigerator recycling regression-based analysis for calculating electric savings

$$\Delta kWh_{Unit} = \left[0.5822 + (Age * 0.0269) + (Pre - 1990 * 1.0548) + (Size * 0.0673) + (Side - by - side * 1.0706) + (Single - door * -1.9767) + (Primary Usage * 0.6046) + \left(\frac{CDD}{365} * unconditioned * 0.0200\right) + \left(\frac{HDD}{365} * unconditioned * -0.0447\right) \right] * Days * Part Use Factor$$

Equation 59. Refrigerator recycling regression-based analysis for calculating demand savings.

$$\Delta kW = \Delta kWh_{unit} * CF$$

Input	Value	Source
Age	Tracking data value	Tracking data
Pre-1990	Tracking data value	Tracking data
Size	Tracking data value	Tracking data
Side-by-Side	Tracking data value	Tracking data
Single – Door	Tracking data value	Tracking data
Primary Usage	Tracking data value	Tracking data
CDD	1678	Appendix I
HDD	4486	Appendix I
Unconditioned	Tracking data value	Tracking data
Days	365	Appendix I
Part Use Factor (PUF)	0.864	Appendix F
Coincidence Factor (CF)	0.000128611	Appendix F

Table 43. Refrigerator Input Values

Where:

Age = Age of retired unit

¹⁴ The ex post savings were based on the Ameren TRM Appendix F - Deemed Savings Table_Clean_2020_10_16.xlsx, and the Appendix I - TRM-Vol 3_Res_2020_10_16.docx.

Pre-1990 = Designator of 1 if the unit was manufactured prior to 1990

Size = Capacity (cubic feet) or retired unit

Side – by – Side = Refrigerator specific characteristic

Single – Door = Refrigerator specific characteristic

Primary Usage = Retired unit primary or secondary unit

CDD = Cooling degree days

Unconditioned = Retired unit operated in a conditioned space

HDD = Heating degree days

Part Use Factor (PUF) = To account for the units that do not run throughout the entire year

Coincidence Factor (CF) = Summer peak coincidence period (kW) to annual energy (kWh) factor

Freezer Recycling Regression Analysis

To calculate verified gross energy and demand savings for PY2020 Appliance Recycling Program freezer measure, the evaluation team applied Ameren Missouri TRM v4.0 Appendix I and Appendix F to the program-tracking database.

The evaluation team would ideally use the following equations to calculate electric and demand energy savings. Due to missing data, however, the deemed savings values were used in the impact analysis for PY2020 seen at the bottom of Table 44.

Equation 60. Freezer recycling regression-based analysis for calculating electric savings.

 $\Delta kWh_{Unit} = [-0.8918 + (Age * 0.0384) + (Pre - 1990 * 0.6952) + (Size * 0.1287) + (Chest Freezer * 0.3503) + (CDD/365 * unconditioned * 0.0695) + (HDD/365 * unconditioned * -0.0313)] * Part Use Factor$

Equation 61. Freezer recycling regression-based analysis for calculating demand savings.

 $\Delta kW = \Delta kWh_{unit} * CF$

Input	Value	Source
Age	Tracking data value	Tracking data
Pre-1990	Tracking data value	Tracking data
Size	Tracking data value	Tracking data
Chest freezer	Tracking data value	Tracking data
CDD	1678	Appendix I
HDD	4486	Appendix I

Table 44. Freezer Input Values

Input	Value	Source
Unconditioned space	Tracking data value	Tracking data
Days	365	Appendix I
Part Use Factor (PUF)	Tracking data value	Tracking data
Coincidence Factor (CF)	.000128525	Appendix I
kWh Deemed	825.22	Appendix F
kW Deemed	0.139109	Appendix F

Where:

Age = Age of retired unit

Pre-1990 = Designator of 1 if the unit was manufactured prior to 1990

Size = Capacity (cubic feet) or retired unit

Chest Freezer = Freezer specific unit characteristic

CDD = Cooling degree days

Unconditioned = Retired unit operated in a conditioned space

HDD = Heating degree days

Part Use Factor (PUF) = To account for the units that do not run throughout the entire year

Coincidence Factor = Summer peak coincidence period (kW) to annual energy (kWh) factor

kWh Deemed = Deemed value of energy savings

kW Deemed = Deemed value of demand savings

Room Air Conditioner Recycling Deemed Savings

To calculate verified gross energy and demand savings for PY2020 Appliance Recycling Program room AC measure, the evaluation team applied Ameren Missouri TRM Appendix F v4.0.

The team used the following electric and demand savings values:

Table 45. Room	Air Conditioner	Deemed Savings Values
----------------	-----------------	-----------------------

	Value	Units	Source
Electric	302.53	kWh	Appendix F
Demand	0.2866	kW	Appendix F

Dehumidifier Recycling Deemed Savings

To calculate verified gross energy and demand savings for PY2020 Appliance Recycling Program dehumidifier measure, the evaluation team applied Ameren Missouri TRM Appendix F v4.0.

The team used the following electric and demand savings values:

	Value	Units	Source
Electric	139	kWh	Appendix F
Demand	0.0648	kW	Appendix F

Table 46.	. Dehumidifier	Deemed	Saving	Values
-----------	----------------	--------	--------	--------

Energy Efficient Kit Faucet Aerator Saving Assumption

To calculate verified gross energy and demand savings for PY2020 Appliance Recycling Program EE Kit faucet aerator measure, the evaluation team applied Ameren Missouri TRM Appendix F v4.0 to the program-tracking database.

The team used the following equations to calculate electric and demand energy savings:

Equation 62. EE Kit Faucet Aerator electric savings equation.

ΔkWh = %ElectricDHW * ((GPM_base * L_base - GPM_low * L_low) * Household * 365.25 *DF / FPH) * EPG_electric * ISR

Equation 63. EE Kit Faucet Aerator demand savings equation.

$$\Delta kW = \Delta kWh * CF$$

Input	Bathroom	Kitchen	Source
%ElectricDHW	0.42	0.42	Appendix F
GPM_base	2.2	2.2	Appendix F
L_base	1.6	4.5	Appendix F
GPM_low	1.5	1.5	Appendix F
L_low	1.6	4.5	Appendix F
Household	2.65	2.65	Appendix F
DF	0.9	0.75	Appendix F
FPH	2.2839	1.1875	Appendix F
EPG	0.06153283	0.0789713	Appendix F
ISR	0.24	0.2	Appendix F
Coincidence Factor (CF)	0.0000887318	0.0000887318	Appendix F
Leakage	1	1	Appendix F

Table 47. Faucet Aerator Input Values

Where:

%ElectricDHW = Proportion of water heating supplied by electric resistance heating

GPM_base = Average flow rate, in gallons per minute, of the baseline faucet "as-used"

L_base = Average baseline length of daily faucet use per capita in minutes

GPM_low = Average flow rate, in gallons per minute, of the low-flow faucet aerator "as-used"

L_low = Average retrofit daily length faucet use per capita for faucet of interest in minutes

Household = Average number of people per household

DF = Drain factor

FPH = Faucets per home

EPG = Energy per gallon of water used by faucet supplied by electric water heater

ISR = In-service rate of faucet aerators

Leakage = Leakage rate, percent of homes in Ameren Missouri territory

Energy Efficient Kit Low-Flow Shower Head Saving Assumption

To calculate verified gross energy and demand savings for PY2020 Appliance Recycling Program EE Kit low flow shower head measure, the evaluation team applied Ameren Missouri TRM Appendix F v4.0 to the program-tracking database.

The team used the following equations to calculate electric and demand energy savings:

Equation 64. Low-Flow Shower Head Energy Savings.

ΔkWh = %ElectricDHW * ((GPM_base * L_base - GPM_low * L_low) * Household * SPCD * 365.25 / SPH) * EPG_electric * ISR

Equation 65. Low-Flow Shower Head Demand Savings.

 $\Delta kW = \Delta kWh * CF$

Input	Value	Source
%ElectricDHW	0.42	Appendix F
GPM_base	2.35	Appendix F
L_base	7.8	Appendix F
GPM_low	1.5	Appendix F
L_low	7.8	Appendix F
Household	2.65	Appendix F
SPCD	.832	Appendix F
SPH	2.142	Appendix F
EPG	0.1089	Appendix F
ISR	0.24	Appendix F
Coincidence Factor (CF)	0.0000887318	Appendix F
Leakage	1	Appendix F

Where:

%ElectricDHW = Proportion of water heating supplied by electric resistance heating

GPM_base = Average flow rate in gallons per minute of the baseline showerhead

L_base = Shower length in minutes with baseline showerhead

GPM_low = Average flow rate in gallons per minute of the low-flow showerhead

L_low = Shower length in minutes with low-flow showerhead

Household = Average number of people per household

SPCD = Shower per capita per day

SPH = Showerheads per household so that per showerhead savings fractions can be determined

EPG = Energy per gallon of hot water supplied by electric

ISR = In-service rate of showerhead

Coincidence Factor = Summer peak coincidence demand (kW) to annual energy (kWh) factor

Leakage = Leakage rate, percent of homes Ameren Missouri territory

Energy Efficient Kit LED – 10W (Halogen Baseline) Savings Assumption

To calculate verified gross energy and demand savings for PY2020 Appliance Recycling Program EE Kit 10W LED measure, the evaluation team applied Ameren Missouri TRM Appendix F v4.0 to the program-tracking database.

The team used the following equations to calculate electric and demand energy savings:

Equation 66. LED Lighting Energy Savings.

$\Delta kWhres =$

(WattBase - Wattee) * %RES * ISR * (1 - LKG) * (Hoursres * WHFres) /1,000

Equation 67. LED Lighting Demand Savings

 $\Delta kW = \Delta kWh * CF$

Input	Value	Source
Watts _{Base}	43	Appendix F
Watts _{EE}	9	Appendix F
ISR (cumulative)	0.88	Appendix F
Hours _{Res}	995.18	Appendix F
WHF	0.99	Appendix F
Coincidence Factor (CF)	0.0001492529	Appendix F
%Res	1	Appendix F
Leakage	1	Appendix F

Where:

Watts_{Base} = Wattage of the baseline bulb that was installed prior to the efficient bulb

Watts_{EE} = Wattage of efficient light bulb

%Res = Percentage of light bulbs handed out to residential customers

ISR = In-service rate, percentage of units rebated that are actually in service based on estimated future installation rate trajectory

Leakage = Leakage rate, percent of homes in Ameren Missouri territory

Hours_{Res} = Average hours of use per year

WHF = Waste heat factor for energy to account for electric heating increase from the reduction of waste heat from efficient lighting

Coincidence Factor = Summer peak coincidence demand (kW) to annual energy (kWh) factor

LED In-Service Rate

In 2019, the evaluation team estimated the ISRs for LEDs offered through kits component of the RAR Program using the installation trajectory approach recommended by the UMP.¹⁵ Similar to our approach to estimating ISRs for the Residential Lighting Program, we developed both a first year ISR and cumulative ISR reflecting future installations over a six-year period (see Residential Lighting Gross Impact Methodology Section). The first year and cumulative ISRs for LEDs provided through the RAR are presented in Table 50.

Table 50. First Yea	ar and Future	Traiectory ISR	for RAR LEDs
		indjootory ion	

First Year ISR	Cumulative ISR	
0.656	0.879	

Energy Efficient Kit Dirty Filter Alarm Savings Assumption

To calculate verified gross energy and demand savings for PY2020 Appliance Recycling Program EE Kit Dirty Filter Alarm measure, the evaluation team applied Ameren Missouri TRM Appendix F v4.0 to the program-tracking database.

The team used the following equations to calculate electric and demand energy savings:

Equation 68. Dirty Filter Alarm Energy Savings

 $\Delta kWh_{heating} = \% Heating * kW * EFLH_{heat} * EI * Utility Adjustment * ISR$

 $\Delta kWh_{cooling} = \%AC * kW * EFLH_{cool} * EI * Utility Adjustment * ISR$

Equation 69. Dirty Filter Alarm Demand Savings

$$\Delta kW = \Delta kWh^* CF$$

Input	Value	Source
kW Motor	0.5	Appendix F
EFLH _{heat}	1496	Appendix F
EFLH _{cool}	869	Appendix F
EI	0.15	Appendix F
ISR	0.09	Appendix F
Coincidence Factor (CF)	0.000466081	Appendix F
%Heating	0.9565	Appendix F
%Cooling	0.9565	Appendix F
Leakage	1	Appendix F

Table 51	Dirty	Filter	Alarm	Input '	Values
----------	-------	--------	-------	---------	--------

Where:

kW Motor = Average motor full load electric demand (kW)

¹⁵ National Renewable Energy Laboratory (NREL). The Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures. Chapter 6: Residential Lighting Protocol. October, 2017. https://www.nrel.gov/docs/fy17osti/68562.pdf.

EFLH_{heat} = Equivalent full load hours heating (hours/year)

EFLH_{cool} = Equivalent full load hours cooling (hour/year)

EI = Percentage of energy efficient change

ISR = In-service rate, percentage of units rebated that are actually in service

CF = Summer peak coincidence demand (kW) to annual energy (kWh) factor

%Heating = Percentage of heating that used the filter

%Cooling = Percentage of cooling that uses the filter

Leakage = Leakage rate, percent of homes in Ameren Missouri territory

Energy Efficient Kit Pipe Insulation Wrap Saving Assumption

To calculate verified gross energy and demand savings for PY2020 Appliance Recycling Program EE Kit Pipe Insulation Wrap measure, the evaluation team applied Ameren Missouri TRM Appendix F v4.0 to the program-tracking database.

The team used the following equations to calculate electric and demand energy savings:

Equation 70. Pipe Insulation Energy Savings.

 $\Delta kWh = ((C_{Base}/R_{Base} - C_{EE}/R_{EE}) * L * \Delta T * Hours)/(\eta DHW_{Elec} * 3,412)$

Equation 71. Pipe Insulation Demand Savings

 $\Delta kW = \Delta kWh * CF$

Input	Value	Source
C _{Base}	0.19635	Appendix F
R _{Base}	1	Appendix F
Cee	0.458	Appendix F
Ree	4.54	Appendix F
L	1	Appendix F
ΔΤ	60	Appendix F
Hours	8766	Appendix F
ηDHW _{Elec}	0.98	Appendix F
Coincidence Factor (CF)	0.0000887318	Appendix F
ISR	0.41	Appendix F
%Electric	0.42	Appendix F
Leakage	1	Appendix F

Table 52. Pipe Insulation Input Values

Where:

C_{Base} = Circumference (Feet) of uninsulated pipe

R_{Base} = Thermal resistance coefficient (hr-°F-ft²)/Btu) of uninsulated pipe

C_{EE} = Circumference of insulated pipe

R_{EE} = Thermal resistance coefficient (hr-°F-ft²)/Btu) of insulated pipe

L = Length of pipe from water heating source covered by pipe wrap (ft)

 ΔT = Average temperature difference (°F) between supplied water and outside air

Hours = Hours per year

ηDHW_{Elec} = Recovery efficiency of electric hot water heater

CF = Summer peak coincidence demand (kW) to annual energy (kWh) factor

ISR = In-service rate, percentage of units rebated that are actually in service

%Electric = Percentage of hot water heaters that are electric

Leakage = Leakage rate, percent of homes in Ameren Missouri territory

Net Impact Methodology and Results

The evaluation team relied on NTGR values from PY2019 for the PY2020 net savings estimations. No new research was conducted in PY2020. Table 53. presents the results of our NTG analysis from PY2019.

Maggurg /Enduca	Measure-level	Free Ridership	Participant Spillover	NTGR
Measure/Enduse	Respondents	(FR)	(PSO)	(1- FR+PSO)
Freezer	46	58.1%	4.4%	46.9%
Refrigerator	143	62.6%	4.4%	42.3%
Room Air Cconditioners and Dehumidifiers (Ex Post Savings Weighted Appliance Value)	-	61.3%	4.4%	43.6%
Bathroom Faucet Aerators	149	21.6%	1.2%	79.6%
Dirty Filter Alarm	149	15.7%	1.2%	85.5%
Kitchen Faucet Aerators	149	21.4%	1.2%	79.8%
Low-Flow Showerheads	149	28.0%	1.2%	73.2%
Pipe Insulation (Hot Water)	149	34.1%	1.2%	67.1%
Overall Program	338	56.5%	3.8%	47.7%

Table 53. PY2020 Residential Appliance Recycling Program Measure-Level Net-to-Gross Ratio

Source: Ameren Missouri Program Year 2019 Annual EM&V Report. Volume 2: Residential Portfolio Report

Single Family Income Eligible (SFIE)

Gross Impact Methodology

Advanced Thermostat Savings Assumptions

To calculate verified gross energy and demand savings for PY2020 SFIE Program advanced thermostat measures, the evaluation team applied Version 4.0 of the Ameren Missouri TRM, Appendix F deemed savings tables to the program-tracking database.

The savings equations, input parameters, and input values are described in the HVAC section.

Air Sealing Savings Assumptions

To calculate verified gross energy and demand savings for PY2020 SFIE Program air sealing measures, the evaluation team applied one of two methods, depending on the available level of detail for the measure:

- Where actual blower door test results before and after air sealing were available (CFM50_{Pre} and CFM50_{Post} parameters), the evaluation team applied the "Test In / Test Out Approach" from Version 4.0 of the Ameren Missouri TRM Appendix I.
- For measures missing these data, the evaluation team applied the "Conservative Deemed Approach" defaults from Version 4.0 of the Ameren Missouri Appendix F deemed savings tables.

The team used the following equations to calculate electric and demand energy savings. Heating savings are for homes with electric heating, only:

Method 1: Test In / Test Out Approach

Δ

Equation 72. Air Sealing Test In / Test Out Approach Energy and Demand Savings Equations

$$\Delta kWh = \Delta kWh_{cooling} + \Delta kWh_{heating}$$

$$kWh_{cooling} = \frac{\left(\frac{CFM50_{Pre} - CFM50_{Post}}{N_{cool}}\right) \times 60 \times 24 \times CDD \times DUA \times 0.018 \times LM}{1,000 \times \eta Cool}$$

$$\Delta kWh_{heating} = \frac{\left(\frac{CFM50_{Pre} - CFM50_{Post}}{N_{heat}}\right) \times 60 \times 24 \times HDD \times 0.018}{\eta Heat_{electric} \times 3,412}$$

$$\Delta Therms = \frac{\frac{\left(CFM50_{Pre} - CFM50_{Post}\right)}{N_{heat}} \times 60 \times 24 \times HDD \times 0.018}{(\eta Heat_{gas} \times 100,000)}$$

$$\Delta kW = \Delta kWh \times CF$$

Additional Fan Savings: $\Delta kWh_{heating} = \Delta Therms \times F_e \times 29.3$

Method 2: Conservative Deemed Approach

Equation 73. Air Sealing Conservative Deemed Approach Energy and Demand Savings Equations

$$\Delta kWh_{cooling} = Default_{cool} \times Sq.ft.$$

$$\Delta kWh_{heating} = Default_{heat} \times Sq. ft.$$

$$\Delta kW = \Delta kWh \times CF$$

$$\Delta Therms = Default_{therms} \times Sq. ft.$$

Additional Fan Savings: $\Delta kWh_{heating} = \Delta Therms \times F_e \times 29.3$

Input	Value	Source
CFM50 _{Pre}	Custom	Tracking Data
CFM50Post	Custom	Tracking Data
N _{cool}	32.0	Calculated Below
CDD	1,646	Appendix I
DUA	0.75	Appendix I
LM	3.00	Appendix I
ηCool	Custom	Tracking Data
N _{heat}	22.0	Calculated Below
HDD	4,486	Appendix I
ηHeat _{electric}	1.92	Appendix I
ηHeat _{gas}	0.71	Appendix I
CF	0.000466081	Appendix F
Fe	3.14%	Appendix F
Sq. ft.	Custom	Tracking Data
Default _{cool}	0.050	Appendix F
Defaultheat	0.257	Appendix F
Default _{therms}	0.013	Appendix F

 Table 54. Air Sealing Input Values for SFIE Measures

Ameren Missouri TRM Appendix I provides default values for the heating and cooling conversion factors N_{cool} and N_{heat} , based on the number of home stories. Because number of stories is not included in program-tracking data, the evaluation team calculated weighted average default values, based on 2015 Residential Energy Consumption Survey (RECS) data for the Midwest region (see Table 56).

Number of Stories	N _{cool}	N _{heat}
1	34.9	24.0
2	28.3	19.5
3	25.1	17.3

Table 55. Ameren Missouri TRM Appendix I Default Values for Ncool and Nheat

Table 56. 2015 RECS Building Characteristics Data for the Midwest Region

Number of Stories	Million Homes	Weight
1	10.6	57%
2	7.5	40%
3	0.5	3%
Total	18.6	100%

The evaluation team applied this estimated mix of the number of home stories to calculate weighted average heating and cooling conversion factors, as shown in Equation 74.

Equation 74. Air Sealing Calculated Values for N_{cool} and N_{heat}

 $N_{cool} = (34.9 \times 57\%) + (28.3 \times 40\%) + (25.1 \times 3\%) = 32.0$

 $N_{heat} = (24.0 \times 57\%) + (19.5 \times 40\%) + (17.3 \times 3\%) = 22.0$

Air Source Heat Pump (ASHP) Savings Assumptions

To calculate verified gross energy and demand savings for PY2020 SFIE Program ASHP measures, the evaluation team applied Version 4.0 of the Ameren Missouri TRM, Appendix F deemed savings tables to the program-tracking database.

The team used the following equations to calculate electric energy and demand savings:

1 1471

1 1471

Equation 75. Air Source Heat Pump Energy and Demand Savings Equations (Early Replacement - First Six Years)

. 1 1 471

$$kWh = kWh_{Cooling} + kWh_{Heating}$$

$$kWh_{Cooling} = \frac{\left(EFLH_{Cool} \times Capacity_{Cool} \times \left(\frac{1}{DR \times SEER_{Exist}} - \frac{1}{SEER_{EE}}\right)\right)}{1,000} \times HF$$

$$kWh_{Heating} = \frac{\left(EFLH_{Heat} \times Capacity_{Heat} \times \left(\frac{1}{HSPF_{Exist}} - \frac{1}{HSPF_{EE}}\right)\right)}{1,000} \times HF$$

$$kW = kWh_{Cooling} \times CF$$

Equation 76. Air Source Heat Pump Energy and Demand Savings Equations (Early Replacement - Next 12 Years)

$$kWh = kWh_{Cooling} + kWh_{Heating}$$

$$kWh_{Cooling} = \frac{\left(EFLH_{Cool} \times Capacity_{Cool} \times \left(\frac{1}{SEER_{Base}} - \frac{1}{SEER_{EE}}\right)\right)}{1,000} \times HF$$

$$kWh_{Heating} = \frac{\left(EFLH_{Heat} \times Capacity_{Heat} \times \left(\frac{1}{HSPF_{Base}} - \frac{1}{HSPF_{EE}}\right)\right)}{1,000} \times HF$$

$$kW = kWh_{Cooling} \times CF$$

Table 57. Air Source Heat Pump Deemed Input Values for SFIE Measures

Input	Value	Source
EFLH _{cool}	869	Appendix F
SEER _{Exist}	Custom	Tracking Data
SEER _{Base}	13	Appendix F
Household Factor (HF)	100% for single family 65% for multifamily	Appendix F
EFLH _{Heat}	1,496	Appendix F
HSPF _{Exist}	3.41	Appendix F
HSPF _{Base}	3.41	Appendix F
CF	0.0009474181	Appendix F

Table 58. Air Source Heat Pump Measure-Specific Input Values for SFIE Measures

Input	Measure Reference ID	Value	Source
Capacity _{Cool}	352300_2019_12_	34,457	Appendix F
SEEREE	352300_2019_12_	15.13	Appendix F
Capacity _{Heat}	352300_2019_12_	34,457	Appendix F
HSPFEE	352300_2019_12_	8.53	Appendix F
Capacity _{Cool}	352500_2019_12_	35,376	Appendix F
SEEREE	352500_2019_12_	16.25	Appendix F
Capacity _{Heat}	352500_2019_12_	35,376	Appendix F
HSPFEE	352500_2019_12_	8.43	Appendix F

DR = Derating factor, to account for performance degradation of existing equipment compared to its nameplate rating. DR = (1-1.44%)^{Age}, where "Age" is the age of the existing equipment in years (default = 12 years). We did not de-rate existing equipment for participants that received a tune-up on the existing equipment earlier in the year.

Central Air Conditioner (CAC) Savings Assumptions

To calculate verified gross energy and demand savings for PY2020 SFIE Program CAC measures, the evaluation team applied Version 4.0 of the Ameren Missouri TRM, Appendix F deemed savings tables to the program-tracking database.

The team used the following equations to calculate electric energy and demand savings:

Equation 77. Central Air Conditioner Energy and Demand Savings Equations (Early Replacement – First Six Years)

$$kWh = \left[\frac{\left(EFLH_{Cool} \times Capacity_{Cool} \times \left(\frac{1}{DR \times SEER_{Exist}} - \frac{1}{SEER_{EE}}\right)\right)}{1,000}\right] \times HF$$

 $kW = kWh \times CF$

Equation 78. Central Air Conditioner Energy and Demand Savings Equations (Early Replacement - Next 12 Years)

$$kWh = \left[\frac{\left(EFLH_{cool} \times Capacity_{Cool} \times \left(\frac{1}{SEER_{Base}} - \frac{1}{SEER_{EE}}\right)\right)}{1,000}\right] \times HF$$

 $kW = kWh \times CF$

Table 59. Central Air Conditioner Input Values for SFIE Measures

Input	Value	Source
EFLH _{Cool}	869	Appendix F
Capacity _{Cool}	35,735 for single family 24,000 for multifamily	Appendix F
SEER _{Exist}	Custom	Tracking Data
SEER _{Base}	13	Appendix F
SEEREE	16.03	Appendix F
Household Factor (HF)	100%	Appendix F
CF	0.0009474181	Appendix F

DR = Derating factor, to account for performance degradation of existing equipment compared to its nameplate rating. DR = (1-1.44%)^{Age}, where "Age" is the age of the existing equipment in years (default = 12 years). We did not de-rate existing equipment for participants that received a tune-up on the existing equipment earlier in the year.

Ceiling Insulation Savings Assumptions

To calculate verified gross energy and demand savings for PY2020 SFIE Program ceiling insulation measures, the evaluation team applied Version 4.0 of the Ameren Missouri TRM, Appendix F deemed savings tables to the program-tracking database.

The savings equations, input parameters, and input values are described below.

Equation 79. Ceiling Insulation Energy and Demand Savings Equations

$$kWh_{HeatingElec} = \frac{\left(\%ElecHeat \times \left(\frac{1}{R_{old}} - \frac{1}{R_{Attic}}\right) \times A_{Attic} \times (1 - FramingFactor_{Attic} \times HDD \times 24 \times Adj_{Attic}\right)}{n_{heat} \times 3,412} + (1 - \%ElecHeat) \times \Delta Therms \times F_e \times 29.3$$

$$kWh_{Cooling} = \frac{\left(\%CentralCooling \times \left(\frac{1}{R_{old}} - \frac{1}{R_{Attic}}\right) \times A_{Attic} \times (1 - FramingFactor_{Attic} \times CDD \times 24 \times DUA\right)}{n_{cool} \times 3,412}$$

$$\Delta Therms = \frac{\left(\left(\frac{1}{R_{old}} - \frac{1}{R_{Attic}}\right) \times A_{Attic} \times (1 - FramingFactor_{Attic} \times HDD \times 24 \times Adj_{Attic}\right)}{n_{e} \times 10\,000}$$

 $n_{heat} imes 10,000$

$$kW = kWh_{Cooling} \times CF$$

Table 60. Ceiling Insulation Input Values for SFIE Measures

Input	Value	Source
%ElectricHeat	Custom	Tracking Data
Rold	16	Appendix F
R _{Attic}	Custom	Tracking Data
A _{Attic}	Custom	Tracking Data
FramingFactor _{Attic}	7%	Appendix F
CDD	1,646	Appendix F
DUA	0.75	Appendix F
nCool	11	Appendix F
HDD	4,486	Appendix F
ADJ _{Attic}	0.74	Appendix F
nHeat	0.71 for Gas Heat 1.92 for Electric Heat	Appendix F
Fe	3.14%	Appendix F
CF	0.000466081	Appendix F

Dirty Filter Alarm Savings Assumptions

To calculate verified gross energy and demand savings for PY2020 SFIE Program dirty filter alarm measures, the evaluation team applied Version 4.0 of the Ameren Missouri TRM, Appendix F deemed savings tables to the program-tracking database.

The savings equations and input parameters are described in the Energy Efficiency Kits section, and input values specific to SFIE dirty filter alarm measures are described in Table 61 below.

Input	Value	Source
kW Motor	0.50	Appendix F
EFLH heat	1,496	Appendix F
EFLH cool	869	Appendix F
EI	15%	Appendix F
ISR	57.89	Appendix F
Coincidence Factor (CF)	0.000466081	Appendix F

Duct Insulation Savings Assumptions

To calculate verified gross energy and demand savings for PY2020 SFIE Program duct insulation measures, the evaluation team applied Version 4.0 of the Ameren Missouri TRM, Appendix F deemed savings tables to the program-tracking database.

The team used the following equations to calculate electric and demand energy savings:

Equation 80. Duct Insulation Energy and Demand Savings Equations

$$\Delta kWh = \Delta kWh_{Cooling} + \Delta kWh_{Heating}$$

$$\Delta kWh_{Cooling} = \frac{\left(\frac{1}{R_{existing}} - \frac{1}{R_{new}}\right) \times Area \times EFLH_{cool} \times \Delta T_{Avg,cooling}}{1,000 \times SEER}$$

$$\Delta kWh_{HeatingElectric} = \frac{\left(\frac{1}{R_{existing}} - \frac{1}{R_{new}}\right) \times Area \times EFLH_{heat} \times \Delta T_{Avg,heating}}{3,412 \times COP}$$

$$\Delta kWh_{HeatingGas} = \Delta Therms \times Fe \times 29.3$$

$$\Delta Therms = \frac{\left(\frac{1}{R_{existing}} - \frac{1}{R_{new}}\right) \times Area \times EFLH_{heat} \times \Delta T_{Avg,heating}}{100,000 \times \eta Heat}$$

$$\Delta kW = \Delta kWh \times CF$$

Input	Value	Source
Rexisting	4.0	Appendix F
Rnew	8.0	Appendix F
Area	Custom	Tracking Data
EFLH _{cool}	869	Appendix F
$\Delta T_{Avg,cooling}$	20.8	Appendix F
SEER	10	Appendix F
EFLH _{heat}	1,496	Appendix F
$\Delta T_{Avg,heating}$	71.8	Appendix F

Input	Value	Source
COP	1.00	Appendix F
Fe	3.14%	Appendix F
ηHeat	0.78	Appendix F
CF	0.000466081	Appendix F

Electronically Commutated Motor (ECM) Savings Assumptions

To calculate verified gross energy and demand savings for PY2020 SFIE Program electronically commutate motor (ECM) measures, the evaluation team applied Version 4.0 of the Ameren Missouri TRM, Appendix F deemed savings tables to the program-tracking database.

Because of a July 2019 change in code requiring ECMs on all new furnaces, in PY2020 the only eligible ECMs are those included with early-replacement furnace measures or as retrofits on existing furnace equipment. For these cases, the evaluation team deemed the EUL of ECMs to be six years, the remaining useful life of the existing equipment replaced.

The savings equations, input parameters, and input values are described in the HVAC section.

Lighting Savings Assumptions

To calculate verified gross energy and demand savings for PY2020 SFIE Program lighting measures, the evaluation team applied the Version 4.0 of the Ameren Missouri TRM, Appendix F deemed savings tables to the program-tracking database.

The savings equations and input parameters are described in the Energy Efficiency Kits section, and input values specific to SFIE lighting measures are described in the Table 63 and Table 64.

Measure Description	Watts EE	Watts Base
LED - 10W (Halogen baseline) LIDI	9.1	43.0
LED - 15W Flood Light PAR30 Bulb (Halogen baseline) LI DI	14.0	55.0
Kit: LED - 10W (Halogen baseline)	9.0	43.0
LED - 15W (Halogen baseline) LIDI	10.6	53.0
LED - 18W Flood Light PAR38 Bulb (Halogen baseline) LI DI	17.0	70.0
LED - 20W (Halogen baseline) LIDI	15.0	72.0
LED - 12W Dimmable Light Bulb (Replacing Specialty Incandescent) LI DI	11.0	53.0
LED - 4W Candelabra (Replacing Specialty Incandescent) LI DI	4.5	40.4
9W A19 LED BULB	9.1	43.0

Table 63. Wattage Table for SFIE Lighting Measures

Table 64. Lighting Input Values for SFIE Lighting Measures

Single Family and Mo		Mobile Homes Channels	Single Family Kits and Community Grant Channel	
Input	Value	Source	Value	Source
ISR	100%	Appendix F	87.95%	Appendix F
Hours Res	674.18	Appendix F	674.18	Appendix F
WHF	0.99	Appendix F	0.99	Appendix F

Single Family and Mobile Homes Channels		Single Family Kits and Community Grant Channel		
Input	Value	Source	Value	Source
CF	0.0001492529	Appendix F	0.0001492529	Appendix F
%Res	100%	Appendix F	100%	Appendix F
Leakage	0%	Appendix F	0%	Appendix F

Low-Flow Faucet Aerator Savings Assumptions

To calculate verified gross energy and demand savings for PY2020 SFIE Program low flow faucet aerator measures, the evaluation team applied the Version 4.0 of the Ameren Missouri TRM, Appendix F deemed savings tables to the program-tracking database.

The savings equations input parameters are described in the Energy Efficiency Kits section, and input values specific to SFIE low-flow faucet aerator measures are described in Table 65.

Input	Bathroom Aerator	Kitchen Aerator	Source
%ElectricDHW	100% for Electric DHW; 42% for Unknown; 0% for non-electric DHW	100% for Electric DHW; 42% for Unknown; 0% for non-electric DHW	Appendix F
GPM _{base}	2.2	2.2	Appendix F
L _{base}	3.7	3.7	Appendix F
GPM _{low}	1.5	1.5	Appendix F
Llow	3.7	3.7	Appendix F
Household	1.56	1.56	Appendix F
DF	1.0	1.0	Appendix F
FPH	1.86	1.00	Appendix F
ISR	89% for direct install; 57.2% for kits	89% for direct install; 50.8% for kits	Appendix F
CF	0.0000887318	0.00008873118	Appendix F

Table 65. Low-Flow Faucet Aerator Input Values for SFIE Measures

Low-Flow Showerhead Savings Assumptions

To calculate verified gross energy and demand savings for PY2020 SFIE Program low-flow showerhead measures, the evaluation team applied the Version 4.0 of the Ameren Missouri TRM, Appendix F deemed savings tables to the program-tracking database.

The savings equations input parameters are described in the Energy Efficiency Kits section, and input values specific to SFIE low-flow showerhead measures are described in Table 66.

Input	Value	Source
%ElectricDHW	100% for Electric DHW; 42% for Unknown; 0% for non-electric DHW	Appendix F
GPM _{base}	2.2	Appendix F

Table 66. Low-Flow Showerhead Input Values for SFIE Measures

Input	Value	Source
L _{base}	8.66	Appendix F
GPM _{low}	1.5	Appendix F
Liow	8.66	Appendix F
Household	2.67	Appendix F
SPCD	0.66	Appendix F
SPH	2.05	Appendix F
ISR	89% for direct install; 58.5% for kits	Appendix F
CF	0.0000887318	Appendix F

Pipe Insulation Savings Assumptions

To calculate verified gross energy and demand savings for PY2020 SFIE Program pipe insulation measures, the evaluation team applied Version 4.0 of the Ameren Missouri TRM, Appendix F deemed savings tables to the program-tracking database.

The savings equations input parameters are described in the Energy Efficiency Kits section, and input values specific to SFIE pipe insulation measures are described in Table 67.

Input	Value	Source
Cbase	0.144	Appendix F
R _{base}	1.000	Appendix F
C _{EE}	0.406 for direct install; 0.458 for kits	Appendix F
REE	3.60 for direct install; 4.54 for kits	Appendix F
L	Custom	Tracking Data
ΔΤ	58.90	Appendix F
Hours	8,766	Appendix F
ηDHW _{Elec}	0.98	Appendix F
CF	0.0000887318	Appendix F
ISR	96%	Appendix F

Table 67. Pipe Insulation Input Values for SFIE Measures

Setback Thermostat Savings Assumptions

To calculate verified gross energy and demand savings for PY2020 SFIE Program setback thermostat measures, the evaluation team applied Version 4.0 of the Ameren Missouri TRM, Appendix F deemed savings tables to the program-tracking database.

The team used the following equations to calculate electric and demand energy savings. Heating savings are calculated only for measures with electric heating equipment.

Equation 81. Setback Thermostat Energy and Demand Savings Equations

$$\Delta kWh_{cooling} = EFLH_{cool} \times Capacity_{Cooling} \times \left(\frac{1}{SEER}\right) \times SBdegrees \times SF \times EF/1,000$$

$$\Delta kWh_{heating} = EFLH_{heat} \times Capacity_{Heating} \times \left(\frac{1}{HSPF}\right) \times SBdegrees \times SF \times EF/1,000$$

$$\Delta kW = \Delta kWh_{cooling} \times CF$$

Input	Value	Source	
EFLH _{cool}	869	Appendix F	
Capacity _{Cooling}	36,000 for single family; 20,240 for multifamily	Appendix F	
SEER	Actual	Tracking Data	
SBdegrees	1.91 for cooling; 1.80 for heating	Appendix F	
SF	6% for cooling; 3% for heating	Appendix F	
EF	100% for cooling; 13% for heating	Appendix F	
EFLHheat	1,496	Appendix F	
Capacity _{Heating}	48,259 for electric heating; 0 for non-electric heating	Appendix F	
HSPF	3.41	Appendix F	
CF	0.0009474181	Appendix F	

Refrigerator Savings Assumptions

To calculate verified gross energy and demand savings for PY2020 SFIE Program refrigerator measures, the evaluation team applied Version 4.0 of the Ameren Missouri TRM, Appendix F deemed savings tables to the program-tracking database.

The team used the following equations to calculate electric and demand energy savings:

Equation 82. Refrigerator Energy and Demand Savings Equations

 $\Delta kWh = kWh_{base} - (kWh_{new} \times (1 - \%Savings))\Delta kW = \Delta kWh \times CF$

Table 69. Setback Thermostat Input Values for SFIE Measures

Input	Value	Source
kWh _{base}	985.16	Appendix F
kWh _{new}	467.22	Appendix F
%Savings	10%	Appendix F
CF	0.0001286107	Appendix F

Room Air Conditioner Savings Assumptions

To calculate verified gross energy and demand savings for PY2020 SFIE Program room air conditioner measures, the evaluation team applied Version 4.0 of the Ameren Missouri TRM, Appendix F deemed savings tables to the program-tracking database.

The team used the following equations to calculate electric and demand energy savings:

Equation 83. Room Air Conditioner Energy and Demand Savings Equations

$$\Delta kWh = \frac{FLH_{RoomAC} \times \frac{Btu}{H} \times \left(\frac{1}{CEER_{base}} - \frac{1}{CEER_{ee}}\right)}{1.000} \times ISR$$

Table 70. Room Air Conditioner Input Values for SFIE Measures

Input	Value	Source
FLHRoomAC	860	Appendix F
Btu/H	10,322	Appendix F
CEER _{base}	10.83	Appendix F
CEER _{ee}	11.96	Appendix F
ISR	98%	Appendix F
CF	0.000947181	Appendix F

Tier 2 Advanced Power Strips Savings Assumptions

To calculate verified gross energy and demand savings for PY2020 SFIE Program tier 2 advanced power strip measures, the evaluation team applied the October 2020 Ameren Missouri TRM, Appendix F deemed savings tables to the program-tracking database.

The savings equations, input parameters, and input values are described in the Energy Efficient Products section. For all SFIE power strip measures, the evaluation team applied an ISR of 95% as documented in Appendix F.

Tune-Up Savings Assumptions

To calculate verified gross energy and demand savings for PY2020 SFIE Program tune-up measures, the evaluation team applied Version 4.0 of the Ameren Missouri TRM, Appendix F deemed savings tables to the program-tracking database.

The savings equations, input parameters, and input values are described below. Heating savings are calculated only for heat pump equipment.

Equation 84. Tune-Up Energy and Demand Savings Equations

$$kWh_{Cooling} = \frac{\left(EFLH_{cool} \times Capacity_{cool} \times \left(\frac{1}{SEER_{Test-In}} - \frac{1}{SEER_{Test-Out}}\right)\right)}{1,000}$$
$$kWh_{Heating} = \frac{\left(EFLH_{heat} \times Capacity_{heat} \times \left(\frac{1}{HSPF_{Test-In}} - \frac{1}{HSPF_{Test-Out}}\right)\right)}{1,000}$$

$kW = kWh_{Cooling} \times CF$

Table 71. Tune-Up Input Values for SFIE Measures

Input	Value	Source
EFLH _{cool}	869	Appendix F
Capacity _{cool}	Custom (based on measure)	Appendix F
SEER _{Test-In}	11.90	Appendix F
SEER_Test-Out	15.28	Appendix F
EFLH _{heat}	1,496	Appendix F
Capacity _{heat}	Custom (based on measure)	Appendix F
HSPF_Test-In	6.30	Appendix F
HSPF _{Test-Out}	6.72	Appendix F
CF	0.0009474181	Appendix F

Multifamily Income Eligible (MFIE)

Gross Impact Methodology

This appendix contains detail on the savings assumptions used to estimate verified gross electric energy and electric demand savings from for the MFIE Program in PY2020.

Lighting Savings Assumptions

To calculate verified gross energy and demand savings for PY2020 MFIE lighting measures, the evaluation team applied Appendix F (v4.0) and actuals and deemed values from the program-tracking database and rebate approval forms (RAFs).

The evaluation team applied the rebate approval forms for the baseline wattage and WHF values. The savings equations, input parameters, and input values are described in the MFMR Program section.

Advanced Thermostat Savings Assumptions

To calculate verified gross energy and demand savings for PY2020 MFIE advanced thermostat measures, the evaluation team applied Appendix F (v4.0) and actuals from the program-tracking database and RAFs. For measures with no thermostat type listed in the "Baseline Heating Equipment" field, "Manual" thermostat was assumed based on information in the RAFs.

The evaluation team applied the custom rebate approval forms for the heating capacity value. The savings equations, input parameters, and input values are described in the MFMR Program section.

Programmable Thermostat Savings Assumptions

To calculate verified gross energy and demand savings for PY2020 MFIE programmable thermostat measures, the evaluation team applied Appendix F (v4.0) and actuals and deemed values from the program-tracking database and RAFs.

The savings equations, input parameters, and input values are described below.

Equation 85. Programmable Thermostat Energy and Demand Savings Equations

$$\Delta kWh_{cooling} = EFLH_{cool} * Capacity_{Cooling} * 2\left(\frac{1}{SEER}\right) * SBdegrees_{cooling} * SF_{cooling} * EF_{cooling} / 1000$$

 $\Delta kWh_{heating} = \% ElectricResistanceHeat * EFLH_{Heat} * Capacity_{Heating} * \left(\frac{1}{HSPF}\right) * SBdegrees_{heating} * SF_{Heating} * EF_{Heating}/1000$

$$kW = \Delta kWh_{cooling} * CF$$

Programmable Thermostat	HVAC Type	Verified Inputs	Source
EFLHcool	All	869	Appendix F
	ASHP heating/cooling MF	24,000	Appendix F
Capacity_cooling	Electric furnace heating/central Air Conditioner MF	12,000	Appendix F
SEER	All	10	Appendix F
SBdegrees_cooling	All	1.91	Appendix F
SFcooling	All	6%	Appendix F
EFcooling	All	100%	Appendix F
	ASHP heating/cooling MF	100%	Appendix F
%ElectricHeat	Electric furnace heating/central Air Conditioner MF	100%	Appendix F
	ASHP heating/cooling MF	1,496	Appendix F
EFLHheat	Electric furnace heating/central Air Conditioner MF	1,496	Appendix F
Capacity_heating	ASHP heating/cooling MF	Custom	Rebate Approval Forms
	Electric furnace heating/central Air Conditioner MF	Custom	Rebate Approval Forms
	ASHP heating/cooling MF	7.0	Appendix F
HSPF	Electric furnace heating/central Air Conditioner MF	3.41	Appendix F
SBdegrees_heating	All	1.8	Appendix F
SFheating	All	3%	Appendix F
EFheating	All	13%	Appendix F
CF	All	0.0009474181	Appendix F

Air Source Heat Pump Savings Assumptions

To calculate verified gross energy and demand savings for PY2020 MFIE ASHP measures, the evaluation team applied version Appendix F (v4.0) and actuals from the program-tracking database.

The savings equations, input parameters, and input values are described in the HVAC Program section.

Ductless Minisplit Heat Pump Savings Assumptions

To calculate verified gross energy and demand savings for PY2020 MFIE ductless minisplit heat pump measures, the evaluation team applied Appendix F (v4.0) and actuals from the program-tracking database.

The evaluation team applied the custom rebate approval forms for the existing SEER value. The savings equations, input parameters, and input values are described in the HVAC Program section.

Air Conditioner Tune-Up Savings Assumptions

The implementer applied deemed savings values of 536 and 1,255 kWh based on the 2017 Ameren Missouri TRM algorithm and field measurements to estimate SEER, EER, and HSPF.

Hot Water Savings Assumptions

To calculate verified gross energy and demand savings for PY2020 MFIE hot water measures (aerators, showerheads), the evaluation team applied Appendix F (v4.0) and actuals from the program-tracking database.

The savings equations, input parameters, and input values are described in the MFMR Program section.

Refrigerator Savings Assumptions

To calculate verified gross energy and demand savings for PY2020 MFIE refrigerator measures, the evaluation team applied Appendix F (v4.0) and actuals and deemed values from the program-tracking database and rebate approval forms.

The savings equations, input parameters, and input values are described below.

Equation 86. Refrigerator Energy and Demand Savings Equations

$$\Delta kWh_{unit} = kWh_{base} - (kWh_{new} * (1 - \%Savings))$$

Table 73. Refrigerator Input Values

Refrigerator	Verified Inputs	Source
kWhBase	Custom	Rebate Approval Forms
kWhNew	Custom	Rebate Approval Forms
%Savings	10%	Appendix F
CF	0.000129	Appendix F

Windows Savings Assumptions

To calculate verified gross energy and demand savings for PY2020 MFIE windows measures (Building Shell RES), the evaluation team applied Appendix F (v4.0) and actuals and deemed values from the RAFs.

The savings equations, input parameters, and input values are described in the MFMR Program section.

Custom Savings Assumptions

For some measures, the implemented team developed customized savings estimation methods—such as engineering analysis or building simulation model—with project-specific information about the building envelop, equipment specifications, operating schedules, and controls schemes.

To calculate verified gross energy and demand savings for these custom measures, the evaluation team collected project documentation to (1) review the methods and assumptions used to develop the ex ante savings, (2) verify the purchase/installation of the measures (e.g., through invoice or post-installation documentation), and (3) validate or update.

Non-participant Spillover (NPSO)

Ameren Missouri has been running energy efficiency programs for many years, and a key component of the residential portfolio has been a marketing and outreach campaign to promote the programs and general energy-efficiency awareness among customers. Sustained utility program and general marketing can affect customers' perceptions of their energy usage, and, in some cases, motivate them to take efficiency actions outside of the utility's program. We define NPSO as the energy savings that Ameren Missouri's program marketing activities caused but did not rebate.

As outlined in the PY2020 evaluation plan, we planned to apply the NPSO percentages that we developed in PY2019 (13.7% for MWh and 7.7% MW) to PY2020 ex-post gross savings for four applicable programs: HVAC, Energy Efficient Products, Appliance Recycling, and Energy Efficient Kits. However, with the economic downturn due to the COVID-19 pandemic, we wanted to make sure that our plan to use the PY2019 results was still appropriate.

To make this determination, we looked to research conducted by the team in the summer of 2020. At that time, Opinion Dynamics conducted research with residential customers and HVAC contractors to assess the impact of the pandemic on Ameren Missouri residential customers and their likely program participation. Overall, our research found that the customers who are most likely to participate or make energy efficient upgrades outside a program were least impacted by the pandemic. These customers reported that the pandemic would have little impact on their purchase of energy efficient items or home improvements. For these reasons, we felt that applying the PY2019 NPSO percentage to PY2020 was reasonable despite the pandemic.

Summary of PY2019 NPSO Analysis

The PY2019 NPSO analysis used data we collected through a residential general population survey of a random sample of 4,804 Ameren Missouri residential customers; of which there were 3,450 non-participants for the NPSO analysis. We used a combination of survey screening techniques, survey data analysis, and follow-up phone calls to identify eligible NPSO measures amongst these respondents. NPSO savings are limited to measure installations that (1) the Ameren Missouri residential program portfolio supports (i.e., "like" measures), (2) could theoretically have been done due to Ameren Missouri's promotional efforts, and (3) are not the focus of NPSO estimation through specific program evaluations. Table 74 lists the eligible measures and their associated programs.

Table 74. PY2019 NPSO Eligible Measures

Measure	Program
Kitchen faucet aerator	Energy Efficient Kits, Appliance Recycling

Measure	Program
Bathroom faucet aerator	Energy Efficient Kits, Appliance Recycling
Low flow showerhead	Energy Efficient Kits, Appliance Recycling
Hot water pipe insulation	Energy Efficient Kits, Appliance Recycling
Central air conditioner (CAC)	HVAC
Air source heat pump (ASHP)	HVAC
Ground source heat pump (GSHP) a	HVAC
Ductless/Minisplit Heat Pump (DMSHP)	HVAC
Furnace fan with electronic commutating motor (ECM)	HVAC
Advanced (i.e., learning or smart) thermostat	Energy Efficient Products, HVAC
Advanced power strips a	Energy Efficient Products
Pool pump	Energy Efficient Products
Heat pump water heater (HPWH)	Energy Efficient Products
Recycled refrigerator	Appliance Recycling
Recycled freezer	Appliance Recycling

To qualify for NPSO, the respondent and measure needed to meet the following criteria:

- Aware that Ameren Missouri provides rebates or discounts on energy efficiency equipment or aware of at least one specific program.
- At least one element of Ameren Missouri's program marketing and outreach motivated the respondent to adopt the measure.
- The respondent had a valid reason for considering the measure to be energy efficient.
- Though aware of Ameren Missouri rebates or programs, the respondent had a valid reason for not applying for an Ameren Missouri rebate/participating.
- The respondent had a valid energy saving reason for installing the measure.
- The measure generates electric savings (thermostats or water measures that could also generate gas savings)
- For recycled appliances, the appliance was removed from the electric grid.

For more detail on PY2019 NPSO methods, analysis, and results, please refer to the Ameren Missouri PY2019 Annual EM&V Report, Volume 2: Residential Portfolio Appendices.

PY2020 NPSO Results

We allocated NPSO to each program based on the relative size of its ex-post gross savings. The specific allocations per program are in Table 75 and Table 76 below. NPSO represented 13.7% of the ex-post gross MWh savings and 7.7% of the ex-post gross MW savings among these programs.

Program	Ex-Post Gross Savings (MWh)	% Share	NPSO Allocation (MWh)	NPSO as % of Gross Savings
HVAC	36,908	70%	5,056	
Energy Efficient Products	8,981	17%	1,230	
Appliance Recycling	5,694	11%	780	13.7%
Energy Efficient Kits	888	2%	122	
Total	52,471	100%	7,189	

Table 75. NPSO Allocation by Program (MWh)

Table 76. NPSO Allocation by Program (MW)

Program	Ex-Post Gross Savings (MW)	% Share	NPSO Allocation (MW)	NPSO as % of Gross Savings
HVAC	21.27	88%	1.79	
Energy Efficient Products	1.57	7%	0.22	
Energy Efficient Kits	0.98	4%	0.07	7.7%
Appliance Recycling	0.28	1%	0.01	
Total	27.17	100%	2.09	

Appendix B. Income Eligible Pre-Period Consumption Data Analysis

Ameren Missouri and its income eligible program implementers have two unique program performance metrics that are designed to incent the pursuit of deeper savings per property and provide a holistic assessment of the program's impact. Specifically, these metrics track the program's impact in terms of (1) a threshold criterion to spend at least 85% of the Commission-approved annual budget for administration and incentives each program year, and (2) the average percent energy savings per property. While inputs for the first metric come directly from Ameren Missouri's accounting system, evaluators provide the inputs to calculate the average percent of site savings metric. This appendix details the evaluation team's methodology and results.

Following guidance from the 2019–21 MEEIA Energy Efficiency Plan, the evaluation team provides the two key inputs to calculating average percent energy savings for the SFIE and MFIE programs, including evaluated energy savings and total billed energy consumption for the 12-month period prior to participation (pre-period consumption). These items serve as inputs into the Earnings Opportunity Calculator and enable calculation of the average percent energy savings per property metric by dividing the program's total ex post energy savings by the total pre-period consumption for all the properties served during the program year.

Analytic Method

To calculate pre-period consumption, we used information collected from Ameren Missouri's customer billing data and from PY2020 program-tracking data. The evaluation team reviewed all datasets for accuracy and completeness. The description of each data source is below.

- Program Tracking Data: Franklin Energy provided the evaluation team with participant tracking files for the SFIE and MFIE programs that included all PY2020 program participants through December 2020. These files contained unique customer identifiers, contact information, participation date, measures installed, and ex ante savings. Franklin Energy also provided a list of non-participating premises from properties treated through the MFIE Program.¹⁶
- Customer Billing Data: Ameren Missouri provided historic monthly electric billing data for all electric customers through December 2020. The billing data included account number, premise number, meter number, billing dates, and usage values.

As the first analysis step, we used the program-tracking data and list of non-participating MFIE premises to compile the full list of unique premises associated with properties treated through the SFIE and MFIE programs in PY2020. We dropped any premises associated with projects initiated in PY2019 and only kept premises associated with projects initiated and completed in PY2020. We then extracted all the monthly billing data associated with all accounts and meters linked to those premises.

Next, we converted the monthly billing data into average daily consumption and used the premise participation date to identify the applicable analysis period for each premise. Per the 2019–2021 MEEA Energy Efficiency Plan, the pre-period covers the 12 months prior to the month the property was treated through either program (e.g., the pre-period for a property that was first treated in July of 2020 would cover July 2019–June 2020). Numerous premises had recorded pre-period usage across more than one associated account, particularly

¹⁶ The percent of site savings metric is calculated at the property level. Therefore, for the MFIE Program, the pre-period consumption data includes all multifamily units within a treated property, including participating and non-participating units.

those included in the MFIE analysis. This could be due to tenant turnover, bill non-payment resulting in account conversion to a landlord, or other reasons. The guidance in the 2019–2021 MEEIA Energy Efficiency Plans advises the evaluation teams to conduct minimal data cleaning; as such, we included all available pre-period usage from all accounts associated with each premise. We treated gaps in service (such as between one account's last bill period and another account's first bill period) as 0 usage and retained bill periods recorded in the billing data as 0 kWh usage.

Lastly, we assessed the pre-period consumption data coverage across all premises. Thirty-one premises across the two programs (1.2% of total premises) had no recorded usage in the 12-month pre-period. Additionally, 24 premises (0.9% of total premises) had fewer than six months of recorded usage. Table 77 summarizes these cases by program. Following the guidance in the 2019–2021 MEEIA Energy Efficiency Plan, we did not drop or annualize usage for the premises with fewer than 12 months of pre-period consumption data.

	Single Family Income Eligible		Multifamily Income Eligible	
	Count	Percent	Count	Percent
No Recorded Usage	5	0.4%	26	2.2%
Less than 6 months of Usage	2	0.1%	22	1.8%
More than 6 months of Usage	1,409	99.5%	1,117	95.9%
Total Premises	1,416		1,165	

Table 77. Pre-Period Consumption Data Availability

Based on the above, the evaluation team feels that the planned approach of retaining all consumption data as recorded in the Ameren Missouri billing database adequately represents the total annual electricity usage across all treated premises. The results in Table 78 can be input to the Earnings Opportunity Calculator as a basis for understanding the ex post annual savings from our ex post impact evaluation.

Table 78. Pre-Period Consumption

Usage	Single Family Income Eligible (n=1,411)	Multifamily Income Eligible (n=1,139)	
Total Annual kWh	12,011,576	10,572,895	

Appendix C. Data Collection Instruments

In this Appendix, the evaluation team presents data collection instruments for all primary data collection activities that contributed to the development of net program savings. In Table 79, we provide data collection instruments for the HVAC and Multifamily Programs, along with the tasks and NTGR component that each instrument contributed to.

Program	Task	NTGR Component	File
HVAC Program	Downstream and midstream participant surveys	Participant FRParticipant SO	Adobe Acrobat Document
HVAC Program	Distributor in-depth interviews	 Distributor FR (midstream only) 	Adobe Acrobat Document
Multifamily Market Rate	Participating property manager in-depth interviews	Participant FRParticipant SO	Adobe Acrobat Document

Table 79. Residential Program Evaluation Data Collection Instruments

For more information, please contact:

Antje Flanders Vice President

617-301-4643 tel 617-497-7944 Fax aflanders@opiniondynamics.com

1000 Winter Street Waltham, MA 02451

Boston | Headquarters

617 492 1400 tel 617 492 7944 fax 800 966 1254 toll free

1000 Winter Street Waltham, MA 02451 San Francisco Bay

San Diego

510 444 5050 tel 858 270 5010 tel 510 444 5222 fax

858 270 5211 fax

1 Kaiser Plaza Suite 445

7590 Fay Avenue Suite 406

503-281-7375 fax 3934 NE MLK Jr. Blvd. Suite 300

503 287 9136 tel

Portland

Oakland, CA 94612 La Jolla, CA 92037 Portland, OR 97212