Exhibit No.:Issues:Coal Plant OperationsWitness:Jim WilliamsType of Exhibit:Rebuttal TestimonySponsoring Party:Union Electric CompanyCase No.:ER-2019-0335Date Testimony Prepared:Jan 21, 2020

MISSOURI PUBLIC SERVICE COMMISSION

FILE NO. ER-2019-0335

REBUTTAL TESTIMONY

OF

JIM WILLIAMS

ON

BEHALF OF

UNION ELECTRIC COMPANY d/b/a Ameren Missouri

> St. Louis, Missouri January 2020

TABLE OF CONTENTS

I.	INTRODUCTION	1
II.	CAPITAL EXPENDITURES	3
III.	CYCLING OF BASELOAD COAL UNITS.	9

REBUTTAL TESTIMONY

OF

JIM WILLIAMS

FILE NO. ER-2019-0335

I. INTRODUCTION

1 **Q**. Please state your name and business address. A. 2 My name is Jim Williams and my business address is 1901 Chouteau 3 Avenue, St. Louis, Missouri 63103. 4 **O**. By whom are you employed and what is your position? 5 A. I am employed by Union Electric Company d/b/a Ameren Missouri ("Ameren Missouri" or "Company") as Sr. Director, Operations Excellence Support in 6 7 the Company's power operations group, which manages the Company's non-nuclear 8 generation resources. 9 **O**. Please describe your educational background and employment 10 experience. 11 A. I have more than thirty years of experience in power plant operations, 12 including specifically in operating baseload coal-fired power plants. Prior to beginning 13 my career, I received a B.S.in Mechanical Engineering from Southern Illinois University 14 ("SIU") at Carbondale, Illinois-1986. Later, I was awarded a Master's Degree in Business 15 Administration from Eastern Illinois University in Charleston Illinois-1995. I possess

several other certificates related to my work, including Project Management Professional
 -2013, as well as serving on the SIU Engineering Advisory Board for the St Louis area.

3 I began my professional career as a Plant Engineer at the Central Illinois Public 4 Service Company, Newton Power Station in 1986. In that role, I performed as the Boiler 5 Engineer, Turbine Engineer, Systems Engineer, and Performance Engineer, and 6 Operations Supervisor. In 1993, I was promoted to the position of Tech Support 7 Coordinator. In that role, I was responsible for all of the engineering, environmental, 8 chemical, planning, scheduling, and budgeting activities for the station. I served in that 9 role until January of 2001. At that time, I was promoted to the Plant Director at Ameren 10 Energy Generating Company's ("AEG") Coffeen Power Station. In that role, I was 11 responsible for the safe, reliable, and efficient operation at the station. In 2009, I was 12 transferred back to AEG's Newton Power Station as the Plant Director. I had 13 responsibility for the activities at both the Newton and the Hutsonville Power Stations. In 14 2013, I was promoted to Sr. Director and was accountable for all of AEG's coal-fired 15 plants. After Ameren Corporation's 2014 divestiture of AEG, I accepted a position with 16 Ameren Missouri as Plant Director at the Sioux Energy Center. I held that role until I was 17 promoted to the Sr. Director, Power Operations in 2015 where I had responsibility for the 18 non-nuclear generation in Missouri. In 2018, I assumed my current positon.

19

Q. What are your responsibilities in your current position?

A. As the Sr Director, Operations Excellence Support, I have responsibility over the engineering teams at each of the Company's non-nuclear energy centers, including Performance Engineering and Turbine Engineering. I also oversee Laboratory Services, a Corrective Actions Team, the Ameren Missouri Power Operations and Maintenance Training Center, Plant Construction Maintenance (a maintenance group that
 travels between different energy centers), and the Operations Excellence Engineering
 Group.

4

Q. What is the purpose of your rebuttal testimony?

5 A. I am responding to two issues raised by Sierra Club witness Avi Allison. 6 First, I respond to Mr. Allison's apparent suggestion that *if* the Rush Island, Labadie, or 7 Sioux Energy Centers were to retire shortly after 2024 (instead of at the currently 8 estimated retirement dates), capital expenditures made at those plants in 2018 and 2019 9 might not have been necessary. I am also responding to Mr. Allison's suggestion that 10 these capital expenditures reflected "major life extending" projects that would not have 11 been made if, hypothetically, one of these plants retired shortly after 2024. Ameren 12 Missouri witness Matt Michels addresses other aspects of Mr. Allison's testimony 13 regarding the economics of these units. Secondly, I provide information relevant to Mr. 14 Allison's criticism of the approach to unit commitment and dispatch of these same energy 15 centers, specifically information regarding the fact that these energy centers were 16 designed to operate as baseload units and not frequently cycle on and off dictates the unit 17 commitment practices the Company follows. Company witness Andrew Meyers 18 addresses the Company's unit commitment and dispatch practices.

19

II. CAPITAL EXPENDITURES

20 Q. Do you agree with Mr. Allison's testimony in regard to the capital 21 costs Ameren Missouri incurred at those plants in 2018 and 2019? A. No. The capital projects completed in 2018 and 2019 would have been completed regardless of any hypothetical retirement in the mid-2020's, and regardless of any ultimate impact the final outcome of the New Source Review ("NSR") lawsuit may have on the future operation of any of these plants in mid-2020 or beyond. The capital expenditures were required to address then-existing concerns related to the safe and reliable operation of these Energy Centers now and over the next few years and, in some cases, to ensure ongoing environmental compliance.

8

Q. On what do you base your conclusion?

A. Given Mr. Allison's suggestion that a mid-2020's retirement might have eliminated capital expenditures at these plants, I went back and reviewed all capital projects in excess of \$500,000 placed in service at these plants in 2018 and 2019. My review, summarized in Schedule JLW-R1, confirms that these projects were required and would have been done even if today we knew the plants would shut down shortly after 2024.¹

Q. Before discussing some of the major capital projects completed during
this timeframe can you briefly explain the basis for capital planning at Ameren
Missouri's generating plants?

¹ A formal post-project review of this nature had not been undertaken when Sierra Club posed its DR No. 1.6, referenced in Mr. Allison's direct testimony. As noted, we had a general understanding of the need for the projects regardless of a hypothetical mid-2020's retirement as we planned, approved, and completed the projects.

A. Capital planning is grounded in three primary principles. First, for the reasons discussed by Mr. Michels in his rebuttal testimony, capital expenditures are developed utilizing the latest preferred resource plan from our triennial Integrated Resource Plan ("IRP") filings. Second, Ameren Missouri invests capital needed to safely and reliably operate the plants and is conservative in making capital investments in that if an investment is needed to err on the side of safety, it will be made. Third, Ameren Missouri Power Operations' business goals are to keep these plants reliable.

8 Q. Can you discuss some of the major examples of 2018 and 2019 9 projects at Rush Island and reasons why they were required irrespective of the 10 hypothetical retirement Mr. Allison's suggest might occur?

11 A. Yes. At Rush Island, the 2018 and 2019 capital expenditures were related 12 to either ongoing environmental compliance that would be necessary regardless of 13 whether the plant retired, or were for component replacements due to issues that were 14 affecting the design basis of that component that needed to be addressed for ongoing 15 operations. In 2018, environmental compliance projects were the largest cost items 16 including approximately \$87 million to comply with new coal combustion residuals 17 ("CCR") and effluent limitation guidelines ("ELG") rules, including dry ash conversions 18 and installation of a new waste water treatment system. Installation of the dry bottom ash system required relocation and replacement of the auxiliary boiler at an additional cost of 19 20 \$7.4 million. Another \$3.3 million expenditure for the Unit 1 electrostatic precipitator 21 rebuild (to comply with particulate matter regulations) was required due to the 22 component degradation due to air leakage causing corrosion of the casing walls.

1 Another larger project on Rush Island Unit 1 (approximately \$2.4 million) was 2 the economizer strap addition project. This was to address safety and operational 3 concerns. The existing economizer sections of the boiler are supported by hangers and 4 ladder straps. The design basis accounts for proper structural supports to operate within 5 the design temperatures and ash loading expectations. During inspections, it was 6 observed that these straps were failing and the weld attachments to the supporting 7 headers were failing. This was causing the economizer front section to drop significantly, 8 causing a safety and operational concern.

9 The remaining roughly \$15 million of projects in 2018 were for various ongoing 10 replacement or safety needs. Capital expenditures at Rush Island in 2019 were about \$7 11 million for critical spare parts that need to be on hand.

Q. Can you provide an explanation of capital projects at Labadie and Sioux in the same time period?

14 A. Yes. With regard to the Labadie and Sioux Energy Centers, the capital 15 expenditures during the same period fall into the same categories as those described for 16 Rush Island. Component replacements for these facilities were required to maintain a 17 design basis to provide safe, reliable operation of the energy centers. Of the 18 approximately \$160 million in expenditures at Labadie in 2018, more than two-thirds was 19 to comply with ELG and CCR requirements. The remaining expenditures at Labadie in 20 2018 were primarily for component replacement projects to restore known deficiencies 21 that had a detrimental effect on the design basis and the ability to operate safely and 22 within conservative operating guidelines.

1 Examples include \$12.1 million for a boiler reheater and \$7.4 million for the lower slope 2 replacement on Labadie Unit 3. These were required to address material condition and 3 restore reliability of those components. In 2019, similar repairs were made to Labadie 4 Unit 1. In addition to boiler repairs, \$5.6 million was expended to replace the last stage 5 turbine blading on the low pressure turbines due to know material issues and design basis 6 concerns. As stated earlier, other expenditures were required to address known issues 7 such as acquiring a generator startup transformer for \$6.5 million, and a \$4 million 8 project on Labadie Unit 3 to address an Induced Draft Fan with blade issues and cracks. 9 Of the approximately \$4.8 million in 2018 capital expenditures at Sioux, approximately 10 \$3 million were for safety or security needs at the plant. \$1.7 million was expended to 11 deal with coal dusting and coal spillage issues transferring the coal into the plants. OSHA 12 has strong requirements for the amount of coal dusting that is safe. To comply with this 13 regulation, coal transport systems and containment areas needed to be addressed. In 2019, 14 Sioux expended \$4.3 million for the ELG and CCR projects and \$1.9 million for the U2 15 HP generator rewind due to known issues found during continued testing.

16 Capital expenditures at Labadie and Sioux in 2019 were approximately \$58 17 million and \$11 million, respectively. More than one-third (40%) of the Labadie 18 expenditures were for ELG/CCR compliance with the rest consisting of needed 19 component replacements or to meet safety needs. Similar to Labadie, nearly 40% of the 20 investments at Sioux were for ELG/CCR compliance with the rest consisting almost 21 entirely of needed component replacements.

1	Q. Mr. Allison suggests that "major life extending" projects should not
2	be done if retirement would occur within three to five years. Were these
3	expenditures ''major life extending'' projects?
4	A. No. These projects were for compliance with environmental laws needed
5	for existing, ongoing operations in the near- to intermediate terms, and to address known
6	issues that were affecting the design basis of the units so that we could continue to
7	provide reliable power for our customers while operating them in a safe and conservative
8	manner now and in the near term. In addition, as discussed by Mr. Michels in his rebuttal
9	testimony, it is very unlikely that these plants could realistically retire in the next three to
10	five years, even if Mr. Allison's suggestion was accurate.
11	Q. Do you have past experiences with end of life and plant closures?
12	A. Yes. My operating experience includes the closure of two coal-fired
13	generating facilities as well as the upcoming Meramec Energy Center closure.
14	Q. How do the capital expenditures made at Labadie, Rush Island, and
15	Sioux in 2018-2019 compare to capital expenditures made at these other plants with
16	which you have experience even where those other plants were expected to close in
17	the next several years?
18	A. In all these cases, these type of capital expenditures were incurred even
19	when the plants were expected to close in the next several years. As an example, at our
20	Meramec Energy Center, we recently made repairs to the precipitator casing similar to
21	the project completed at Rush Island, even though we know that the Meramec plant will
22	close by 2022. This project was needed to allow the precipitator to perform as designed
23	through the end of its useful life.

1	III. CYCLING OF BASELOAD COAL UNITS.
2	Q. Company witness Andrew Meyer testifies that one of the reasons the
3	Company commits the Labadie, Rush Island, and Sioux units in the MISO market
4	in the manner that it does is to avoid damaging the units by frequently cycling them
5	on and off. Is the Company right to be concerned about damage to these units if a
6	must run commitment status were not used?
7	

Yes. I know from 33-plus years of experience operating coal-fired units 7 A. 8 that the impact of cycling on these units is real. While one cannot accurately predict for a 9 given unit exactly what costs frequent cycling will cause, it is well understood in the 10 industry that cycling units on and off increases forced outage rates and creates higher 11 operations and maintenance and capital expenditures. This is particularly the case with 12 units with a 25-30 year or higher operating life, as is the case with all of the units in 13 question. In my experience, cycling leads to higher boiler tube failure rates, increased 14 issues with turbine damage, exciter insulation issues, air heater issues, and precipitator 15 performance problems.

16

Q.

Please elaborate on your concerns with cycling.

A. As I noted, cycling impacts several components. Let's first start with the boiler components. The boiler consists of several miles of boiler tubing. There are different thicknesses and materials designed to deal with the different temperatures the boiler experiences throughout the gas path. The tubing is designed to deal with different pressures and temperatures and the ability to operate as the ash is cycled through the system. As boilers are cycled on/off, each of these components move (contract and expand) at different rates causing the welds to fail and develop leaks.

Additionally, the different stages of superheated steam, saturated steam, and condensate change at different rates. In some instances this causes a "water hammer" which, as the name implies, is a violent movement within a particular piping line. These components are restrained with pipe hangers. As these cycling events occur, they cause the components to fail which in turn requires expenditures to repair or replace components, as well as causing outages of the unit. Those outages in turn reduce revenues from the unit.

8

Q. Are there similar concerns with turbine generator components?

9 A. Yes. The turbine (rotating and stationary turbine blades) and the generator 10 are affected. The turbine cycle is affected each time the turbine is started and stopped. 11 This is because the quality of steam is critical to the design basis and performance of a 12 steam turbine (steam pressures and steam temperatures). Once a generating unit is on 13 line, the steam quality is of an appropriate quality for prolonged operation. However, 14 when units are cycled on/off, the steam qualities change. High temperature steam may 15 become saturated (containing moisture droplets) at certain points (engineers call the point 16 when condensation starts the "Wilson Line") at which point the turbine blades experience 17 an environment where the trailing edges of the stationary and rotating turbine blades 18 begin to see grooving (caused by the moisture) which leads to blade failure. There are 19 also known issues (material cracking) with the hook fits next to the rotor (location where 20 the turbine blades are affixed to the rotor). As is the case with the boiler, this damage 21 leads to the need for more frequent turbine inspections, which themselves cost money, 22 and other costs. As more wear is incurred, the performance of the unit (heat rate) worsens

1 (i.e., more fuel is required for a given level of generation leading to more costs for2 customers).

As the units are cycled on/off the generator also experiences added wear. The generator also has rotating and stationary components. As the generator cycles on/off, it can experience stator bar movement and insulation cracking. Over time this is known to cause leakage or generator grounding issues and the resulting costs associated with repairing those issues and well as the impact on unit availability these issue can cause.

8

Q. Are there other critical systems at risk?

9 A. Yes. High energy piping is directly affected by cycling of units. Flow 10 Accelerated Corrosion is an industry concern which has been documented several times 11 and that has caused catastrophic failures. As the units run, a thin layer of oxide forms 12 inside the piping. As the units cycle, piping expands and contracts and over time, this thin 13 layer spalls (flakes, breaks) off the inside of the piping and goes downstream. A new 14 layer then begins to form, and eventually it too spalls off. This creates thin spots in the 15 piping leading to failure of the pipe. In high pressure and high temperature applications, 16 which we have in all of these plants, this becomes a serious performance and a critical 17 safety issue. Air heater and precipitator performance is also greatly affected by cycling 18 units on/off. As the units are cycled, the back end temperatures of the boiler and 19 precipitator are increased and reduced. As you cycle the units on/off, the acid dew point 20 (this is where the outlet boiler gasses reaches a certain temperature and pressure allowing 21 the sulfuric acid to condense and increase corrosion) affects the integrity of air heater 22 baskets, precipitator casing, and precipitator internals.

- 1 These all contribute to the degradation of operation of these components, which in 2 turn leads to repair or replacement costs and, again, can affect reliability and unit 3 availability.
- 4 Q. Does this conclude your rebuttal testimony?
- 5 A. Yes.

BEFORE THE PUBLIC SERVICE COMMISSION OF THE STATE OF MISSOURI

)

)

In the Matter of Union Electric Company d/b/a Ameren Missouri's Tariffs to Decrease Its Revenues for Electric Service.

) File No. ER-2019-0335

AFFIDAVIT OF JIM WILLIAMS

STATE OF MISSOURI)) ss **CITY OF ST. LOUIS**)

COMES NOW Jim Williams, and on his oath declares that he is of sound mind and lawful age; that he has prepared the foregoing Rebuttal Testimony; and that the same is true and correct according to his best knowledge and belief.

Further the Affiant sayeth not.

Jim Williams

Subscribed and sworn to before me this $\frac{2l^{3}}{2}$ day of January, 2020.

Der a. Best ary Public

Notary Public

My commission expires:

	GERI A. BEST
	Notary Public - Notary Seal
	State of Missouri
	Commissioned for St. Louis County
	My Commission Expires: February 15, 2022 Commission Number: 14839811
	Commission Number: 14839811
1	1141

Facility	Expenditure Project	Reason	Required for 2025 Shutdown
Meramec	659,794 MR U3 Transformer Explosion Protect	GSU Transformer Upgrade (safety)	Y
	576,819 Meramec Drainage Improvements	Facility upgrade	Y
Sioux	1,736,020 Sioux Coal Dusting and Spillage Imp	Safety	Y
	1,269,666 SX NERC CIP 5 Physical Security	Security	Y
	964,428 Sx1 Absorber Oxidation Air Agitator	Component Replacement	Y
	920,860 SX - 1A ID Fan Hub Replacement	Component Replacement	Y
Labadie	45,284,545 LBD Wastewater Treatmen ELG	ELG/CCR	Y
	40,722,255 LBD DRY FLY ASH CONVERSION	ELG/CCR	Y
	23,291,317 LBD U3 DRY BOTTOM ASH CONVERSION	ELG/CCR	Y
	12,185,089 LBD U3 Reheater REPL	Component Replacement	Y
	7,413,379 LBD U3 LOWER SLOPE REPL	Component Replacement	Y
	6,512,865 LB-RI Critical Spare GSU	Critical spare part	Y
	4,037,534 LBD U3 ID Fan Rotor Repl	Component Replacement	Y
	2,676,856 LABADIE WATER TREATMENT CNTRLS	Component Replacement	Y
	2,391,102 LBD U3 Coal Mill Transport Pipe Rep	Component Replacement	Y
	1,893,526 LBD U3 Air Preheater Basket Repl	Component Replacement	Y
	1,867,911 LBD NERC CIP 5 Physical Security	Security	Y
	1,855,777 LBD U3 AUX COOLING H2O COOLERS REPL	Component Replacement	Y
	1,574,349 LBD U3 K LINE BREAKER REPL	Component Replacement	Y
	1,558,130 LBD U3 &4 Gas Conditioning	Component Upgrades	Y
	1,007,809 Labadie Wireless Refresh	Communication Upgrade	
	990,387 LABADIE U3 125 V DC System Repl.	Component Replacement	Y
	854,200 LBD - U3 CRH Safety Vent Stack Mods	Safety	Ý
	829,106 LBD U3 Instal 2 New Lances in HorSh	Component Upgrades	Ý
	706,639 LBD - U3 Repl C ID Fan Inlet Vanes	Component Replacement	Ý
	706,568 LBDS - U3 A&B FD Inlet Vanes	Component Replacement	Ý
	657,307 LBD U3 ADDL BLR CLNG DOORS	Component Upgrades	Ý
	654,826 LBD U3 XFMR Explosion Protection	GSU Transformer Upgrade (safety)	Ý
Rush Island		ELG/CCR	Ý
	32,080,337 RI - Wastewater Treatment ELG	ELG/CCR	Ý
	15,935,053 RI U1 BOTTOM ASH MODS-SC	ELG/CCR	Ý
	7,405,046 RI Aux Boiler Replacement	Component Replacement	Ý
	3,417,062 RUSH ISLAND U1 ESP REBUILD	Component Replacement	Ý
	2,390,838 RI U1 Economizer Strap Addition	Component Replacement	Ý
	2,251,099 RI-Marketing Silo Ash Transfer Sys	Component Replacement	Ý
	2,034,787 RI 1 Valve Component & Actuator Rep	Component Replacement	Ý
	1,436,153 RI U1 AUXILARY COOLERS	Component Replacement	Ý
	1,368,991 RI Coal Dusting and Spillage Improv	Component Upgrades	Ý
	1,302,684 Rush Island Cyber Security	Security	Ý
		-	Ý
	1,234,997 RI U1 Air Preheater Basket Replacem	Component Replacement	Y
	1,030,306 RI Coal Receiving Electrical Racewa	Component Replacement	Y
	980,295 RI U1 BURNER REPLACEMENT (24)	Component Replacement	
	895,552 RI U1 Replace Blr Steam Cooled Spac	Component Replacement	Y
	855,154 Rush Island Wi Fi Expansion	Communication Upgrade	Y
	656,478 RI U1 Transformer Explosion Protect	GSU Transformer Upgrade (safety)	Y
	629,998 RI U2 Transformer Explosion Protect	GSU Transformer Upgrade (safety)	Y
	531,694 RI U1 TRB FOAM CLEANING SYS	Component Upgrades	Y

Facility	Expenditure	Project	Reason	Required for 2025 Shutdown
Meramec		MER NERC CIP 5 Physical Security	Security	Y
	1,240,139	MER Flyash Pond 489/495 Closure	ELG/CCR	Y
Sioux	4,281,348	SX Coal Dust & Slurry Proce	ELG/CCR	Y
	1,861,424	SX U2 HP Rotor Rewind	Component Refurbishment	Y
	1,504,911	SX U1 Unit Transformer Replace	Component Replacement	Y
	993,353	SX Addtl ID Fan Hub 2B REPL	Component Replacement	Y
	911,149	SX Coal Handling PLC Upgrades	Component Upgrades	Y
	881,912	2 SX Wi Fi Expansion	Communication Upgrade	
	723,486	SIOUX NPDES PERMIT	Regulatory	Y
abadie	21,361,837	LBD U1 Dry Bottom Ash Conv	ELG/CCR	Y
	7,638,392	LBD U1 LOWER SLOPE REPL	Component Replacement	Y
	2,884,001	LBD U1 LP1 Turbine LSB Row Repl	Component Replacement	Y
	2,846,918	LBD U1 LP2 Turbine LSB Row Repl	Component Replacement	Y
	2,506,313	B LBD - U1 APH Hot Basket Repl	Component Replacement	Y
	2,189,091	LBD - 1A&D BCP Casing&Suct VIv Repl	Component Replacement	Y
	2,078,130	LBD U1 Coal Trans Pipe Repl	Component Replacement	Y
	1,802,387	LBD - U3 BCP Casing/Suction Valve R	Component Replacement	Y
		LBD3 Valve Component Replacement	Component Replacement	Y
	1,330,389	LBD U1 UPS & BATTERY REPL	Component Replacement	Y
	1,315,293	LBD U1 138KV ST CIR SW UPGR	Component Upgrades	Y
	1,284,737	LBD U2 STRT TRAN SWITC REPL	Component Replacement	Y
	1,233,333	LBD - 1B&C BCP Casing&Suct VIv Repl	Component Replacement	Y
	1,042,080	LBD - 1A & 1B APH Drive System REPL	Component Replacement	Y
	962,942	LBD - Repl Intake Structure Warming	Component Replacement	Y
		LBD U1 C-ESP WIRE REPL	Component Replacement	Y
	880,091	LBD U1 A&B FD InI Damp REPL	Component Replacement	Y
	808,509	LBD U1 XFMR Explosion Protection	GSU Transformer Upgrade (Safety)	Y
	696,431	LBD U4 UPS & BATTERY REPL	Component Replacement	Y
	683,651	LBD U1 Turb Foam Clean Sys Install	Component Upgrades	Y
	683,414	LBD - 1A HPBFP Casing Repl	Component Replacement	Y
		LBD - U1 Burner Assembly Repl	Component Replacement	Y
		2019 - LBD - REPL 3,680 track ft	Component Replacement	Y
Rush Island		RI-LB Critical Spare GSU	Critical Spare	Y
		RI CRC Water Pump Capital Spare Pa	Critical Spare	Y