Exhibit No.: Issues: Witness: Sponsoring Party: Type of Exhibit: Case No.: Date Testimony Prepared:

System Energy Losses Demand and Energy Jurisdictional Allocation Erin L. Maloney MO PSC Staff Direct Testimony ER-2006-0314 August 8, 2006

MISSOURI PUBLIC SERVICE COMMISSION

UTILITY OPERATIONS DIVISION

DIRECT TESTIMONY

OF

ERIN L. MALONEY

KANSAS CITY POWER & LIGHT COMPANY

CASE NO. ER-2006-0314

Jefferson City, Missouri August 2006

BEFORE THE PUBLIC SERVICE COMMISSION

OF THE STATE OF MISSOURI

In the Matter of the Application of Kansas) City Power & Light Company for) Approval to Make Certain Changes in its) Charges for Electric Service to Begin the) Implementation of Its Regulatory Plan)

Case No. ER-2006-0314

AFFIDAVIT OF ERIN L. MALONEY

STATE OF MISSOURI)) ss COUNTY OF COLE)

Erin L. Maloney, of lawful age, on her oath states: that she has participated in the preparation of the following Direct Testimony in question and answer form, consisting of $\underline{11}$ pages of Direct Testimony to be presented in the above case, that the answers in the following Direct Testimony were given by her; that she has knowledge of the matters set forth in such answers; and that such matters are true to the best of her knowledge and belief.

Erin L. Malonev

hiped and sworn to before me this day of August, 2006. osemane Notary Public My commission expires une

1	TABLE OF CONTENTS
2	
3	DIRECT TESTIMONY
4 5	OF
6	
7	ERIN L. MALONEY
8	
9 10	KANSAS CITY POWER & LIGHT COMPANY
10 11	CASE NO ER-2006-0314
12	
13	
14	EXECUTIVE SUMMARY
15	SYSTEM ENERGY LOSS FACTOR
16	JURISDICTIONAL ALLOCATION
17	DEMAND ALLOCATION FACTORS
18	ENERGY ALLOCATION FACTORS 10

1		DIRECT TESTIMONY
23		OF
4 5		ERIN L. MALONEY
6 7		KANSAS CITY POWER AND LIGHT COMPANY
8		CASE NO. ED 2006 0214
9 10		CASE NO. ER-2000-0514
11 12	Q.	Please state your name and business address.
13	А.	Erin L. Maloney, P.O. Box 360, Jefferson City, Missouri, 65102.
14	Q.	By whom are you employed and in what capacity?
15	A.	I am employed by the Missouri Public Service Commission (Commission) as
16	a Utility En	igineering Specialist II in the Energy Department of the Utility Operations
17	Division.	
18	Q.	Please describe your educational and work background.
19	A.	I graduated from the University of Nevada - Las Vegas with a Bachelor of
20	Science deg	ree in Mechanical Engineering in June 1992. From August 1995 through
21	November 2	002, I was employed by Electronic Data Systems of Kansas City, Missouri, as a
22	System Eng	ineer. In January 2005, I joined the Commission Staff (Staff) as a Utility
23	Engineering	Specialist I.
24	Q.	Have you previously filed testimony before the Commission?
25	A.	Yes. I filed testimony on reliability in Case No. ER-2005-0436 and I filed
26	testimony on	system losses and jurisdictional allocation in Case No. ER-2006-0315.
27	Q.	What is the purpose of this testimony?
28	A.	The purpose of this testimony is to present information and make
29	recommenda	tions on the following three issues:
		1

	Direct Testimony of Erin L. Maloney						
1	(1) System Energy Losses						
2	(2) Jurisdictional Demand Allocation						
3	(3) Jurisdictional Energy Allocation						
4	EXECUTIVE SUMMARY						
5	Q. Please summarize your analysis, results, and recommendations.						
6	A. (1) System Energy Losses						
7	I calculated the total company system energy losses to be 5.32% of the total electrical system						
8	inputs (i.e., Net System Input or NSI) for the test year using the methods described in this						
9	testimony. I then compared my results to the overall system loss calculated in Kansas City						
10	Power and Light Company's (KCP&L or Company) most recent loss study (5.34%). I						
11	reviewed and verified the Company's loss study and I recommend that Staff adopt the system						
12	and class load losses determined in that study.						
13	(2) & (3) Demand and Energy Jurisdictional Allocation						
14	I calculated the jurisdictional allocation factors for demand using a Four Coincident Peak (4						
15	CP) methodology. The calculated demand factors are as shown in the Table 1. Table 1 also						
16	shows the jurisdictional allocation factors for energy. The energy allocation factors were						
17	calculated after applying adjustments for large customer annualization, weather						
18	normalization, and customer growth.						
	Table 1 Demand and Energy Jurisdictional Allocation Factors						
	<u>Missouri Retail Kansas Retail Wholesale</u>						
	Demand .5346 .4573 .0082						

	Direct Testimony of Erin L. Maloney				
1		SYSTEM ENERGY LOSS FACTOR			
2	Q.	What is the result of your system energy loss factor calculation?			
3	Α.	As shown on Schedule 1, attached to this Direct Testimony, the calculated			
4	overall system	m energy loss factor is 0.0532 while the loss factor resulting from KCP&L's loss			
5	study was 0.0	0534. Staff is recommending that the Company's loss study results including the			
6	class load los	ss factors be adopted.			
7	Q.	What is the 'System Energy Loss Factor'?			
8	А.	The system energy loss factor is the ratio of system energy losses to Net			
9	System Input	t (NSI):			
10		System Energy Loss Factor = System Energy Losses ÷ NSI			
11	Q.	What are system energy losses?			
12	Α.	System energy losses largely consist of the energy losses that occur in the			
13	electrical eq	uipment (e.g., transmission and distribution lines, transformers, etc.) in the			
14	utility's syste	em between the generating sources and the customers' meters. In addition, small,			
15	fractional arr	nounts of energy either stolen (diversion) or not metered are included as system			
16	energy losses	3.			
17	Q.	Why is it important to determine system energy losses?			
18	А.	The utility must know how much energy is being lost in the system in order to			
19	plan enough	generation to meet forecasted peak load demands while compensating for losses.			
20	Q.	How are system losses determined?			
21	А.	The overall system losses are the difference between the metered inputs to the			
22	electrical sys	tem and the metered outputs to the electrical system. The inputs to the electrical			

system are the net generation, net interchange of energy, and any inadvertent flow and can be
 expressed mathematically as:

3		NSI = Net Generation + Net Interchange + Inadvertent Flows
4	The outputs	of the system, also known as NSI, are the energy sold, energy used by the
5	company, and	the system energy losses. This can be expressed mathematically as:
6		NSI = Total Sales + Company Use + System Energy Losses
7	Q.	How are 'Total Sales' and 'Company Use' output values determined?
8	A.	Total Sales includes all of the Company's retail and wholesale sales of energy.
9	Company Use	e is the electricity consumed at the Company's non-generation facilities, such as
10	its corporate	office building in Kansas City, Missouri. Total Sales data was provided by
11	KCP&L in re	esponse to Staff Data Request No. 182. Company Use data was provided by
12	KCP&L in re	sponse to Staff Data Request No. 183.
10	0	How are the inputs to the electrical system determined?
13	Q.	now are the inputs to the electrical system determined?
13 14	Q. A.	As noted earlier, the inputs to the Company's electrical system are the sum of
13 14 15	Q. A. KCP&L's net	As noted earlier, the inputs to the Company's electrical system are the sum of generation, net interchange, and any inadvertent flows. Net interchange is the
13 14 15 16	Q. A. KCP&L's net difference bet	As noted earlier, the inputs to the Company's electrical system are the sum of generation, net interchange, and any inadvertent flows. Net interchange is the tween interchange purchases and off-system sales. Net generation is the total
13 14 15 16 17	Q. A. KCP&L's net difference bet energy output	As noted earlier, the inputs to the Company's electrical system are the sum of a generation, net interchange, and any inadvertent flows. Net interchange is the tween interchange purchases and off-system sales. Net generation is the total t of each generating station minus the energy consumed internally to enable its
13 14 15 16 17 18	A. KCP&L's net difference bet energy output production.	As noted earlier, the inputs to the Company's electrical system are the sum of a generation, net interchange, and any inadvertent flows. Net interchange is the tween interchange purchases and off-system sales. Net generation is the total t of each generating station minus the energy consumed internally to enable its The output of each generating station is monitored continuously, as is the net of
13 14 15 16 17 18 19	A. KCP&L's net difference bet energy output production. T off-system pu	As noted earlier, the inputs to the Company's electrical system are the sum of a generation, net interchange, and any inadvertent flows. Net interchange is the tween interchange purchases and off-system sales. Net generation is the total t of each generating station minus the energy consumed internally to enable its The output of each generating station is monitored continuously, as is the net of urchases and sales. The information I used was obtained from data supplied by
13 14 15 16 17 18 19 20	A. KCP&L's net difference bet energy output production. T off-system pu KCP&L in r	As noted earlier, the inputs to the Company's electrical system are the sum of a generation, net interchange, and any inadvertent flows. Net interchange is the tween interchange purchases and off-system sales. Net generation is the total t of each generating station minus the energy consumed internally to enable its The output of each generating station is monitored continuously, as is the net of urchases and sales. The information I used was obtained from data supplied by esponse to Staff Data Request Nos. 184 and 74. The difference between
 13 14 15 16 17 18 19 20 21 	A. KCP&L's net difference bet energy output production. T off-system put KCP&L in r scheduled and	As noted earlier, the inputs to the Company's electrical system are the sum of generation, net interchange, and any inadvertent flows. Net interchange is the tween interchange purchases and off-system sales. Net generation is the total t of each generating station minus the energy consumed internally to enable its The output of each generating station is monitored continuously, as is the net of irchases and sales. The information I used was obtained from data supplied by esponse to Staff Data Request Nos. 184 and 74. The difference between d actual flows on a system is termed inadvertent interchange. This information

Q. Why are you recommending that the system and class load losses determined
 in the Company's loss study be used?

A. The study uses the same method to calculate the overall system losses as I did.
The study then goes on to determine losses at the transmission, substation, distribution
primary, and distribution secondary service levels using engineering methods and estimates.
I was able to verify the KCP&L control area as well as the electrical equipment which makes
up the KCP&L system used in the study. Next, I verified the soundness of the engineering
methods used to determine loss factors at the various service levels. These various service
levels ultimately define the various classes.

10 Q. Are there additional advantages to using the class load loss factors resulting11 from the Company's study?

A. Yes. Using class load losses is a more accurate depiction of the actual energy
losses occurring at the various voltage levels at the transmission, substation, and distribution
primary and secondary service levels (classes).

15

16

JURISDICTIONAL ALLOCATION

Q. Please define the phrase "jurisdictional allocation".

A. For purposes of this testimony, jurisdictional allocation refers to the process
by which demand-related and energy-related costs are allocated to the applicable
jurisdictions. In this case, demand-related and energy-related costs are divided among three
jurisdictions: Missouri retail operations, Kansas retail operations and Wholesale operations.
The particular allocation factor applied is dependent upon the types of costs being allocated.

	Direct Testim Erin L. Malor	nony of ney	
1		DEMAND ALLOCA	FION FACTORS
2	Q.	What are the demand allocation fa	ctors that you are recommending be used in
3	this case?		
4	A.	As shown on Schedule 2 attach	ed to this direct testimony, the calculated
5	demand alloc	eation factors for the test year are as	follows:
6		Missouri Retail	.5346
7		Kansas Retail	.4573
8		Wholesale	.0082
9	Q.	What is the definition of demand?	
10	A.	Demand refers to the rate at wh	ich electric energy is delivered to or by a
11	system, gene	erally expressed in kilowatts (kW)	or megawatts (MW), either at an instant in
12	time or avera	ged over a designated interval of tim	e that is typically one hour or less.
13	Q.	What types of costs are allocated of	n the basis of demand?
14	А.	Capital costs associated with ger	eration and transmission plant and certain
15	operational a	and maintenance expenses are alloc	ated on this basis. This is appropriate for
16	these expend	ditures because generation and	transmission are planned, designed and
17	constructed to	o meet anticipated demand.	
18	Q.	What methodology did the Staff us	se to determine the demand allocation?
19	А.	A methodology known as the fou	r coincident peak (4 CP) methodology was
20	used.		
21	Q.	What is meant by the four coincide	ent peak methodology?

Q.

1 A. The term coincident peak refers to the load of each jurisdiction that coincides 2 with the hour of the Company's overall system peak. A 4 CP methodology refers to utilizing 3 the recorded peaks in each of the four (4) peak summer months of the selected test year.

4

Why use peak demand as the basis for allocations?

5 A. Peak demand is the largest electric load requirement occurring on a utility's 6 system within a specified period of time (e.g., day, month, season, or year). Since generation 7 units and transmission lines are planned, designed, and constructed to meet a utility's 8 anticipated system peak demands plus required reserves, the contribution of each individual 9 jurisdiction to these peak demands is the appropriate basis on which to allocate the costs of 10 these facilities.

11

Q. Please describe the procedure for calculating the jurisdictional demand 12 allocation factors using the 4 CP methodology.

13 A. The allocation factor for each jurisdiction was determined using the following 14 process:

15 a) The peak hourly loads in the summer months of June, July, August, and 16

Q.

September of calendar year 2005 for each jurisdiction were identified and summed.

b) The total peak hourly loads for the summer months of June, July, August, and September of calendar year 2005 were summed for all jurisdictions.

19 c) The sum for the summer months calculated in (a) was divided by the total sum 20 calculated in (b) for each jurisdiction. This resulted in the allocation factor for each 21 jurisdiction. The sum of the demand allocation factors across all jurisdictions equals one.

22

17

18

How was the decision made to recommend using the 4 CP method?

A. The 4 CP methodology is appropriate for a utility, such as KCP&L, where the monthly peak demands during the non-summer months are significantly below the summer monthly peak demands. The lower demand in the non-summer months will have little or no influence on the capacity planning process and it would not be rational to consider all twelve monthly peaks in a jurisdictional allocation methodology when there are such significant statistical variations in the monthly seasonal peaks.

7

8

Q. Is there additional support for the position that a 4 CP methodology is appropriate in this case?

9 Yes. In various cases, the Federal Energy Regulatory Commission (FERC) A. 10 has, among other things, used a number of tests as a guide in its determination of an 11 appropriate demand methodology. These tests are arithmetical calculations whose results I 12 compared to specific ranges determined from prior FERC decisions which suggest which 13 methodology is more appropriate. Attached to this testimony as Schedule 3 is an excerpt 14 (Chapter 5) from a publication entitled "A Guide to FERC Regulation and Ratemaking of 15 Electric Utilities and Other Power Suppliers," Third Edition (1994), authored by Michael E. 16 Small. As this excerpt shows, FERC has used these tests to support its adoption of a 4 CP 17 methodology in a number of cases.

18 Q. Please describe the FERC tests you used in your selection of a CP19 methodology.

20

A. The following tests included in the aforementioned guidelines (attached as Schedule 3) were used.

22

21

<u>Test 1</u> - Computes the difference between the following two percentages:

1

2

3

4

a) The average of the monthly system peaks during the reported peak period as a percentage of the annual peak, and

b) The average of the system peaks during the remainder of the test period as a percentage of the annual peak.

For calculated differences that fell between 18% and 19%, the FERC typically adopted a 12
CP methodology. For differences that fell between 26% and 31%, the FERC typically
adopted a 4 CP methodology.

8 <u>Test 2</u> - The average of the twelve monthly peaks in the reporting period as a
9 percentage of the annual peak. When the resulting percentage fell between 81% and 88%, the
10 FERC typically adopted a 12 CP methodology. When the resulting percentage fell between
11 78% and 81%, the FERC typically adopted a 4 CP methodology.

<u>Test 3</u> - The lowest monthly peak as a percentage of the annual peak.

When the resulting percentage fell between 66% and 81%, the FERC typically adopted a 12
CP methodology. When the resulting percentage fell between 55% and 60%, the FERC
typically adopted a 4 CP methodology.

16

12

Q. Did you apply these FERC tests to the KCP&L data?

A. Yes. As illustrated on Schedule 4, the following percentages using the
demands recorded for the twelve-month period ending December 31, 2005 were calculated:

19 20

21

22

Test 1 - 28%

Test 2 - 76%

- Test 3 57%
- Q. Please discuss the significance of these results.

1	А.	The result of the first test (28%) falls within the above-indicated 26%-31%		
2	range of resul	ts that led to FERC decisions	adopting a 4 CP methodology. The result of the		
3	second test (7	6%) is well below the range	suggesting a 12 CP methodology (81%-88%) and		
4	just slightly	below the 78%-81% range	of results in FERC decisions adopting a 4 CP		
5	methodology.	The result of the third test ((57%) falls within the 55%-60% range for which		
6	the FERC iss	ued decisions adopting a 4 Cl	P methodology. These tests support the usage of		
7	the 4 CP meth	od.			
8	Q.	Which Staff witness used yo	ur jurisdictional demand allocation factors?		
9	А.	I provided these jurisdiction	al demand allocation factors to Staff witness Phil		
10	Williams.				
11	ENERGY ALLOCATION FACTORS				
12	Q.	What energy allocation facto	rs are you recommending be used in this case?		
13	А.	The factors are shown in Sch	edule 5 and repeated here.		
14		Missouri Retail	0.5668		
15		Kansas Retail	0.4243		
16		Wholesale	0.0089		
17	Q.	What types of costs were allo	ocated on the basis of energy?		
18	А.	Variable expenses, such as	fuel and certain operational and maintenance		
19	(O&M) costs,	are allocated to the jurisdictic	ons based on energy consumption.		
20	Q.	How did you calculate the en	ergy allocation factors?		
21	А.	The energy allocation factor	for an individual jurisdiction is the ratio of the		
22	adjusted annu	al kilowatt-hour (kWh) usage	in the particular jurisdiction to the total adjusted		

kWh usage in all jurisdictions. The sum of the energy allocation factors across jurisdictions
 equals one.

Ζ	equais one.	
3	Q.	What adjustments were made to these kWhs?
4	A.	The Staff made the following adjustments to be consistent with the net system
5	hourly loads	used in determining normalized fuel costs:
6		a. Normalization Adjustment
7		b. Annualization Adjustment
8		c. Customer Growth Adjustment
9		d. Wholesale Weather Adjustment
10	Q.	Did you calculate these adjustments?
11	A.	No. Staff witness Shawn E. Lange supplied adjustments a., b., and d. Please
12	refer to Mr. I	Lange's testimony for a summary of these adjustments. Staff witness Kim Bolin
13	provided the	customer growth adjustment. Please see Ms. Bolin's testimony for a further
14	explanation of	f this adjustment. These were the same adjustments used in calculating current
15	revenues and	the hourly loads input into the fuel and purchased power production cost run.
16	Q.	Which Staff witness used your jurisdictional energy allocation factors?
17	A.	I provided these jurisdictional energy allocation factors to Staff witness Phil
18	Williams.	
19	Q.	Does this conclude your prepared Direct Testimony?
20	A.	Yes, it does.

Schedule 1

Calculation of System Losses in MWh

NSI = Total Sales + Company Use + System Losses NSI = Net Generation + Net Interchange + Inadvertent Flows Total Sales + Company Use + System Losses = Net Generation + Net Interchange + Inadvertent Flows

Solving for System Losses:

System Losses = Net Generation + Net Interchange + Inadvertent Flows - Total Sales - Company Use

	Net Generation	Net Interchange (Off System Purchases - Off System Sales)	Inadvertent Flows	Total Sales to Ultimate Consumers	Company Use	Calculated System Losses	System Loss Factor = System Losses/NSI*
0		Ferc Form 1 and Reported 2190 Data	DR # 189	DR # 182	DR # 183		
Source:	19,613,154.00	-3,683,286.00	251.19	15,061,052.0	0 23,611.00	845,456.19	5.322%

* NSI data source is DR # 30

KCP&L 2005	Jurisdiction	al Demand Alloc	ation Factors
4CP Totals			
MO Retail	7100.9	0.5346	
KS Retail	6073.9	0.4573	
Wholesale	108.3	0.0082	
LOAD	13283.1		

A GUIDE TO FERC REGULATION AND RATEMAKING OF ELECTRIC UTILITIES AND OTHER POWER SUPPLIERS

Third Edition

4 **7** - 1 2 - 1

Michael E. Small

Edison Electric Institute WASHINGTON, DC

SCHEDULE 3-1

Chapter Five—Functionalization, Classification, and Allocation

In allocating costs to a particular class of customers, there are three major steps (if all cost of service issues have been resolved): (1) functionalization, (2) classification, and (3) allocation. FERC has indicated that a guiding principle for this step is that the allocation must reflect cost causation. See, e.g., Kennucky Unities Co., Opinion No. 116-A, 15 FERC [61,222, p. 61,504 (1983); Utah Power & Light Co., Opinion No. 113, 14 FERC [61,162, p. 61,298 (1981).¹³³

A. Functionalization

Generally, plant or expense items are first functionalized into five major caregories: (1) Production;

- (2) Transmission;
- (3) Distribution:
- (4) General and Intangible; and
- (5) Common and Other.

See 18 C.F.R. §35.13(h)(4)(iii) (plant); 18 C.F.R. §35.13(h)(8)(i) (O&M expenses). Each plant or expense item will be segregated into the category with which it is most closely related.

While functionalization for most items is relatively straightforward, and not usually lingated, problems do arise with respect to the functionalization of administrative and general expenses (A&G)¹³⁴ and general plant expenses.¹³⁵ FERC stated that:

> The Commission normally requires that A&G and General Plant expenses be allocated on the basis of total company labor ranos. Under such allocation method, A&G and General Plant expense items are 'functionalized,' or segregated into...

134 A&G expenses include splanes of officers, executives, and office employees, employees benefits, insurance, etc.

135 General plane includes office furniture and equipment, transportation vehicles, lockers, wools, lab equipments, etc.

SCHEDULE 3-2

Where a company has significant non-jurndictional business, the above cost incurrence principle is important in keeping FERC within its jurisdictional constraints. See Rashaudic Eastern Pipe Line Co. v. FPC, 324 U.S. 635, 641-42 (1945) ("the Commission must make a separation of the regulated and unregulated business...Otherwise the profits or losses...of the unregulated business would be sangued to the regulated business and the Commission would transgress the jurisdictional lines which Congress wrote into the Act").

Co., 21 FERC ¶63,003, p. 65,037 (1982), aff²d, 22 FERC ¶61,262 (1983); Minnesota Power & Light Co., Opinion No. 86, 11 FERC ¶61,312, pp. 61,648-49 (1980).¹³⁶

In addition to FERC's adoption of Staff's predominance method, FERC also has adopted Staff's classification index of production O&M accounts. Arizona Public Service Co., 4 FERC at 61,209-10; Kansás City Power & Light, 21 FERC at 65,037; Minnesota Power & Light Co., 11 FERC at 61,648-49. In Montaup Electric Co., Opinion No. 267, 38 FERC at 61,864, FERC rejected a proposed rate tilt, finding that the "proposal is inconsistent with the classification table of predominant characteristics for operation and maintenance accounts used by Staff, which has been approved by the Commission." In Southern Company Services, Opinion No. 377, 61 FERC ¶61,075, p. 61,311 (1992), reh. denied, 64 FERC ¶61,033 (1993), FERC, however, stated that the Staff index is not mandatory. FERC accepted a departure from the Staff's index, though it held that a party proposing a departure has the burden of justifying that departure.

C. Allocation

After classifying costs to demand, energy, and customer categories, the next step is to allocate these costs to the various classes to determine their respective cost responsibilities. In the past, the most hotly litigated allocation usue involved demand cost allocation. Typically, FERC has allocated demand costs on a coincident peak (CP) method. Houlton v. Maine Public Service Ca., 62 FERC ¶63,023, p. 65,092 (1992) ("Maine Public has cited a legion of Commission decisions affirming the use of a coincident peak demand allocator.... And, it denies knowledge of 'any decision, involving an electric utility since the FERC came into existence in 1977, where FERC did not follow a coincident peak method of allocating demand costs' "). In Lockhan Power Ca., 4 FERC ¶61,337, p. 61,807 (1978), FERC stated that its "general policy is to allocate demand costs on the basis of peak responsibility as is demonstrated by the overwhelming majority of decided cases." See also Houlton v. Maine Public Service Ca., 62 FERC at 65,092. Under a CP method, the demands used in the allocation are the demands of a particular customer or class occurring at the time of the system peak for a particular time period. The basic assumption behind this method is that capacity costs are incurred to serve the peak needs of customers.

1. Coincident Peak Allocation

In most cases, FERC has accepted one of four CP methods—1 CP, 3 CP, 4 CP, and 12 CP, with the largest number of companies using a 12 CP allocation. Under a 1 CP method, the allocator for a particular wholesale class will be developed by dividing the wholesale class's CP for the peak month by the total company system peak. Similarly, for 3, 4, and 12

SCHEDULE 3-3

¹³⁶ If a company is able to justify a percentage split, such at 70-30, in an account, then FERC may accept that split. However, in light of FERC proceedest on this subject, any party proposing a deviation from the predominance method likely will have the burden of justifying its proposed split.

Allocation

- (2) Lowisiana Power & Light Co., Opinion No. 110,
 14 FERC ¶61.075 (1981)
 (26% difference—4 CP);
- (3) Lockhart Power Ca.,
 Opinion No. 29,
 4 FERC §61,337 (1978)
 (18% difference-12 CP);
- (4) Illinois Power Co., 11 FERC at 65,248, (19% difference-12 CP);
- (5) Commonwealth Edison Co.,
 15 FERC at 65,196
 (16.4-24.9% differences-4 CP);
- (6) Southwestern Public Service Co.,
 18 FERC at 65,034
 (average difference of 22.9%; high of 28.3%-3 CP).

FERC also has used a second test involving the lowest monthly peak as a percentage of the annual peak. The higher the percentage, the greater the support for 12 CP. This test has been used in the following cases:

- Louisiana Power & Light Co., Opinion No. 813,
 59 FPC 968 (1977) (56%-4 CP);
- (2) Idaho Power Co.,
 Opinion No. 13,
 3 FERC ¶61,108 (1978) (58%—3 CP);
- (3) Southwestern Electric Power Ca., Opinion No. 28,
 4 FERC §61,330 (1978)
 (55.8%-4 CP);
- (4) Lockhart Power Co., Opinion No. 29,
 4 FERC ¶61,337 (1978) (73%-12 CP);

Allocation

(14) Delmarua Pourer & Light Ca. 17 FERC at 65,201 (71.4%-12 CP).

Another test that has been utilized by FERC is the extent to which peak demands in non-peak months exceed the peak demands in the alleged peak months. In *Caroline Power &* Light Ca., Opinion No. 19, 4 FERC at 61,230, FERC adopted a 12 CP approach where the monthly peaks in three nonpeak months exceeded the peaks in two of the alleged peak months. In *Commonwealth Edison Ca.*, 15 FERC at 65,198, FERC adopted a 4 CP method where over a four year period, a peak in one of the 4 peak months was exceeded only once by a peak from a non-peak month. See also Southwestern Public Service Ca., 18 FERC at 65,034 (monthly peak in any non-peaking month exceeded the monthly peak in peak month only once and 3 CP adopted).

A last test involves the average of the rwelve monthly peaks as a percentage of the highest monthly peak and has been used in the following cases:

- (1) Illinois Power Co.,
 11 FERC at 65,248-49 (81%-12 CP);
- (2) El Paso Eleme Co.
 Opinion No. 109,
 14 FERC ¶61,082 (1981)
 (84%-12 CP);
- (3) Lockhart Power Ca., Opinion No. 29,
 4 FERC 961,337 (1978) (84%—12 CP);
- (4) Southern California Edison Co., Opinion No. 821,
 59 FPC 2167 (1977) (87.8%-12 CP);
- (5) Louisiana Power & Light Ca., Opinion No. 110, 14 FERC ¶61,075 (1981)
 (81.2%-4 CP);
- (6) Commonwealth Edison Ca.,
 15 FERC at 65,198
 (79.4–79.5%-4 CP);

SCHEDULE 3-5 109

used in developing the estimate and not just one year. See, e.g., Otter Tail Power Ca., Opinion No. 93, 12 FERC ¶61,169, p. 61,429 (1980); Commonwealth Edison Co., 15 FERC at 65,190, aff'd, Opinion No. 165, 23 FERC ¶61,219 (1983) (3 year average adopted); Southern California Edison Co., Opinion No. 359-A, 54 FERC at 62,020 (accepted system peak demand and energy sales forecasts based on 1967-1981 data and 1981 coincidence factors). In other cases, FERC, however, has adopted CP projections based on the use of one year's data. See, e.g., Caroling Power & Light Ca., Opinion No. 19, 4 FERC at 61,229-30.

Second, FERC has expressed concern that the numerator and the denominator be developed on similar bases. In Otter Tail Power Co., Opinion No. 93, 12 FERC at 61,429, FERC modified a demand allocator to provide for the use of the same number of years data in the derivation of both the numerator and the denominator.

Finally, FERC has held that billing demands should be consistent with the demands used in the demand allocator. See El Paso Electric Co., Opinion No. 109, 14 FERC ¶61,082, p. 61,147 (1981).

SCHEDULE 3-6

111

FERC Tests to Determine Appropriate Allocation Methodology

HERC Lesi #1	This test calculates the difference in the following two averages: Average of monthly system peaks during peak period (June - August) as percentage of annual peak and,	3320.8	0.945497	28.05%	Results suggest 40P methodology*
	Average of system peaks during the remainder of the test period as a percentage of the annual peak	2335.6	0.664993		
FERC lest # 2	A constant of the standard management of the standard states in the				
	reporting period as a percentage of the annual peak.	2663.983		75.85%	Results suggest 4CP methodology**
FERC Test #8					
	This test looks at the lowest monthly peak as a percentage of the annual peak:	0.570355		57.04%	Results suggest 4CP methodology***

* For the calculated differences that fell between 18% and 19%, te FERC typically adopted a 12 CP methodology. For differences that fell between 26% and 31%, the FERC typically adopted a 4 CP methodology.

**When the percentage falls between 81% and 88%, the FERC typically adopted a 12 CP mehtodology. When the resulting percentage fell between 78% and 81%, the FERC typically adopted a 4CP methodology.

***When the percentage falls between 66% and 81%, the FERC typically adopts a 12 CP mehtodology. When the percentage falls between 55% and 60%, the FERC typically adopts a 4CP methodology.

Energy Allocation

KANSAS CITY POWER & LIGHT COMPONENTS OF ANNUAL NET SYSTEM INPUT ER-2006-0314

						Anooution
						Factors
	Energy (kwh) w/losses	Large Customer Annualizations	Normalization for Weather	Additional kWh from Cust Growth	Total KCP&L Normalized kWh	
Mo Retail	9.048.186.068	35,091,217	-106,330,915	28,648,206	9,005,594,576	0.5668
Non-Mo Retail	6.741.261.990	4,187,176	-108,604,842	105,733,693	6,742,578,016	0.4243
Wholesale	143.054.274	-	-1,534,262	-	141,520,012	0.0089
Company Use	24,871,625	-	•	-	24,871,625	
NSI	15,957,373,958	39,278,393	-216,470,019	134,381,898	15,914,564,230	1