Exhibit No: Issues: Steam Plant Life Span Witness: Larry W. Loos Exhibit Type: Direct Testimony Sponsoring Party: Union Electric Company Case No: ER-2010-___ Date: July 24, 2009

MISSOURI PUBLIC SERVICE COMMISSION

CASE NO. ER-2010-____

DIRECT TESTIMONY

OF

LARRY W. LOOS, P.E.

ON BEHALF OF

UNION ELECTRIC COMPANY d/b/a AmerenUE

St. Louis, Missouri July, 2009

TABLE OF CONTENTS

	Page
I.	QUALIFICATIONS
II.	INTRODUCTION
III.	AMERENUE'S EXISTING COAL-FIRED FLEET9
IV.	PLANT CONDITION
V.	HISTORICAL RETIREMENTS 10
VI.	CAPITAL EXPENDITURES 11
VII.	OTHER UTILITIES
VIII.	CAPACITY REPLACEMENT
IX.	ESTIMATED RETIREMENT DATES 14

1		DIRECT TESTIMONY
2		OF
3		LARRY W. LOOS, P.E.
4		CASE NO. ER-2010
		I. QUALIFICATIONS
5	Q.	PLEASE STATE YOUR NAME AND BUSINESS ADDRESS.
6	Α.	Larry W. Loos, 11401 Lamar, Overland Park, KS 66211.
7	Q.	WHAT IS YOUR OCCUPATION?
8	Α.	I am an engineer and consultant employed by Black & Veatch Corporation (Black &
9		Veatch). I currently serve as a Director in Black & Veatch's Enterprise Management
10		Solutions Division.
11	Q.	HOW LONG HAVE YOU BEEN WITH BLACK & VEATCH?
12	A.	Black & Veatch has employed me continuously since 1971.
13	Q.	WHAT IS YOUR EDUCATIONAL BACKGROUND?
14	Α.	I am a graduate of the University of Missouri at Columbia, with a Bachelor of Science
15		Degree in Mechanical Engineering and a Masters Degree in Business Administration.

1 **Q.** ARE

ARE YOU A REGISTERED PROFESSIONAL ENGINEER?

- A. Yes, I am a registered Professional Engineer in the state of Missouri, as well as the states
 of Iowa, Colorado, Indiana, Kansas, Louisiana, Nebraska, and Utah.
- 4

Q. TO WHAT PROFESSIONAL ORGANIZATIONS DO YOU BELONG?

A. I am a member of the American Society of Mechanical Engineers, the National Society
of Professional Engineers, the Missouri Society of Professional Engineers, and the
Society of Depreciation Professionals.

8 Q. WHAT IS YOUR PROFESSIONAL EXPERIENCE?

9 A. I have been responsible for numerous engagements involving electric, gas, and other
10 utility services. Clients served include both investor-owned and publicly owned utilities,
11 customers of such utilities, and regulatory agencies. During the course of these
12 engagements, I have been responsible for the preparation and presentation of studies
13 involving valuation, depreciation, cost classification, cost allocation, cost of service,
14 allocation, rate design, pricing, financial feasibility, weather normalization, normal
15 degree-days, cost of capital, and other engineering, economic and management matters.

16

Q.

PLEASE DESCRIBE BLACK & VEATCH.

A. Black & Veatch has provided comprehensive construction, engineering, consulting, and
 management services to utility, industrial, and governmental clients since 1915. We
 specialize in engineering and construction associated with utility services including
 electric, gas, water, wastewater, telecommunications, and waste disposal. Service
 engagements consist principally of investigations and reports, design and construction,
 feasibility analyses, cost studies, rate and financial reports, valuation and depreciation

studies, reports on operations, management studies, and general consulting services.
 Present engagements include work throughout the United States and numerous foreign
 countries. Including professionals assigned to affiliated companies, Black & Veatch
 currently employs approximately 10,000 people.

5

Q.

HAVE YOU PREVIOUSLY APPEARED AS AN EXPERT WITNESS?

6 Α. Yes, I have. I have presented expert witness testimony before this Commission on 7 several occasions. I have also testified before the Federal Energy Regulatory 8 Commission ("FERC") and regulatory bodies in the states of Colorado, Illinois, Indiana, 9 Iowa, Kansas, Minnesota, New Mexico, New York, Pennsylvania, North Carolina, South 10 Carolina, Texas, Utah, and Vermont. I have also presented expert witness testimony 11 before District Courts in Colorado, Iowa, Kansas, Missouri, and Nebraska; and before 12 Courts of Condemnation in Iowa and Nebraska. I have also served as a special advisor to 13 the Connecticut Department of Public Utility Control.

II. INTRODUCTION

14 Q. FOR WHOM ARE YOU TESTIFYING IN THIS MATTER?

A. I am testifying on behalf of Union Electric Company d/b/a AmerenUE ("AmerenUE" or
"Company").

17 Q. WHAT IS THE PURPOSE OF YOUR DIRECT TESTIMONY?

A. AmerenUE asked Black & Veatch to develop informed estimates of retirement dates (life
 span) of its four coal-fired steam-generating stations located in the St. Louis area. The
 resulting study and report were prepared under my supervision and direction. The
 purpose of my prefiled testimony in this case is to sponsor the informed estimates of

retirement dates set forth in the Black & Veatch report dated July 2009 and titled "Report
on Life Expectancy of Coal Fired Power Plants." I have attached a copy of this report to
my prefiled testimony as Schedule LWL-E1. I understand that AmerenUE witness John
Wiedmayer relies on the life spans resulting from my estimated retirement dates in
developing his recommended depreciation rates.

6 Q. WHY DID THE COMPANY REQUEST THAT BLACK & VEATCH PREPARE 7 THE INFORMED ESTIMATES SET FORTH IN THE REPORT YOU ATTACH 8 AS SCHEDULE LWL-E1?

9 Α. The Company informed me that in response to the Commission's Report and Order 10 issued May 22, 2007, in Case No. ER-2007-0002, the Company desires to develop 11 informed estimates of the dates for the anticipated retirement of its coal-fired generation 12 stations. In Case No. ER-2007-0002, the Company proposed depreciation rates based on 13 a life span method of calculating depreciation rates for its steam and hydroelectric 14 production plants. Initially the Company relied on a 2026 retirement date for all four of 15 its steam generating plants. Subsequently, the Company revised its proposal to reflect the 16 retirement of its steam plants when they reach an age of approximately 60 years.

- 17 With regard to the Company's proposal, the Commission noted that:
- Obviously, at some point, all of AmerenUE's electric production plants
 will be retired. But at this time, there is really no way to be sure when that
 retirement will occur...Without better evidence of when those plants are
 likely to be retired, allowing the company to increase its depreciation
 expenses based on what is little more than speculation about possible
 retirement dates would be inappropriate.
- 25 retirement dates, which reflect consideration of information available at this time.

6

1Q.WHAT INFORMATION DID YOU CONSIDER IN DEVELOPING YOUR2ESTIMATED RETIREMENT DATES?

- A. As more fully discussed in Schedule LWL-E1, the retirement dates that I estimate are
 based on consideration of:
- 5 1) AmerenUE's actual historical interim and final retirement experience,
- 6 2) AmerenUE's planned capital expenditures and the implication of capital
 7 projects on plant remaining life,
- 8 3) Age at retirement of coal-fired plants actually retired in the United States,
- 9 4) Publicly available information regarding the age of coal-fired plants currently in
 10 service in the United States,
- 11 5) Publicly available information regarding the life span of coal-fired plants which
 12 underlie depreciation expense rates used by utilities in 26 western states,
- 13 6) Publicly available information regarding the retirement dates of coal-fired plants
 14 that are used to prepare integrated resource plans in 26 western states,
- 15 7) General engineering considerations relating to design life and factors leading to
 16 the failure of major plant components and ultimately to the retirement of coal17 fired generating stations,
- 18 8) Implications of existing and contemplated environmental requirements on coal19 fired generating plants in general, and on AmerenUE plants specifically,
- 20 9) An assessment of the existing condition of AmerenUE's plants,
- 21 10) Allowance for a reasonable period over which to recover capital costs incident
 22 to the addition of scrubbers at the Labadie and Rush Island Plants, in the event
 23 the Company is required to add scrubbers at these plants,

7

1	11)	The retirement of the Company's Meramec Plant in 2022 as discussed in the
2		Company's Integrated Resource Plan ("IRP") and Environmental Compliance
3		Plan ("ECP"), and

4 12) The practical consideration of the need for the orderly replacement of capacity
5 when large blocks of base-load capacity are retired.

6 Q. BASED ON CONSIDERATION OF THESE FACTORS, WHAT CONCLUSIONS 7 DO YOU REACH?

A. As more fully discussed in Schedule LWL-E1, I estimate that based on consideration of
the above factors, the Company will retire its existing coal-fired plants during the 24-year
period beginning in 2022 and ending in 2046. At retirement, the plants' age will range
from 67 to 73 years. The age of the individual generating units will range from 62 to 73
years at retirement.

13 The above dates include adjustment to accommodate the orderly replacement of 14 capacity retired. Specifically, I extended the estimated retirement dates of Labadie 15 Units 1 and 2 by 2 years and Rush Island Units 1 and 2 by 4 years.

16 Q. HOW DO YOU ORGANIZE THE BALANCE OF YOUR TESTIMONY?

17 A. Following this introduction, I have organized my testimony into the following sections:

- 18 1) Description of AmerenUE's existing coal-fired fleet
- 19 2) General condition of AmerenUE's plants
- 20 3) Historical retirements
- 21 4) Implications of and need for capital expenditures
- 22 5) Life span used by other utilities

- 1 6) Implication of need to replace retired capacity
 - 7) Final estimated retirement dates

2

III. AMERENUE'S EXISTING COAL-FIRED FLEET

3 Q. WHAT AMERENUE PLANTS DID YOU CONSIDER IN YOUR STUDIES?

A. The plants I studied comprise AmerenUE's Missouri regulated coal-fired fleet. These
plants include the Meramec, Sioux, Labadie, and Rush Island Stations. The combined
installed capacity of these four plants is nominally 5,650 MW, with commercial operation
dates ranging from 1953 through 1977. The primary fuel used by these plants is low
sulfur coal shipped by rail from the Powder River Basin in Wyoming.

9 In Table 2.1 of Schedule LWL-E1, I show unit operating characteristics of these four 10 plants. As I show, with the exception of Labadie, each plant has a total nameplate 11 capacity of about 1,000 MW (923 to 1,242 MW). The Meramec Plant consists of four 12 relatively small units (137.5 to 359 MW), whereas the Sioux and Rush Island plants each 13 consist of two relatively large units (549.7 to 621 MW). The Labadie Plant on the other 14 hand consists of four relatively large units (573.7 to 621 MW). The larger units have a 15 full load heat rate ranging from about 9,100 to 9,715 BTU per kWh. For the smaller units 16 the heat rates range from about 10,750 to 12,450 BTU per kWh.

IV. PLANT CONDITION

17 Q. HOW DID YOU ASSESS THE CONDITION OF AMERENUE'S PLANTS?

A. To assess the condition of AmerenUE's plants, in April 2009, Black and Veatch
engineers visited each of the plants. During these plant visits, we conducted a walk down
of each unit to observe the condition of the structures, systems, and equipment, and met

with and interviewed plant personnel regarding capital improvements, maintenance and operating procedures. In addition, we requested of plant and corporate engineering personnel certain technical data, which we subsequently reviewed and evaluated. Based on our review and assessment, we conclude that the current condition of AmerenUE's plants is good. Based on these assessments, with continued maintenance and capital expenditures, we believe that economic factors, not physical limitations, will likely drive retirement decisions.

V. HISTORICAL RETIREMENTS

8 Q. HOW DID YOU REFLECT AMERENUE'S RETIREMENT HISTORY IN YOUR 9 DETERMINATION OF RETIREMENT DATES?

10 Α. I reflected consideration of AmerenUE's actual retirement history in my determination of 11 the probable life for each unit. In this regard, through the Company, I asked 12 Mr. Wiedmayer to provide me with the Iowa Curve and average service life for each 13 steam production account based on AmerenUE's complete retirement (interim and final) 14 history. With the mortality distribution, average service life, and age of each unit, I 15 determined the probable life, probable remaining life, and resulting retirement date of 16 each unit. I developed the probable life for each unit based on the probable life of the 17 investment reported in each account weighted by the outstanding balance at 18 December 31, 2008. I developed the probable life for each plant based on the capacity 19 weighted probable life of the units in service.

20 In Table 3-1 of Schedule LWL-E1, I show the mortality distributions and average 21 service lives that Mr. Wiedmayer provided me. I also show the probable life by account

10

and unit based on that mortality distribution, average service life, and age. Based solely
on consideration of the existing age of the individual units, and the Company's actual
retirement history, I find the probable life of the four plants to range from 54 to 62 years
with resulting retirement dates ranging from the year 2020 to 2030.

VI. CAPITAL EXPENDITURES

5 Q. WHAT ARE THE IMPLICATIONS OF CAPITAL EXPENDITURES ON PLANT 6 LIFE?

A. Capital expenditures and continuing maintenance are integral to the continued operation
of a power plant and are routine in the industry. Without ongoing capital expenditures, a
plant will become increasingly less reliable and ultimately cannot operate. In addition,
especially for coal-fired plants, major capital expenditures for environmental compliance
are expected to occur perhaps more than once over the life of a particular plant. These
environmental projects are beyond the routine capital expenditures required for reliable
plant operation.

AmerenUE's planned capital expenditures include the completion of scrubbers at the Sioux Plant. However, as set forth in the Company's current ECP, the Company plans to add additional scrubbers only if later required to do so at the Labadie and Rush Island Plants.¹ The addition of scrubbers (<u>if</u> later required) at the Labadie and Rush Island plants would represent extraordinary capital outlays. I believe that the magnitude of these outlays will require an adequate period over which to recover such expenditures. As a result, I include allowance for a reasonable timeframe for AmerenUE to recover its

¹ The Company currently does not contemplate the addition of scrubbers at its Meramec plant.

investment in these extraordinary environmental projects. Based on the magnitude of the
 cost of adding scrubbers, I believe that realistically, recovery over nominally 20 years is
 reasonable. I therefore reflect consideration of the implications if the Company is
 required to add scrubbers by adjusting the remaining life indicated by my retirement
 analysis to not less than 20 years at the time of possible installation² of the environmental
 projects. My estimated final retirement dates allow a minimum 20 year recovery period
 for major environmental projects.

8 In Table 3-3 of Schedule LWL-E1, I show how I explicitly consider the recovery of
9 these extraordinary capital expenditures in my estimated retirement dates.

VII. OTHER UTILITIES

10 Q. HOW DID YOU EVALUATE THE LIFE SPANS USED BY OTHER UTILITIES?

A. I consider the life spans used by other utilities as a benchmark or test of the
 reasonableness of my informed estimated plant lives. In researching publically available
 depreciation studies and IRP filings in 26 states, I found the average age at retirement
 used by other utilities for coal-fired power plants is 55 years. The median age is 56
 years.

16 The life spans used by other utilities in depreciation studies and IRPs exceed the 17 average and median age at retirement of coal-fired power plants that have been retired in 18 the U.S. In researching Velocity Suite³ data, I found that the average and median age of 19 all retired coal-fired power plants in the U.S. is 44 years.

² For the Labadie and Rush Island Plants, I relied on the Company's Environmental Compliance Plan (base case) for the timing of these capital additions, if the Company is required to add scrubbers.

³ The Ventyx Velocity Suite Database (EV Power) is a comprehensive database of North

1 Given the 55-year life span used by other utilities and the 44-year life span actually 2 experienced, I believe that the plant lives I estimate for AmerenUE are reasonable and 3 conservative.

VIII. CAPACITY REPLACEMENT

4 Q. HOW DID YOU EVALUATE WHETHER YOUR INDICATED RETIREMENT 5 DATES WILL PERMIT THE ORDERLY REPLACEMENT OF RETIRED 6 CAPACITY?

A. I factored into my final retirement date estimates consideration of the replacement
capacity that AmerenUE will need as it retires its plants. I developed a timeline using a
90-month planning and construction schedule and a staged approach for replacing
capacity where minimal concurrent construction of two plants occurs. To accommodate
this construction timeline, I extend the estimated final retirement date of Labadie Units 1
and 2 by two years and Rush Island by four years.

My estimated retirement dates are based on the assumption that AmerenUE will do whatever is necessary to continue to operate the Labadie and Rush Island plants beyond their estimated final retirement so as to have available adequate system capacity to provide safe and reliable electric service to its native customer base. This extended operation may be as a standby, peaking, or something other than as a base load resource.

American power markets. Included in EV Power is information regarding the ownership, operating costs, in-service date, capacity, and a wealth of other information regarding individual generating stations (units) in North America. Velocity Suite is available to subscribers on-line and is a product offered by Ventyx, a company that employs about 1,200 people.

IX. ESTIMATED RETIREMENT DATES

1 Q. WHAT RETIREMENT DATES DO YOU ESTIMATE?

A. As I show in Table 3-5 of Schedule LWL-E1, I estimate the following final retirement
dates:

4	Meramec	2022
5	Sioux	2033
6	Labadie - Units 3 and 4	2038
7	Labadie - Units 1 and 2	2042
8	Rush Island	2046

My final retirement date estimates consider AmerenUE's specific retirement history,
AmerenUE's planned capital improvements, industry accepted life span forecasts for
comparable facilities, the retirement experience of plants throughout the U.S., a viable
plan for timely replacement of AmerenUE's retired capacity, and AmerenUE's retirement
of its Meramec Plant in 2022 as discussed in the Company's IRP and ECP. **Q. DOES THIS CONCLUDE YOUR PREPARED DIRECT TESTIMONY?**

15 A. Yes, it does.

BEFORE THE PUBLIC SERVICE COMMISSION OF THE STATE OF MISSOURI

In the Matter of Union Electric Company d/b/a AmerenUE for Authority to File Tariffs Increasing Rates for Electric Service Provided to Customers in the Company's Missouri Service Area.

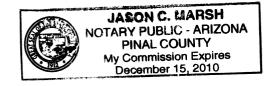
Case No. ER-2010-

AFFIDAVIT OF LARRY W. LOOS

STATE OF ARIZONA)) ss COUNTY OF PINAL)

Larry W. Loos, being first duly sworn on his oath, states:

- 1. My name is Larry W, Loos, my office is located in Overland Park, Kansas.
- 2. I am a Director in the Enterprise Management Services Division of Black & Veatch Corporation.
- 3. Attached hereto and made a part hereof for all purposes is my Direct Testimony on behalf of Union Electric Company d/b/a AmerenUE consisting of 14 pages and Schedule LWL-E1 all of which were prepared in written form for introduction into evidence in the above-referenced docket.
- 4. I hereby swear and affirm that my answers contained in the attached testimony to the questions therein propounded are true and correct.


Larry Whooz

Larry W. Loos

Subscribed and sworn to before me this 16th day of July 2009.

Notary Public

My Commission expires: 17/15/2

BUILDING A WORLD OF DIFFERENCE®

AmerenUE

Report on Life Expectancy of Coal-Fired Power Plants

July 2009

1.0	EXECUTIVE SUMMARY	1-1
1.1	Overview of Study	1-1
1.2	2 Findings and Conclusions	1-1
2.0	INTRODUCTION AND QUALIFICATIONS	2-1
2.1	Purpose	2-1
2.2	2 Scope	2-1
2.3	Subject Plants	2-1
2.5		
3.0	DEPRECIATION CONSIDERATIONS	3-1
3.1		3-1
3.2	2 Interim and Final Retirements – Actuarial Analysis	3-1
3.3	Capital Projects	3-2
	3.3.1 Environmental Projects	
3.4		
3.5	I I I I I I I I I I I I I I I I I I I	
4.0	PLANT LIFE SURVEYS	
4.1		
	4.1.1 Depreciation Rates and Forecasted Retirement Dates	
	4.1.2 IRP	
	4.1.3 Survey Findings and Conclusions	
4.2		
4.3		4-3
5.0	ENGINEERING CONSIDERATIONS	
5.1	6	
	5.1.1 Steam Turbines	
	5.1.2 Boilers	
5.2	I B B B B B B B B B B B B B B B B B B B	
	5.2.1 Turbines	
_	5.2.2 Boiler	
6.0	ENVIRONMENTAL CONSIDERATIONS	
6.1		
6.2		
6.3		
6.4		
6.5		
6.6		
	6.6.1 Federal Regulation	
	6.6.2 Other Regulation	
	6.6.3 Potential Impact to Coal-Fired Power Generation Facilities	
6.7		
6.8	1	
6.9		
7.0	PLANT VISIT CONSIDERATIONS	/-1

APPENDIX A POWER PLANT LIFE DATA	A-1
Appendix A-1 Age at Planned Retirement	A2
Appendix A-2 Age at Retirement	A5
Appendix A-3 Age of Existing Coal Fired Units	A-17
APPENDIX B PLANT SITE VISIT MEMORANDA	B-1
Appendix B-1 Meramec Station Site Visit Memorandum	
Appendix B-2 Sioux Station Site Visit Memorandum	B-5
Appendix B-3 Labadie Station Site Visit Memorandum	
Appendix B-4 Rush Island Station Site Visit Memorandum	B-10
APPENDIX C ACTUARIAL ANALYSIS RESULTS	C-1
Appendix C-1: Account 311 - Structures and Improvements	C-3
Appendix C-2: Account 312 - Boiler Plant Equipment	
Appendix C-3: Account 314 - Turbogenerator Units	C-12
Appendix C-4: Account 315 - Accessory Electric Equipment	C-16
Appendix C-5: Account 316 - Miscellaneous Power Plant Equipment	C-20

Black & Veatch Corporation (Black & Veatch) prepared this report for AmerenUE in June 2009 based on information available and conditions prevailing at that time. Any changes in that information or prevailing conditions may affect the conclusions, recommendations, assumptions, and forecasts set forth in this report. Black & Veatch makes no warranty, express or implied, regarding the reasonableness of any information, recommendation, or forecast set forth herein under any conditions other than those assumed in making such projections. Black & Veatch understands that AmerenUE has not made any decisions regarding the retirement of any of the plants addressed in this report. Black & Veatch's opinions are based on its professional engineering judgment of the estimated useful life of each plant for use in AmerenUE's depreciation analysis.

1.0 EXECUTIVE SUMMARY

In this report we provide informed estimates of the retirement dates for the four Union Electric Company d/b/a AmerenUE (AmerenUE or Company) coal-fired plants. We base our estimated retirement dates on AmerenUE's actual retirement history, our assessment of the plants' current condition, our understanding of planned capital expenditures, life spans of other US coal plants, and engineering and environmental compliance considerations.

The most important factor in determining the depreciation rate for unit property is the informed estimate of the final retirement date. In forecasting final retirement dates for AmerenUE's coal-fired plants we consider actuarial analysis of historical experience of the interim and final retirements of AmerenUE's coal-fired generating facilities, planned capital additions, the age at retirement of plants retired in the US, expected dates of retirement for comparable plants in the US, the current condition of AmerenUE's plants, and engineering and environmental considerations. Our condition assessments are based on site visits and interviews with key operating personnel at each plant. The four plants addressed in this report are Meramec, Sioux, Labadie, and Rush Island.

In addition to the above, at AmerenUE's request, we reflect consideration of the timing of the cost incident to the orderly construction of capacity required to replace capacity retired.

1.1 Overview of Study

We understand our report and informed estimates will be considered by AmerenUE's depreciation rate consultants in their recommendation of appropriate depreciation rates for the four plants. Our study of final retirement dates for AmerenUE's coal-fired plants includes:

- Consideration of plant life based on actuarial analysis of AmerenUE's continuing property records for its coal-fired power plants
- Consideration of the planned capital expenditures at the plants and their implication on plant remaining life
- The age at retirement of US plants which have been retired
- The life span of comparable plants located in the western US forecast in depreciation studies and Integrated Resource Plans (IRPs)
- Engineering considerations supporting the design life of major power plant components
- Environmental considerations affecting the remaining life of coal fired power plants¹
- Onsite plant condition assessment

1.2 Findings and Conclusions

AmerenUE owns and operates four coal-fired power plants in the state of Missouri, having a combined installed capacity of nominally 5,650 MW. These plants began commercial operations between 1953 and 1977. Based on our life span estimate, and giving consideration to the orderly replacement of retired capacity, we forecast AmerenUE will retire its four coal-fired plants over the 24 year period 2022 through 2046. Unit ages at final retirement are forecast to range from nominally 62 to 73 years. For AmerenUE's plants to achieve these lives, AmerenUE must invest significant capital expenditures in the interim years.

We base our final retirement dates on consideration of a number factors and assumptions including:

- Actuarial analysis of AmerenUE's actual retirements of its coal-fired power plant investment:
 - The actuarial analysis indicates probable lives of AmerenUE's units ranging from 54 to 65 years
 - The probable life for the largest account (312, Boilers) ranges from 54 to 62 years

¹ In this Report, we have not included explicit recognition of the possible implications on plant life and cost recovery arising from *The American Clean Energy and Security Act of 2009* (Waxman-Markey Energy and Climate Bill) currently under consideration by Congress.

EXECUTIVE SUMMARY

AMERENUE POWER PLANT LIFE EXPECTANCY

- Planned capital expenditures especially those related to environmental expenditures:
 - Over the next five years, AmerenUE expects to spend approximately \$ billion (\$ million per year) on capital projects at the four plants
 - Approximately ½ of the billion budgeted relates to environmental projects
- Available data regarding life spans realized and anticipated by plants operated by other utilities:
 - The average age at retirement used in depreciation studies and Integrated Resource Plan (IRP) filings is 55 years
 - The average and median reported age at retirement of all retired coal-fired plants in the US is 44 years
 - The average age of currently operating coal-fired power plants is 41 years with a median age of 42 years
- Existing and contemplated environmental regulations:
 - The locations of AmerenUE's plants are classified as non-attainment areas for 8-hour ozone and PM2.5 pollutants, meaning these areas currently do not meet National Ambient Air Quality Standards
 - Additional environmental controls will likely be imposed on the electric generating industry (and the Company's plants) aimed at limiting greenhouse gas, mercury, and other emissions, as well as environmental impacts associated with intake structures and the disposal of waste produced by the combustion of coal
 - Future environmental compliance costs will likely contribute to economic decisions regarding retirement of the coal-fired plants
- Engineering principals:
 - Due to high temperature creep rupture and high pressure creep fatigue failure, many of the high temperature and high pressure components of the boiler and steam systems have a finite design life and can fail after 20 to 40 years of operation and sometimes more frequently. It is routine for companies to replace such components when and as they fail
- Onsite plant condition investigations:
 - The current condition of AmerenUE's plants is good
 - With continued maintenance and capital expenditures, economic factors will likely drive retirement decisions, not physical limitations
- The retirement of the Company's Meramec Plant in 2022 as discussed in the Company's Integrated Resource Plan ("IRP") and Environmental Compliance Plan ("ECP")

Based on the above, we find the life span of the four plants to average 56 years. For the purpose of this report, we base our informed estimates on a nominal life span of 65 years. We increase the nominal life span by 9 years (over 15 percent) to be conservative and recognize:

- The good condition of the plants
- The period required to recover the capital investment *if* the Company is required to install Flue Gas Desulfurization (scrubbers or FGD) emissions control equipment at its Labadie and Rush Island Plants

Our informed estimates of the final retirement dates for AmerenUE's coal-fired power plants are summarized in Table 1-1. In forecasting these dates, we conclude an appropriate nominal life expectancy of the AmerenUE coal plants is 65 years. AmerenUE reviewed the resulting retirement schedule and advised that certain dates needed to be extended to allow for the timely replacement of capacity retired. At AmerenUE's direction, we performed the replacement capacity construction schedule and cost-spend analysis we show in Figures 3-1 and 3-2 to demonstrate the viability of the retirement schedule. We base capacity replacement on a 90 month planning and construction schedule for a new coal-fired plant. We show in Figure 3-2, over the 24 year retirement period there is minimal concurrent construction required for the replacement capacity.

Plant	Unit	Commercial Operation	Final Retirement	Age
Meramec	1	1953	2022	70
Meramec	2	1954	2022	69
Meramec	3	1959	2022	65
Meramec	4	1961	2022	62
Sioux	1	1967	2033	67
Sioux	2	1968	2033	66
Labadie	1	1970	2042	73
Labadie	2	1971	2042	72
Labadie	3	1972	2038	67
Labadie	4	1973	2038	66
Rush Island	1	1976	2046	71
Rush Island	2	1977	2046	70

Table 1-1 Final Retirement Date Summary

Our estimated retirement dates result in units retiring at nominally the age of 65 to 73 years. To achieve the plant lives set forth in Table 1-1 we and AmerenUE recognize that significant capital expenditures will be required and that as plants age, the level of capital expenditures may increase above the Company's current forecast of about million per year over the next five years.

2.0 INTRODUCTION AND QUALIFICATIONS

2.1 Purpose

The purpose of this report is to provide informed estimates of future retirement dates for AmerenUE's coalfired generating plants at Meramec, Sioux, Labadie, and Rush Island. Our report analyzes and presents industry experience with coal-fired plant lives, engineering and environmental factors that affect plant life, and sets forth a capital expenditure and construction plan to replace the retired capacity over a period spanning more than two decades.

2.2 Scope

In this report, we estimate retirement dates for four Union Electric Company d/b/a AmerenUE (AmerenUE or Company) coal-fired plants consistent with our understanding of the current condition, planned capital projects, engineering, and environmental compliance considerations for the plants and for coal-fired plants generally. In addition, we consider the age of plants that have been retired and the reported life expectancies of operating plants where information is publically available. Our condition assessments are based on site visits and interviews with key operating personnel at each plant. The four plants addressed in this report are Meramec, Sioux, Labadie, and Rush Island.

We understand our report and informed estimates will be considered by AmerenUE's depreciation rate consultants in their recommendation of appropriate depreciation rates for the four plants. We include in the report:

- A discussion of remaining life and end of plant life in the determination of power plant (unit property) depreciation rates,
- A discussion of plant life based on actuarial analysis of AmerenUE's continuing property records for its coal-fired power plants,
- A discussion of the planned capital projects at the plants and their implication on plant remaining life,
- A discussion of plant lives based on the age at retirement of plants retired throughout the US,
- A discussion of plant lives based a survey of utility depreciation studies and Integrated Resource Plans (IRP) for plants in 26 US states,
- A discussion of engineering considerations supporting the design life of power plants,
- A discussion of environmental considerations affecting the remaining life of coal-fired power plants, and
- A discussion of our plant site visits.

2.3 Subject Plants

AmerenUE owns and operates four coal-fired power plants in the State of Missouri. These plants have a combined installed capacity of nominally 5,650 MW, and began commercial operation during the 24-year period between 1953 and 1977. The plants, with limited exception, all currently burn low sulfur coal shipped by rail from the Powder River Basin in Wyoming (PRB). We summarize the unit operating characteristics of AmerenUE's coal-fired plants in Table 2-1.

Table 2-1

Coal Fired Steam Generating Units Unit Operating Characteristics December 2008

	[A]	[B]	[C]	[D]	[F]	[H]	[1]	[J]	[K]	[L]	[M]
Line			Nameplate	Heat	Rate	Weighted	Average Fuel	and O&M			
No.	Plant	Unit	Capacity	Full Load	Average	Fuel	Variable	Fixed	Inservice	Age	Supercritical
-			MW	BTU/kWh	BTU/kWh	\$/MWh	\$/MWh	\$/kW-yr		Years	
1	Meramec	1	137.50	12,445.00	12,609.00	13.93	1.24	32.56	May-53	55.58	N
2	Meramec	2	137.50	11,624.00	12,001.00	13.93	1.24	32.56	Jul-54	54.42	N
3	Meramec	3	289.00	10,788.00	10,854.00	13.93	1.24	32.56	Jan-59	49.92	N
4	Meramec	4	359.00	11,204.00	11,965.00	13.93	1.24	32.56	Jul-61	47.42	N
5	Sioux	1	549.70	9,625.00	9,932.00	13.57	1.08	28.13	May-67	41.58	Y
6	Sioux	2	549.70	9,106.00	9,687.00	13.57	1.08	28.13	May-68	40.58	Y
7	Labadie	1	573.70	9,096.00	9,596.00	11.34	0.53	15.48	Jun-70	38.50	N
8	Labadie	2	573.70	9,422.00	9,867.00	11.34	0.53	15.48	Jun-71	37.50	Ν
9	Labadie	3	621.00	9,682.00	10,235.00	11.34	0.53	15.48	Aug-72	36.33	Ν
10	Labadie	4	621.00	9,499.00	9,944.00	11.34	0.53	15.48	Aug-73	35.33	Ν
11	Rush Island	1	621.00	9,721.00	9,841.00	12.92	0.80	21.32	Mar-76	32.75	Ν
12	Rush Island	2	621.00	9,291.00	9,857.00	12.92	0.80	21.32	Mar-77	31.75	Ν
13	Total / MW We	eighted	5,653.80	9,743.45	10,175.50	12.54	0.81	22.01		38.89	
14	Recap / MW W	/eighted									
15	Meramec	-	923.00	11,321.19	11,718.44	13.93	1.24	32.56		50.46	
16	Sioux		1,099.40	9,365.50	9,809.50	13.57	1.08	28.13		41.08	
17	Labadie		2,389.40	9,431.31	9,917.59	11.34	0.53	15.48		36.87	
18	Rush Island		1,242.00	9,506.00	9,849.00	12.92	0.80	21.32		32.25	

19 Notes:

20 Reference - Velocity Suite Database

21 All plants and units use sub bituminous coal (Powder River Basin, PRB) as the primary fuel

The Velocity Suite Database (EV Power) is a comprehensive database of North American power markets. Included in EV Power is information regarding the ownership, operating costs, in-service date, capacity, and a wealth of other information regarding individual generating stations (units) in North America. Velocity Suite is available to subscribers on-line and is a product offered by Ventex, a company which employs about 1,200 people.

In Table 2-2 we show the current and planned emissions and environmental controls at each of AmerenUE's coal fired plants.²

² Again, for purposes of this report we make the conservative assumption that AmerenUE will be required to install scrubbers at its Labadie and Rush Island Plants. AmerenUE's ECP calls for the purchase of allowances in lieu of installing scrubbers.

Table 2-2

Coal Fired Steam Generating Units Emissions and Envoirnmental Controls December 2008

	[A]	[B]	[C]	[D]	[E]	[F]	[G]	[H]	[1]	[J]	[K]
Line		[Nameplate			Emissio	n Rates		Emissic	on Control Ec	quipment
No.	Plant	Unit	Capacity	Inservice	SO2	NOX	CO2	Mercury	SO2	NOX	Mercury
			MW		lbs/MMBtu	lbs/MMBtu	lbs/MMBtu	ppm			
1	Meramec	1	137.50	May-53	0.63	0.13	209.76	0.07	None	2	None
2	Meramec	2	137.50	Jul-54	0.65	0.11	209.76	0.07	None	2	None
3	Meramec	3	289.00	Jan-59	0.64	0.18	209.76	0.07	None	None	None
4	Meramec	4	359.00	Jul-61	0.66	0.19	209.76	0.07	None	1	None
5	Sioux	1	549.70	May-67	1.79	0.22	209.76	0.07	2010	3	None
6	Sioux	2	549.70	May-68	1.78	0.22	209.76	0.07	2010	3	None
7	Labadie	1	573.70	Jun-70	0.69	0.11	209.76	0.07	2020	1	None
8	Labadie	2	573.70	Jun-71	0.69	0.11	209.76	0.07	2020	1	None
9	Labadie	3	621.00	Aug-72	0.70	0.11	209.76	0.07	2018	1	None
10	Labadie	4	621.00	Aug-73	0.71	0.10	209.76	0.07	2018	1	None
11	Rush Island	1	621.00	Mar-76	0.70	0.09	209.76	0.07	2016	1	None
12	Rush Island	2	621.00	Mar-77	0.69	0.10	209.76	0.07	2016	1	None
13	Total / MW Wei	ghted	5,653.80		0.90	0.14	209.76	0.07			
14	Recap / MW W	eighted									
15	Meramec	•	923.00		0.65	0.17	209.76	0.07			
16	Sioux		1,099.40		1.79	0.22	209.76	0.07			
17	Labadie		2,389.40		0.70	0.11	209.76	0.07			
18	Rush Island		1,242.00		0.70	0.10	209.76	0.07			

19 Notes:

20 Reference - Velocity Suite Database

All plants and units are equipped with electrostatic precipitators

22 SO2 Control Equipment - Flue Gas Desulfurization (FGD or Scrubbers)

The Company does not plan to add scrubbers to its Labadie and Rush Island plants unless required to do so. The dates shown represent the base case set forth in the Company's Environmental Compliance Plan in the event the Company is required to add scrubbers.

the base case set forth in the Company's Environmental Compliance Plan in the event the Company is required to add scrubbers.

25 NOX Control Equipment:

26 1 = Low NOx Burner Technology with Closed-coupled Separated OFA

27 2 = Low NOx Burner Technology with Separated OFA; Low NOx Burners

28 3 = Overfire Air

2.4 **Qualifications**

Black & Veatch is a leading global consulting, engineering, and construction company specializing in infrastructure projects primarily in the areas of power generation and delivery, energy, water and wastewater treatment, telecommunications, and government facilities. With a staff of over 9,600, Black & Veatch provides valuation, utility feasibility studies, financial management, asset management, information technology, environmental and management consulting services, conceptual and preliminary engineering services, engineering design, procurement, and construction. The company was founded in 1915 and maintains more than 100 offices worldwide. Black & Veatch is headquartered in Kansas City, Missouri and in 2008, was ranked the 11th largest majority employee-owned company in the United States. Black & Veatch was ranked 15th of the Top 500 Design Firms by Engineering News-Record, and ranked 4th in both the Top 25 in Power and the Top 25 in Fossil Fuel in 2008.

Our client base includes investor owned, publicly owned, and cooperatively owned utilities, customers of such utilities, and other entities involved in the energy, water, wastewater, and telecommunications industries, as well as government agencies.

3.0 DEPRECIATION CONSIDERATIONS

For analysis purposes, depreciable property is typically classified into two groups, mass property and unit property. Mass property represents relatively homogeneous property units that tend to be retired individually. Meters, conduit, conductor, services, and line transformers are examples of mass property. Conversely, unit property represents more heterogeneous property groups, which by the nature of their interconnected/integrated operations, tends to be retired simultaneously, or as a group. We normally consider power generation facilities for electric utilities as unit property. Generally, utilities maintain detailed unit property data by physical location. Utilities typically maintain mass property data on an aggregate level. For unit property, we typically define service life based on life span.³

Depreciation of unit property requires an informed estimate of the final retirement date in order to recover investment over the period of time the property is used to provide service to customers. A group of property units that will retire concurrently, such as a generating plant, is known as a life span group (unit property). A life span group is in contrast to a mass property group where typically each unit of property is retired independently of the other units of property in the group, and the units retire gradually over time. For example, if a pole requires replacement, the single pole can be retired without the entire pole line being retired from service. Mass property accounts are depreciated based on an age distribution of survivors and retirement dispersion pattern. Life span accounts are depreciated based on interim retirement dispersion and forecasted final retirement dates.

3.1 General Depreciation Considerations

"Life span property generally has the following characteristics:

- 1. Large individual units,
- 2. Forecasted overall life or estimated retirement date,
- 3. Units experience interim retirements, and
- 4. Future additions are integral part of initial installation."⁴

Coal-fired power plants consist of a large number of individual components which have a finite life expectancy. These individual components fail and must be replaced in order for the plant to continue to provide reliable service. In addition, throughout a plant's life the utility performs capital projects, including projects required to comply with regulatory requirements. However, at some point in time these expenditures become so costly that the more prudent course is to retire the entire plant and all of its many components.

The most important factor in determining the depreciation rate for unit property is the informed estimate of the final retirement date. In estimating final retirement dates for AmerenUE's coal-fired plants we consider actuarial analysis of interim and final retirements of AmerenUE's coal-fired generating facilities, planned capital expenditures, age distribution of plants retired in the US, expected dates of retirement for comparable plants, the current condition of AmerenUE's plants, and other factors explained below.

3.2 Interim and Final Retirements – Actuarial Analysis

At AmerenUE's request, Gannett Fleming, Inc., AmerenUE's depreciation consultant conducted an actuarial analysis of the Company's coal-fired steam production plant accounts. This analysis includes all retirements, both interim and final. The resulting average service lives and Iowa curves for each steam production plant account are shown in Table 3-1.⁵ Knowing the current age of each unit, the average service life (including final retirements of units no longer in service) of each account, and the retirement dispersion (Iowa curve) of each account, we determine the probable life for each steam production plant account based on the age of each power plant unit. In Table 3-1 (Columns E through I), we show the probable life by account by unit for

³ Life span represents the period between the in service date and the date of retirement.

⁴ National Association of Regulatory Utility Commissioners, "Public Utility Depreciation Practices," 141, 1996

⁵ Further details supporting this analysis are included as Appendix C.

AmerenUE's coal-fired fleet. To forecast the probable life of each unit, we weigh the probable life of the unit's accounts by the account's surviving investment at December 31, 2008. We show this result in Table 3-1 (Column K). We calculate a unit's remaining life (Column L) as the probable life minus the current age.

We determine each plant's average year of final retirement by first weighing the current age and probable life by the capacity of the various units. We show in Table 3-1 lines 15 through 18 the nameplate capacity (MW) weighted age (Column D) and probable life (Column K) for each plant. We then calculate the plant's remaining life as its probable life minus its age (Column L). We show the indicated final retirement date for each plant in Table 3-1 (Column M).

 Table 3-1

 Coal Fired Steam Generating Units

	Probable Life - Retirement Date December 2008												
						Decer	nber 2008						
	[A]	[B]	[C]	[D]	[E]	[F]	[G]	[H]	[1]	[J]	[K]	[L]	[M]
Line			Nameplate			Pro	bable Life			Total	Probable	Remaining	Indicated
No.	Plant	Unit	Capacity	Age	311	312	314	315	316	Original Cost	Life	Life	Retirement
			MW	Years	Years	Years	Years	Years	Years	\$	Years	Years	Year
					D 4	D4 5	Do	D0 5	D0 5				
1 2	Iowa Curve Average Servic	o Lifo			R4 53	R1.5 45	R2 47	R2.5 51	R0.5 47				
2	Average Servic	e Lile -			55	40	47	51	47				
3	Meramec	1	137.50	55.58	61.50	65.00	64.10	65.40	71.70		64.89	9.30	Apr-18
4	Meramec	2	137.50	54.42	61.00	64.75	63.90	64.80	71.10		64.59	10.17	Mar-19
5	Meramec	3	289.00	49.92	58.80	61.50	61.00	61.90	68.10		61.49	11.57	Jul-20
6	Meramec	4	359.00	47.42	57.90	60.00	60.00	60.70	66.80		60.13	12.71	Sep-21
7	Sioux	1	549.70	41.58	56.70	57.40	56.50	58.70	64.30		57.40	15.82	Oct-24
8	Sioux	2	549.70	40.58	56.40	57.20	56.10	58.60	64.10		57.17	16.58	Aug-25
9	Labadie	1	573.70	38.50	55.90	55.40	56.10	57.00	62.20		55.85	17.35	May-26
10	Labadie	2	573.70	37.50	55.90	55.30	55.70	56.90	62.00		55.69	18.19	Mar-27
11	Labadie	3	621.00	36.33	55.30	54.90	55.10	56.70	61.50		55.25	18.92	Dec-27
12	Labadie	4	621.00	35.33	55.10	54.70	54.70	56.70	61.40		55.03	19.69	Sep-28
13	Rush Island	1	621.00	32.75	53.90	53.60	53.10	55.90	60.20		53.77	21.02	Jan-30
14	Rush Island	2	621.00	31.75	53.70	53.60	52.80	54.20	60.10		53.59	21.84	Nov-30
15	Total / MW We	ighted	5,653.80	38.89	55.95	56.30	56.03	57.70	62.99		56.47	17.58	
16	Recap / MW W	eiahted											
17	Meramec	J	923.00	50.46	59.18	61.92	61.50	62.39	68.58		61.93	11.47	Jun-20
18	Sioux		1,099.40	41.08	56.55	57.30	56.30	58.65	64.20		57.28	16.20	Mar-25
19	Labadie		2,389.40	36.87	55.54	55.06	55.38	56.82	61.76		55.44	18.57	Jul-27
20	Rush Island		1,242.00	32.25	53.80	53.60	52.95	55.05	60.15		53.68	21.43	Jun-30
21	Original Cost Ir	vestmen	t - Balance @	Decem	oer 2008 -	\$ Million							
22	Meramec		C Dalance C		39.82	415.49	83.43	43.15	19.15	601.04			
23	Sioux				36.43	392.05	99.34	34.54	10.34	572.69			
24	Labadie				64.98	594.75	208.38	81.06	19.33	968.50			
25	Rush Island				53.51	385.94	136.99	37.97	11.30	625.71			
26	Account 312.	03				116.27				116.27			
27	Common				1.96	36.98		3.13	0.02	42.09			
28	Total				196.70	1,941.50	528.14	199.84	60.15	2,926.31	•		
						,				, -			

29 Note:

30 Probable Life of Unit is Weighted Based on Original Cost Investment of the Plant

3.3 Capital Projects

Capital projects are an integral part of life span property. In the case of a coal-fired power plant, investment in capital projects over the life of the plant can exceed one to four times that of its original cost.⁶ The most significant future capital projects that AmerenUE has budgeted for its coal-fired power plants are for

⁶ Thus the total investment which must ultimately be recovered through depreciation for a plant that initially cost \$100 million may exceed \$500 million.

DEPRECIATION CONSIDERATIONS

AMERENUE POWER PLANT LIFE EXPECTANCY

environmental control . AmerenUE has budgeted approximately \$4 million on environmental projects⁷ over the next five years. This \$ million amounts to nearly 50 percent of total capital expenditures budgeted through 2013. We show in Table 3-2 AmerenUE's five year capital expenditure projection for its coal fired power plants.

Table 3-2

	[A]	[B]	[C]	[D]	(E)	[F]	[G]
	F 4						
Line	Plant	2000	2010	Year	2012	2012	5 - Year
No.		2009	2010	2011	2012	2013	Total
	leramec						
2	Environmental						
3	Other						
4	Subtotal						
5 S	Sioux						
6	Environmental						
7	Other						
8	Subtotal						
9 L	abadie						
10	Environmental						
11	Other						
12	Subtotal						
13 F	Rush Island						
14	Environmental						
15	Other						
16	Subtotal						
17 T	otal						
18	Environmental						
19	Other						
20	Grand Total						

3.3.1 Environmental Projects

Upon completion of the scrubbers at the Sioux Plant next year, the Company has no definitive plans to install scrubbers at the other plants unless required to do so. In the Company's current <u>Environmental Compliance</u> <u>Plan</u> (ECP), the Company has included three planning scenarios setting forth the timing of the addition of scrubbers to the Labadie and Rush Island Plants, <u>if</u> required. In order to recognize the possibility that the Company may be required to expend the substantial amounts to install scrubbers, we have included consideration of the time required to recover the substantial investment. By so doing, we have increased the estimated life span, which (all other factors equal) results in lower depreciation rates.

We consider the addition of significant environmental projects and the impact of recovering the substantial investment of such projects over a reasonable period of time. In Table 3-3 (Column G) we show the dates that AmerenUE forecasts in its base case scenario that projects will go into service <u>if</u> the Company is required to install scrubbers. We consider a reasonable timeframe for recovery of environmental investment of the magnitude required to be nominally 20 years for planning purposes. To be conservative, we set the minimum

⁷ This \$650 million cost includes only some incidental engineering and planning costs associated with the addition (if required) of scrubbers at the Labadie and Rush Island Plants.

time for recovery of environmental investment at 20 years. Table 3-3 (Column H) shows the expected remaining life after consideration of the environmental investments.

Table 3-3

	Coal Fired Steam Generating Units Final Retirement Date December 2008										
	[A]	[B]	[C]	[D]	[E]	[F]	[G]	[H]	[1]	[J]	
Line No.	Plant	Unit	Nameplate Capacity MW	In Service	Age Years	Expected Remaining Life Years	Environmental Project	Expected RL After Project	Probable Retirement	Age at Retirement	
			IVIVV		rears	rears		Years			
1 2 3 4 5 6 7 8 9 10 11 12	Meramec Meramec Meramec Sioux Labadie Labadie Labadie Labadie Rush Island Rush Island	1 2 3 4 1 2 1 2 3 4 1 2	137.50 137.50 289.00 359.00 549.70 573.70 573.70 621.00 621.00 621.00	May-53 Jul-54 Jan-59 Jul-61 May-67 May-68 Jun-70 Jun-71 Aug-72 Aug-73 Mar-76 Mar-77	55.58 54.42 49.92 47.42 41.58 38.50 37.50 36.33 35.33 32.75 31.75	9.30 10.17 11.57 12.71 15.82 16.58 17.35 18.19 18.92 19.69 21.02 21.84	Dec-10 Nov-10 Oct-20 Oct-20 Oct-18 Jun-16 Jun-16	9.30 10.17 11.57 12.71 21.92 21.83 31.75 31.75 29.75 29.75 29.75 27.42 27.42	Apr-18 Mar-19 Jul-20 Sep-21 Dec-30 Nov-30 Oct-40 Oct-40 Oct-40 Oct-38 Jun-36 Jun-36	64.89 64.59 61.49 60.13 63.50 62.42 70.26 69.26 66.08 65.08 60.17 59.17	
13	Total / MW W		5,654		38.89	17.58	oun ro	25.13	our co	64.03	
14 15 16 17 18	Recap / MW V Meramec Sioux Labadie Rush Island	Veighted	923.00 1,099.40 2,389.40 1,242.00	Jul-61 May-68 Aug-73 Mar-77	50.46 41.08 36.87 32.25	11.47 16.20 18.57 21.43		11.47 21.88 30.71 27.42	Sep-21 Dec-30 Oct-40 Jun-36	64.89 63.50 70.26 60.17	

19 Reference:

20 Column [F] - Acrual Analysis (Table 3-1)

21 Lines 15 through 18:

22 Column [D] - Youngest Unit

23 Column [I] - Last Unit
24 Column [J] - Longest Living Unit

25 Note: Age at retirement of the longest living unit does not equal the age on the probable date of retirement.

3.4 Estimated Retirement Dates

We present our estimated life span and final retirement dates for AmerenUE's coal-fired plants in Table 3-4 Column F and Column G respectively. We base our final retirement dates on consideration of a number factors and assumptions including:

- 1. Actuarial analysis of AmerenUE's actual retirements of its coal-fired power plant investment,
- 2. Recovery of required major environmental capital expenditures,
- 3. Available data regarding life spans of other coal-fired units,
- 4. Existing and contemplated environmental regulations,
- 5. Engineering principals,
- 6. Onsite plant condition investigations, and
- 7. The retirement of the Company's Meramec Plant in 2022 as discussed in the Company's Integrated Resource Plan ("IRP") and Environmental Compliance Plan ("ECP")

Based on all of these factors, we find the nominal life span of AmerenUE's four plants amounts to 64 years. Using a nominal life span of 65 years⁸, we estimate that AmerenUE will retire its four coal-fired plants over the 20 year period 2022 through 2042. Unit ages at final retirement range from nominally 62 to 71 years. For AmerenUE's plants to achieve these lives, significant expenditures (both environmental and non-environmental) will be required,

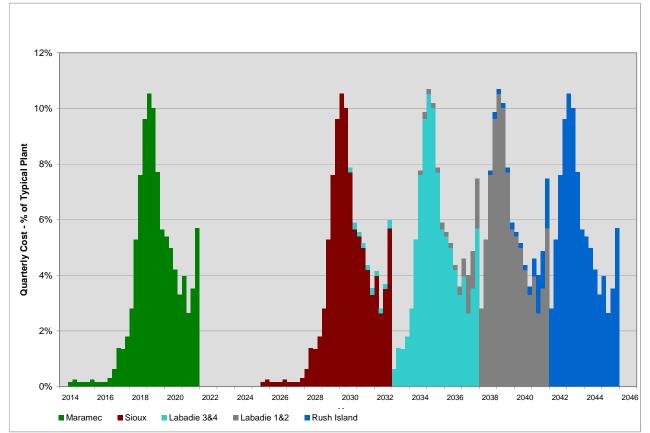
⁸ 69 years for Labadie Units 1 and 2 to accommodate recovery of environmental project cost.

Table 3-4

Coal Fired Steam Generating Units							
Recommended Retirement Date							
December 2008							

	[A]	[B]	[C]	[D]	[E]	[F]	[G]	[H]	[1]	[J]
Line No.	Plant	Unit	Nameplate Capacity MW	In Service	Age Years	Recommended Life Span Years	Final Retirement	Period to Recover Project Cost	Recommended Remaining Life Years	Age at Final Retirement Years
1 2 3 4 5 6 7 8 9 10 11 12	Meramec Meramec Meramec Sioux Sioux Labadie Labadie Labadie Rush Island Rush Island	1 2 3 4 1 2 3 4 1 2 3 4 1 2	137.50 137.50 289.00 359.00 549.70 573.70 573.70 621.00 621.00 621.00 621.00	May-53 Jul-54 Jan-59 Jul-61 May-67 May-68 Jun-70 Jun-71 Aug-72 Aug-73 Mar-76 Mar-77	55.58 54.42 49.92 47.42 41.58 38.50 37.50 36.33 35.33 32.75 31.75	68.00 68.00 61.00 65.00 65.00 69.00 69.00 65.00 65.00 65.00 65.00	2022 2022 2022 2033 2033 2040 2040 2040	22.83 22.91 20.00 20.00 20.00 26.33 26.33 26.33	14.75 14.75 14.75 25.75 32.75 32.75 30.75 30.75 34.75	70.33 69.16 64.66 67.33 66.33 71.25 70.25 67.08 66.08 67.50 66.50
13	Total / MW Weighted		5,653.80		38.89	65.50	2042	20.33	28.45	67.34
14 15 16 17 18	Recap / MW V Meramec Sioux Labadie Rush Island	Veighted	923.00 1,099.40 2,389.40 1,242.00	Jul-61 May-68 Aug-73 Mar-77	50.46 41.08 36.87 32.25	63.09 65.00 66.92 65.00	2022 2033 2038 - 2040 2042	22.87 20.00 26.33	14.75 25.75 31.71 34.75	65.21 66.83 68.58 67.00

3.5 Consideration of Replacement Capacity Construction Schedule


AmerenUE requested that we evaluate the reasonableness of our estimated retirement dates in Table 3-4 considering the need to replace capacity retired and the time and resources required to construct and finance replacement capacity. Based on our evaluation, we conclude that the retirement dates set forth in Table 3-4 do not realistically permit the orderly replacement of capacity retired. We therefore, in consultation with AmerenUE adjusted the retirement dates we show in Table 3-4 to reflect a more practical schedule to replace retired capacity. These adjusted retirement dates are set forth in Table 3-5.

In Figure 3-1, we show the quarterly cash outlays associated with the construction of replacement capacity based on the adjusted retirement dates we show in Table 3-5. We show in Figure 3-1 the cash outlays incident to the replacement of capacity retired based on the cash outlays for a typical large base load coal-fired power plant construction project assuming a 90 month planning and construction schedule. We show the spend curves for replacing the capacity of the four existing plants as well as the overlap in new plant spending. As we show in Figure 3-1, in no one calendar quarter is more than 11 percent of the cost of a new plant expended. Further, the maximum spend in any 12-month period amounts to 38.61 percent. The maximum spend rate in any 12-month period for a single plant amounts to 37.87 percent.

Final Retirement Date (Adjusted to Accommodate Replacement Capacity Construction Schedule) December 2008											
	[A]	[B]	[C]	[D]	[E]	[F]	[G]	[H]	[1]	[J]	
Line No.	Plant	Unit	Nameplate Capacity	In Service	Age	Recommended Final Retirement	Retirement Adjusted for Construction Schedule	Extension to Accommodate Construction Schedule	Remaining Life	Age at Final Retirement	
			MW		Years			Years	Years	Years	
1 2 3 4 5 6 7 8 9 10 11 12	Meramec Meramec Meramec Sioux Labadie Labadie Labadie Labadie Rush Island Rush Island	1 2 3 4 1 2 1 2 3 4 1 2	137.50 137.50 289.00 359.00 549.70 573.70 573.70 621.00 621.00 621.00 621.00	May-53 Jul-54 Jan-59 Jul-61 May-67 May-68 Jun-70 Jun-71 Aug-72 Aug-73 Mar-76 Mar-77	55.58 54.42 49.92 47.42 41.58 38.50 37.50 36.33 35.33 32.75 31.75	2022 2022 2022 2033 2033 2040 2040 2038 2038 2038 2038 2042 2042	2022 2022 2022 2033 2033 2042 2042 2042	- - - 2.00 2.00 - - - - - - - - - - - - - - - - - -	14.75 14.75 14.75 25.75 25.75 34.75 30.75 30.75 38.75 38.75	70.33 69.16 64.66 62.16 67.33 73.25 72.25 67.08 66.08 71.50 70.50	
13	Total / MW Weighted		5,653.80		38.89				29.73	68.63	
14 15 16 17 18	Recap / MW N Meramec Sioux Labadie Rush Island	Veighted	923.00 1,099.40 2,389.40 1,242.00	Jul-61 May-68 Aug-73 Mar-77	50.46 41.08 36.87 32.25	2022 2033 2038 - 2040 2042	2022 2033 2038 - 2042 2046	- 0.96 4.00	14.75 25.75 32.67 38.75	65.21 66.83 69.54 71.00	

Table 3-5 Coal Fired Steam Generating Units

Figure 3-1

We show in Figure 3-2, the construction timeline for replacing the capacity of AmerenUE's present coal-fired generation. Using a 90 month planning and construction schedule, we demonstrate in Figure 3-2 the staged approach for replacing capacity where permitting the next facility can occur simultaneously with the construction of a plant. We also show how there will be minimal concurrent construction necessary for replacement capacity given the estimated retirement dates we show in Table 3-5.

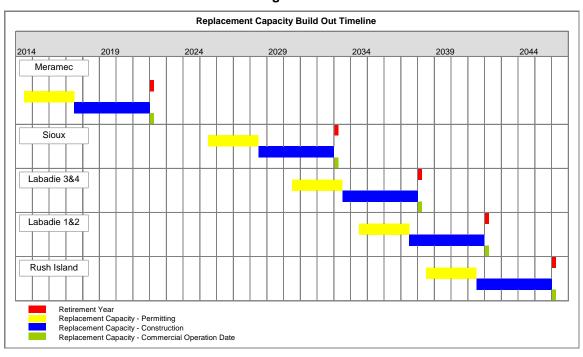


Figure 3-2

4.0 PLANT LIFE SURVEYS

4.1 Depreciation and IRP Survey

Black & Veatch surveyed publicly available depreciation information to determine the depreciation rates and associated forecasted retirement dates (life span) for coal-fired plants in 26 states. The scope of our survey was to target approximately 24 states west of Ohio, excluding the Pacific coast.⁹ The states we researched for our survey include Alabama, Arizona, Arkansas, Colorado, Illinois, Indiana, Iowa, Kansas, Kentucky, Louisiana, Michigan, Minnesota, Mississippi, Montana, Nevada, New Mexico, North Dakota, Ohio, Oklahoma, South Dakota, Tennessee, Texas, Utah, Wisconsin and Wyoming. We also surveyed publicly available Integrated Resource Plans (IRPs) to identify plant retirement dates. Our findings from these surveys are shown in Appendix A-1.

4.1.1 Depreciation Rates and Forecasted Retirement Dates

We researched depreciation rates for forecasted retirement dates using three different sources. First, we searched prior depreciation studies conducted by Black & Veatch for retirement dates provided by the client. Second we searched each state's utility commission website for electronic dockets with depreciation rate information. Third we used an online search engine to research information on plants located in the 26 states listed above.

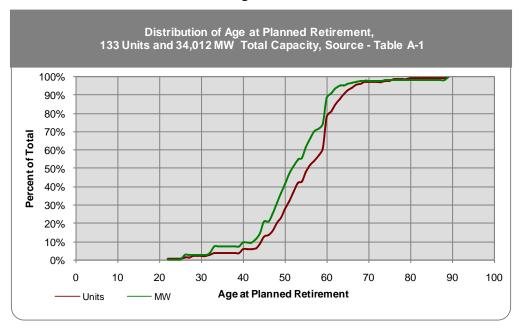
4.1.2 IRP

The following information was taken from a report titled "Integrated Resource Planning: Process and Rules in the West"¹⁰ dated June 8, 2006:

- The following states require electric utilities to prepare and file IRPs: Idaho, Nevada, Utah, Colorado, Montana, North Dakota, South Dakota, Minnesota, and Missouri
- The following states had (in 2006) open investigations about whether to establish IRP requirements: Arizona, New Mexico, and Arkansas
- Iowa only requires DSM planning
- Kansas, Wyoming, and New Mexico required limited resource planning
- Nebraska, Texas, Louisiana, and Oklahoma had no IRP requirements

For each of the states identified (excluding the ones with no IRP requirements), we searched the public utility commission web site for the most recent IRP studies for the utilities in those states.

We were able to locate IRP documents for utilities in Colorado, Idaho, Indiana, Minnesota, Missouri, Montana, New Mexico, North Dakota, Nevada, and Utah. We were able to identify some life span information from the IRP's we examined. However, many of the documents we reviewed either did not specify any retirements during the IRP planning period or information about loads and resources was redacted from publicly available documents.


4.1.3 Survey Findings and Conclusions

The coal-fired power plant retirement dates found in publicly available documents are shown in Table A-1 of Appendix A. We find that the average age at retirement used in depreciation studies and IRP filings is 55 years for coal-fired power plants. We find the minimum age at retirement of 22 years, the maximum age of 89 years, and a median age of 56 years. In Figure 4-1 we show the distribution of the age of generating units at planned retirement and the associated megawatts of capacity.

⁹ We focus on these states because of the predominance of the use of coal from the Powder River Basin.

¹⁰ Integrated Resource Planning: Process and Rules in the West, Sedano, Richard. New Mexico Public Regulation Commission, June 8, 2006

4.2 Retired Plant Survey

We researched the Velocity Suite database for the age at retirement of all coal fired power plants reported retired in the United States. The mean and median age of plants retired is 44 years. In Figure 4-2 we show the distribution of plants retired and megawatts of capacity retired by age. In Appendix A-2, we show the detailed information for units retired; their capacity, year of commercial operation, year of retirement, and their age at retirement. As shown in Figure 4-2, only about 10 percent of retired generating units and 5 percent of retired plant capacity experienced a life span of more than 62 years.

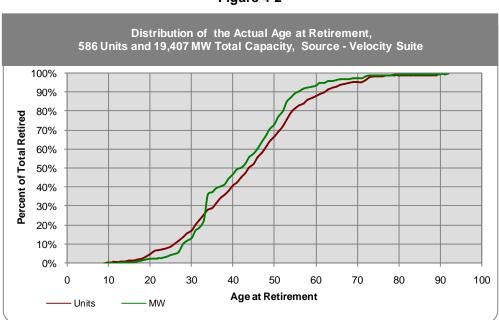
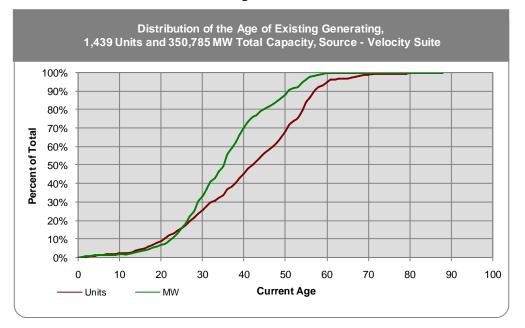



Figure 4-2

4.3 Age of Coal-Fired Plants Currently in Service

We researched Velocity Suite for the current age of operating coal-fired power plants in the United States. The average age is 41 years and the median age is 42 years. In Figure 4-3 we show the distribution of the age of existing generation and megawatts of capacity. Appendix A-3 shows the detailed findings for existing generation units; their capacity, year of commercial operation, and current age. As shown in Figure 4-3, 93 percent of existing generating units have been in service for less than 60 years, and 99 percent of generation capacity is less than 60 years old.

Figure 4-3

5.0 ENGINEERING CONSIDERATIONS

Analysis of steam plant lives should include consideration of engineering design life. When a new plant is initially placed in service, its depreciable life should equal its engineering life. As a unit ages, it is reasonable to reevaluate life span by considering the condition of the plant components, actual plant use and experience, and potential environmental costs and risks. The following sections discuss design life, the major components of steam plants, and factors that lead to component failure and ultimately influence plant life.

5.1 Design Life

Based on discussions with Original Equipment Manufacturers (OEMs), the expected or design "life" of a major power plant component such as the steam generator (boiler) or the turbine-generator is determined by various factors. The actual age of a piece of equipment is seldom the determining factor; rather a combination of hours connected to load, the pattern and practice of use, specific design, maintenance, and environment¹¹ determines the expected useful life.

5.1.1 Steam Turbines

Based on discussions with General Electric and Westinghouse regarding their turbine generator design, it is apparent that expected life and operation is normally specified by the number of starts and shutdowns. These criteria (expected number of starts and shutdowns) are used by the manufacturer to check design life and to define startup and shutdown procedures today as they were 40 years ago. With proper maintenance, and when operated according to the OEM's recommendations and expectations, a steam turbine can be expected to operate longer than the 30 year life that is typically specified. However, experience has shown that the operating regime of a generating unit often changes over its useful life, especially as technological enhancements in performance and capability advance during a plant's normal 30-35 year life.

It is actually more important to look at the steam turbine and its related equipment as a number of distinct pieces. Within the steam turbine housing there are numerous "components" all of which must be designed to meet the expected operating conditions and perform reliably for at least some portion of the economic life of the turbine generator. That said a number of these components should be expected to be replaced during the life of the unit. For example a typical turbine design from either General Electric or Westinghouse will include:

- Stop Valves
- Steam Chest
- Nozzles/diaphragms
- Control Valves

- Turbine Blades
- Rotor
- Inner and Outer Shell
- Other components

Each of these components is designed to operate reliably over a period of several years under certain specified, expected operating conditions. However with the exception of the rotor and shell, engineers expect to repair or replace many of these components over a typical 30+ year operating life.

Typical practice in the utility industry is to perform a major overhaul of steam turbines every 5 to 7 years. For a typical overhaul in the early stages of a steam turbine's useful life, repairs would include rebuilding diaphragms and replacing seals. As the number of thermal cycles, hours connected to load, and correspondingly the age of the turbine increases, capital repairs, such as selected blade and bearing replacements are expected. Recently turbine vendors have been marketing replacements of major sections of turbine blades. However these replacements are being marketed on the merits of improved capability and efficiency rather than reliability (remaining life) issues.

¹¹ In this context, environment refers to conditions (water chemistry, steam temperature, and pressure, products of combustion, etc.) under which plant components operate.

The most critical and costly single item in the turbine/generator system is the rotor. Turbine/generator rotors are designed to withstand a number of thermal cycles, determined primarily by the expected operating regime of the power plant. The operating procedures are then specified in order to minimize internal stresses by carefully heating and cooling the rotor as it is brought into service and when the unit is shut down. Assuming expected conditions match the actual operation of the unit, the rotor should remain useful for the turbine's entire life. However actual operation, regardless of the capability of the operator, inevitably includes unexpected unit "trips," failed starts and other actions which produce stresses at an accelerated rate. The result is a compromise of the potential life of the rotor.

With regard to changes in the design philosophy or criteria for steam turbines today versus the 60's and early 70's, improved analysis tools, closer tolerances, and material improvements have allowed equipment to be designed for greater efficiency and greater capacity. Durability concerns have been addressed via enhancements in cooling designs, materials, and coatings are designed to protect against solid particle erosion (SPE). In addition these analysis tools have allowed designers to actually reduce the size of equipment and the total mass in order to improve the life expectations via fewer stress concentration points, more uniform heating, etc.

5.1.2 Boilers

As is the case with turbines, Black & Veatch's experience with boiler manufacturers has demonstrated that the expected or design life of major boiler components is determined by various factors. The actual age of a piece of equipment is not the primary determining factor, rather a combination of hours connected to load, the pattern and practice of use, specific design, fuel quality, water quality and chemistry, and maintenance procedures determine the expected useful life. In their reference manual "Combustion, Fossil Power" ABB-CE states, "The parameters that affect the life of a component are the local values of stress and temperature, and its material properties. Life does not only depend on these parameters, it is extremely sensitive to them."¹²

Babcock and Wilcox published information that describes the typical expectation for specific equipment replacement. Table 5-1 indicates that various components of the boiler system are expected to require replacement over its typical useful life.

Typical Life (Years)	Component Replaced	Cause for Replacement
20	Miscellaneous tubing	Corrosion, erosion, overheating
25	Superheater (SH)	Creep
25	SH outlet header	Creep, fatigue
25	Burners and throats	Overheating, fatigue
30	Reheater	Creep
35	Primary economizer	Corrosion
40	Lower furnace	Overheating, corrosion

Table 5-1 Example Component Replacement Schedule for a Typical High Temperature, High Pressure Boiler¹³

Note: The actual component life is highly variable depending on specific design, operation, maintenance, and fuel.

Babcock and Wilcox's "Steam" states, "high temperature creep rupture and creep fatigue failure are the two main aging mechanisms in the high temperature components of high temperature boilers. All components that operate above 900° F are subject to some degree of creep. As a result, most of the components have a finite design life and can fail after 20 to 40 years of operation."

¹² Combustion Engineering, "Combustion Fossil Power," 4th Edition, 24-9, 1991

¹³ Babcock & Wilcox, "Steam, its generation and use," 40th Edition, 46-4, 1992

Since the 1960's there have been numerous improvements in materials and design processes that have extended the length of time that various components of the boiler system can be used. Examples include wear resistant materials in high erosion areas, such as coal pulverizers and burner lines. Advanced design standards for reheater and superheater outlet headers have extended the expected time before creep fatigue is expected to cause failures.¹⁴ Other design enhancements have reduced the onset of fatigue cracking in header and drum internals.

Over the course of the turbine's and boiler's normal operating life, a utility expects to replace various components of these systems merely in order to maintain the usefulness of the asset. The timing of these replacements is based strictly on failure mechanisms, the original design, the operating regime, fuel (boiler systems), and the maintenance practices.

Utilities spend significant capital (often exceeding one to four times the initial cost of a plant) in order to replace various components of a generating plant. However there is no time at which any single major system would have expended its useful life and by definition preclude the continued use of the plant if required capital expenditures and replacements are made. Boilers and turbines, as a whole, do not wear out. However the various components of each of those systems (boiler and turbine) do wear out for various reasons.

5.2 Implications of Operating Conditions and Maintenance Practices

Babcock and Wilcox defines component end of life according to any one of three situations: 1) the point at which failures occur frequently, 2) when the cost of inspection and repair exceed replacement cost, or 3) when personnel are at risk.¹⁵ The end of useful life of the entire power plant would be determined in much the same manner, considering the potential costs of environmental compliance, expected O&M, and required capital investment. When these costs are expected to be greater than the cost (capital and expenses) for replacement power whether newly constructed capacity or purchased, the economic life of the plant is exhausted.

In examining the two most expensive major systems in a typical coal-fired generating plant, the boiler and the turbine/generator, there are specific mechanisms that result in individual components reaching the end of useful life. The manner in which these systems are operated and maintained has a significant influence on the rate at which the useful life of their components is expended.

5.2.1 Turbines

The operating procedures developed by turbine manufacturers are designed to protect turbine parts from thermal fatigue cracking caused by internal temperature gradients. The specific objective is to provide for the desired number of thermal cycles before fatigue cracking occurs. Due to its large diameter (and mass), the rotor is the most critical element with regard to thermal stress. The stationary parts are constructed to allow for thermal expansion, and being smaller, are not subject to the extreme internal temperature gradient.

The primary operating conditions that must be addressed in the operation of the turbine include; start-up procedures, load changing procedures, shut-down, turbine trips, load following cycling, daily (on/off) cycling and low load operation.

From the perspective of turbine design, a thermal cycle occurs when the rotor surface is heated to operating temperature and subsequently cooled. The OEM will provide the owner/operator with operating procedures designed to limit thermal stresses and thus prolong the life of the equipment. The temperature gradient in the rotor is the critical element in designing the hot and cold starting procedures. These procedures are designed to carefully warm the rotor so that the internal stresses generated from the temperature difference from external to internal do not prematurely induce cracking or brittle fracture.

¹⁴ Babcock & Wilcox, "Steam, its generation and use," 40th Edition, 46-4-46-6, 1992

¹⁵ Babcock & Wilcox, "Steam, its generation and use," 40th Edition, 45-10, 1992

In addition to starting and shut down procedures, during normal operation there will usually be requirements to change loads. The OEM's provide procedures designed to limit stresses during this period as well. The procedures attempt to balance the need for timely load changes, heat rate performance, and avoidance of damage. Governor valve sequences affect these parameters. The various "modes" of governor valve sequences include; sequential valve position, single valve throttling, and sliding pressure operation.

Sequential valve operation is the most thermally efficient at lower loads. However this mode produces the greatest first stage temperature changes and therefore requires the slowest load changes. Sliding pressure minimizes the temperature changes and is very useful for units which are subject to daily "load following." However, since pressure is controlled via the boiler, reduced wear on the turbine is at the cost of increased stress on the boiler.

Careful adherence to the OEM's recommended procedures will increase the useful life of a steam turbine and its multiple components. However the number of "cycles" accumulated will be determined by the load regime on the unit over its life as well as by the overall unit availability. In this regard shutdown procedures are as important as starting and operating. Emergency trips of the steam turbine do not allow for the controlled reduction in metal temperatures.

The last concern that must be addressed in operation is low load operation. Most OEMs recommend not operating below 50 percent of the rated load. At extremely low load, operation can result in overheating of the low pressure turbine blading. This can lead to blade damage from rubbing between stationary and rotating elements due to differential expansion or distortion of stationary parts causing interference. These high temperatures occur from a combination of the high reheat steam, reduced flow, and high exhaust pressure.

5.2.2 Boiler

Both Babcock & Wilcox and Alstom¹⁶, the major boiler manufacturers in the US, have published extensive information regarding the effect of operations and maintenance on the life of the boiler and its major components. Table 5-2 provides a description of the factors that will typically result in the need to replace major sections of a boiler. These factors are: corrosion, erosion, overheating, fatigue, and creep.

Component	Cause for Replacement	Operating Influences
Miscellaneous tubing	Corrosion	Oxygen levels, pH
	Erosion	Fuel and fuel blends
	Overheating	Water chemistry, fouling, and pluggage
Superheater (SH)	Creep	Overheating
SH outlet header	Creep, fatigue	Overheating
Burners and throats	Overheating	Off-design operation
	Corrosion	Reducing atmosphere
Reheater	Creep	Overheating
Primary economizer	Corrosion	Water chemistry, fuel
Lower furnace	Overheating	Water chemistry
	Corrosion	Fuel and fuel blends, reducing atmosphere

 Table 5-2

 Common Replacement Causes for Typical High Temperature, High Pressure Boiler

The following sections describe how operating philosophy and maintenance practices can influence each of the above referenced primary factors that lead to reduced component life (failure).

¹⁶ Alstom acquired ABB-CE and boilers in the US that were referred to as "CE" boilers are now commonly referred to as "Alstom" boilers.

5.2.2.1 Corrosion

Corrosion in a power plant boiler can occur on either the inside (water or steam side) or the outside (combustion or fuel side) of the headers, drums, pipes, and tubes. Boiler water pH, contaminants, and improper chemical cleaning are the primary causes of internal corrosion. External corrosion can be caused by fuel or combustion products, a reducing atmosphere in the furnace, and by moisture trapped in low temperature areas (i.e. under insulation).

Operating practices that can reduce these corrosion effects include careful and comprehensive pH control, and maintaining proper oxygen levels in the boiler water. The corrosive combustion products in the fuel are generally managed through careful control of minimum cold end average temperatures in order to stay above the acid dew point. Likewise maintaining adequate combustion air can reduce the occurrence of a reducing atmosphere in the boiler.

However, as cycling increases, which is common for older units, boilers become susceptible to oxygen leakage as a result of the design and/or the operation. Start-up of the boiler is the most common point during which oxygen is introduced into the feedwater. It is not uncommon to introduce more oxygen into the system during a single start-up than during months of normal continuous operation. During cold and to some degree even warm/hot starts, the air heater will cool below the acid dew point of the flue gas. During those periods, corrosion of the air heater baskets is unavoidable. Furthermore, minimizing air fuel ratios in order to reduce exit gas temperatures and NOx formation can easily result in a reducing atmosphere in the furnace.

5.2.2.2 Overheating

Internal overheating of water filled tubes is usually the result of deposits on the inside of the tube. However, in steam sections of the boiler, overheating will result from over-firing or non-uniform heat distribution. Over-firing occurs whenever the steam flow requirements increase and the boiler must be over-fired in order to maintain pressure. Cycling the unit and using a unit to "follow" load, with frequent load swings both up and down, will result in short term overheating of various components in the boiler. In addition, fouling of sections of the boiler can result in localized overheating and a resultant need for superheat or reheat attemperation. The most effective means of reducing the frequency and effects of overheating is to avoid cycling and load-following and keeping the furnace and boiler clean of ash.

5.2.2.3 Creep

Creep is the degradation of material properties that occurs with time and temperature. High temperature creep rupture and creep fatigue failures are the two main aging mechanisms in the high temperature components of modern power boilers. Replacement of the tubes, headers, and piping from the superheater outlet header to the turbine and the reheater outlet header to the reheat turbine should be expected for a unit that is expected to operate more than 25 to 35 years. Due to the effect of heat on creep formation, small increases above the design operating temperatures can have dramatic affects on the useful life of a component. For example, for a boiler operating at 1,000° F the expected service life is reduced by half if the boiler is operated at 17° F above design temperature. As is the case with overheating, avoiding cycling the unit and minimizing the time operated in a load following regime, while keeping the furnace and boiler as clean as possible of ash deposits, are the best means to reduce the effects of creep.

5.2.2.4 Fatigue

Fatigue is the process by which materials fail under cyclic loading. Cyclic loading in this instance refers to thermal expansion, contraction, and vibration. Most piping systems are designed with some degree of fatigue resistance via the hangers and support system. For thick-walled components of high-pressure boilers and high pressure steam lines, the principal loading that can cause damage is produced by the thermal transients that occur during start-up and shut-down. ASME codes for boiler component design specify materials and material thickness in order to accept up to a specified number of cycles (expansion and contraction). Daily load cycling of older units accelerates the accumulation of these cycles.

Careful adherence to the manufacturer's starting, loading, and shut-down procedures is the primary operating practice that the boiler operator can follow to minimize the effects of fatigue on thick-walled components. Maintaining pipe hangers and supports so that they perform their design function will reduce the effects of fatigue in piping systems.

5.2.2.5 Erosion

Erosion is the wearing away of material through impact with harder (and to a much lesser degree, softer) materials. Erosion can take place anywhere within a boiler but especially near sootblowers, high velocity flue gas areas or due to ash characteristics that are highly corrosive. Major sections of the superheater or reheater may need replacement due to erosion or corrosion, or just a small section of tubing. Coal pulverizers require frequent and costly maintenance due to the highly erosive nature of the ash in the coal. Advanced materials have been developed specifically for boiler fuel handling applications. It is now common to install ceramic linings in coal transport equipment, pulverizers, piping, exhaust fans, and burner nozzles. Erosion internal to the boiler in the back passes from the economizer through the air heater is usually not a major problem as long as the velocities are maintained at or near the original design.

The potential to influence erosion through O&M practices comes primarily from the ability to change from the design fuel to an alternative fuel with different composition. This can affect erosion in two ways, velocity, and volume. The volume of fuel required will change with changes in heat content. Likewise the velocities will change with volume in order to maintain the firing rates.

6.0 ENVIRONMENTAL CONSIDERATIONS

In addition to physical considerations, the economic implications of environmental requirements and risks affect the life of coal-fired generating plants. The following provides a high-level summary of important current environmental regulations that are directed specifically to the electric power generating industry. Prominent current requirements include the Clean Air Interstate Rule (CAIR), Maximum Achievable Control Technology (MACT) emission limits for hazardous air pollutants, New Source Review (NSR), and limitations placed on wastewater discharges to prevent the degradation of receiving water bodies under the Clean Water Act.

Beyond the current environmental regulatory programs mentioned above, there are several initiatives and trends as well as changes in the political landscape that indicate additional environmental controls will likely be imposed on the electric generating industry in the future.¹⁷ These initiatives aim to limit greenhouse gas emissions (specifically carbon dioxide), mercury emissions, environmental impacts associated with water intake structures, and environmental impacts associated with coal combustion waste disposal. These initiatives will likely impose substantial capital and annual compliance costs on AmerenUE's coal-fired plants. These future compliance costs will come nearer the end of the plants' lives and will likely contribute to the decisions to retire existing coal-fired plants.

Each of the existing and anticipated environmental regulatory programs mentioned above and their potential impacts on coal-fired generating plants are briefly discussed below.

6.1 Clean Air Interstate Rule (CAIR)

CAIR originally proposed to regulate annual SO2 and NOx emissions as well as seasonal NOx emissions in 28 eastern states (including Missouri) under a cap-and-trade program. The rulemaking prompted utilities in the eastern United States to order billions of dollars of equipment to reduce SO2 and NOx emissions, or purchase emission allowances in anticipation of the annual NOx trading market which began January 1, 2009, seasonal NOx trading market which began in May 2009, and SO2 market scheduled to begin in January 2010. The first phase of CAIR was designed to reduce annual SO2 and NOx emissions by 45% and 53% respectively, with even greater reductions to begin under a subsequent phase in 2015.

The rule was challenged by several states and other petitioners, most of whom sought to have only certain provisions of the rule revised or set aside. After ruling in July 2008 that CAIR had "more than several fatal flaws" and that it would vacate the rule altogether, the court instructed all litigants to file responses in October 2008 to EPA's reconsideration petition. Based on these responses, the court concluded "notwithstanding the relative flaws of CAIR, allowing CAIR to remain in effect until it is replaced by a rule consistent with our opinion would at least temporarily preserve the environmental values covered by CAIR" and issued its order essentially reversing (at least temporarily) its decision to vacate the rule

EPA must now promulgate a new CAIR that addresses all the flaws and concerns identified in the court's July ruling. Realistically EPA will take years to finalize new regulations. Alternatively, Congress could enact legislation that implements CAIR's proposed SO2 and NOx emission reduction programs, but EPA would still likely have to develop rules to implement the new legislative program. In the meantime, both states and utilities must scramble to distribute allowances and manage emissions to meet the initial phase of CAIR's emission reduction requirements which now temporarily remain in effect.

Each utility subject to CAIR will develop a strategy to comply with CAIR. These strategies may include actions such as the installation of flue gas desulphurization equipment, the purchase of allowances, and the purchase of lower sulfur coal.

¹⁷ The *American Clean Energy and Security Act of 2009* (Waxman-Markey Energy and Climate Bill) currently before Congress is an example.

6.2 Mercury Reduction – Case by Case and State by State

Finalized by EPA in 2005, the Clean Air Mercury Rule (CAMR) sought to establish a cap-and-trade program to begin in 2010 for the regulation of mercury (Hg) emissions from coal-fired units (>25 MW) located in all 50 states, and performance standards for Hg emissions from new coal-fired units constructed or modified after January 30, 2004. EPA required all 50 states to enact and adopt laws and rules to implement the CAMR program through State Implementation Plans (SIPs). Although EPA offered model rules to follow, as many as 19 states adopted more stringent programs in developing their individual SIPs. Missouri was not one of those states.

CAMR was challenged by a number of parties. In February 2008, the CAMR was vacated by the federal District of Columbia Circuit Court of Appeals. EPA originally appealed the vacatur decision to the US Supreme Court; however on February 6, 2009, the Department of Justice, on behalf of EPA, asked the Supreme Court to dismiss EPA's appeal. EPA has decided to develop emissions standards for power plants under the Clean Air Act (Section 112), consistent with the D.C. Circuit's opinion. Meanwhile, new coal-fired plants must meet Maximum Achievable Control Technology requirements for Hg and other HAPs to be established by each state permitting authority on a case-by-case review basis. Future regulation of HAPs from existing coal-fired plants now seems likely under the MACT approach discussed below.

6.3 MACT and Startup, Shutdown, and Malfunction Exemption

The Clean Air Act (CAA) requires compliance with Maximum Achievable Control Technology (MACT) emission limits for hazardous air pollutants (HAPs). During normal operation, the HAP emission standard is typically defined as an emission limit, with compliance accomplished and demonstrated by direct measurement of the HAP itself; or as is commonly done, by association and correlation with a surrogate pollutant already subject to continuous monitoring with CEMs or COMs.

However, because of the erratic and generally unpredictable nature of emissions during startup, shut-down and malfunction (SSM) events, most permits have historically been written to exempt emission limit compliance with HAPs during SSM events. To fill the gap during SSM events, the EPA (since 1994) has maintained that the "general duty" clause is applicable (instead of a numeric emission limit), thus fulfilling the continuous compliance obligation of a HAP emission standard. The general duty clause requires an affected source to operate in a manner consistent with safety and good air pollution control practice for minimizing emissions. The EPA has argued that such a work practice standard under the "general duty" clause can satisfy the continuous compliance requirement under certain circumstances such as SSM, just like an emission limit does during normal operation.

The District of Columbia Circuit Court disagreed with EPA's position. In vacating the SSM exemption on December 19, 2008 the court agreed with the Sierra Club that the general duty clause, and thus the work practice standards implemented during SSM events, is not a CAA Section 112-compliant emission standard. Therefore, the continuous compliance requirement of MACT is not demonstrated during SSM, which violates the CAA.

Unless overturned, a few of the outcomes of this ruling may include: 1) permitting authorities may require affected sources to begin complying with existing HAP emission limits in their permits at all times, including SSM. 2) permitting authorities may require affected sources to submit plans with alternative emission limits or standards for SSM events that are consistent with CAA Section 112(h). This Section provides for a standard to be relaxed if it is not feasible in the judgment of the permitting authority to prescribe or enforce an emission standard for control of a HAP based on either a design or source specific basis.

Depending on the above potential outcomes, the effect on coal-fired power plants may range from business as usual, the implementation of additional limits, or revised control strategies.

6.4 New Source Review

At the current time, activities at an existing plant, including Air Quality Control (AQC) retrofit projects, are subject to New Source Review (NSR) air permitting requirements if they are determined to be "major modifications" at a "major stationary source." The NSR regulations define major modification and major stationary source, and those terms have also been addressed by court decisions, agency applicability determinations and other authorities. NSR includes both the Non-attainment NSR and Prevention of Significant Deterioration (PSD) programs. Evaluation of NSR/PSD applicability is complicated and has changed over time. When a project triggers NSR/PSD requirements, a major modification pre-construction air permit is required, which generally includes application of Best Available Control Technology (BACT) and/or application of Lowest Achievable Emission Rate (LAER) technology depending on the NAAQS attainment status of the relevant area.

The current permitting path (for both new units and for modifications to existing units which trigger the NSR/PSD requirements) is a difficult one that requires planning and preparation. Major challenges to such permits from concerned citizen groups, interveners, and possibly government officials can be expected, which can result in litigation and additional costs.

In addition to prospective permitting issues, over the last decade or so US EPA has initiated Section 114 investigations into whether prior activities at many coal-fired generating plants triggered NSR/PSD requirements. Some of these investigations have resulted in enforcement actions and additional controls at the targeted facilities.

6.5 Additional Non-attainment Issues

The Missouri counties within which the facilities are located are classified as non-attainment areas for both the 8-hour Ozone and PM2.5 pollutants, meaning the areas currently do not meet the National Ambient Air Quality Standards (NAAQS) for these pollutants. In addition to the more stringent requirements of LAER technologies associated with permitting new or modified units (see discussion of modifications above) that are associated with non-attainment areas, the agency is tasked with planning for the future classification of these areas back to attainment. Federal law (section 110 of the Clean Air Act) requires that states having non-attainment areas develop written plans for cleaning the air in those areas. The plans are called State Implementation Plans, or SIPs, and it is the state's responsibility to produce these plans that document the strategy for bringing the non-attainment area into and then maintaining compliance with the NAAQS.

One of the central elements of a SIP is the air pollution emission control measures, including controls on both stationary sources and mobile sources. Control measures are techniques, practices, and equipment for reducing emissions of non-attainment pollutants and their precursors. In Missouri, the Control Measures Workgroup is responsible for the identification and technical evaluation of control strategies needed to achieve attainment.

One of Missouri's control strategies is to implement Reasonably Available Control Technologies (RACT) on major air pollution sources in the Missouri portion of the non-attainment areas. RACT is defined as the lowest emissions limitation that a particular source is capable of meeting by the application of control technology that is reasonably available considering technological and economic feasibility. The agency must periodically review its RACT rules to assure that they support the goal of attainment.

In its most recent 2006 finding, Missouri certified that the current complement of RACT rules that apply to ozone precursors for sources located in the non-attainment areas fulfill the RACT requirements. The 2006 RACT SIP Revision was an evaluation of current air pollution rules that apply in the Missouri portion of the non-attainment areas resulting in no new or revised regulations. That is, the current controls, limits, and strategies in place are sufficient to address the issue of regaining attainment. However, it is important to note that if the area continues to not meet the NAAQS, the SIP may be revised to include more stringent RACT

rules. Should this happen, the agency may be compelled to take action to further reduce emissions from existing sources such as those evaluated in this report.

6.6 Greenhouse Gas Regulation

To date the United States has generally encouraged the implementation of voluntary programs to address greenhouse gas (GHG) emissions. However, most people now believe that mandatory greenhouse gas reductions will likely be required sometime in the future, especially from large sources. Currently, the EPA stands poised to initiate the process for generating regulations governing GHG emissions under the Clean Air Act (CAA) and Congress has been presented a multitude of mandatory legislative proposals.

6.6.1 Federal Regulation

EPA recently fulfilled an overdue Congressional mandate to propose a mandatory GHG reporting rule. Announced on March 10, 2009 the proposed rule would require an estimated 13,000 sources to begin inventories of emissions of six GHGs on January 1, 2010 and file annual reports of these emissions beginning in 2011. Reporting requirements are specified for individual major industrial sectors, as well as for transportation sector fuel suppliers and vehicle/engine manufacturers. The rule also contains a catch-all provision that extends reporting requirements to all fossil-fuel combustion sources with a heat input of 30 mmBtu/hr or greater, that annually produce at least 25,000 tons of CO2 equivalent emissions. This level can encompass sources as small as large hospitals and office complexes.

In addition to the release of the mandatory GHG reporting rule, the EPA issued a proposed endangerment finding on April 17, 2009, a first step to establishing legal authority to regulate emissions of the six greenhouse gases (CO2, CH4, N2O, HFCs, PFCs, and SF6) under the CAA. The EPA did not concurrently propose any greenhouse gas regulation and has discretion in determining the manner in which to proceed with the rulemaking processes. While the EPA is not required to initiate the rulemaking progress, the endangerment finding situates the EPA in a manner allowing for the commencement of nationwide regulations in the near future.

While the EPA initiated the process for regulating GHGs under the Clean Air Act, according to the EPA administrator, the Clean Air Act is not particularly suited for addressing the more global nature of greenhouse gas pollution and would prefer a legislative solution that addresses climate change. Congress has the authority to amend the Clean Air Act or enact a new statute to address economy-wide and trans-boundary greenhouse gas emissions. This may include market-based regulatory approaches, such as cap-and-trade or carbon tax mechanisms. Currently, the leading Congressional proposal is the "American Clean Energy and Security Act." This Act proposes an economy-wide cap-and-trade program to begin in 2012 and progressively achieves reductions of 20% below 2005 levels by 2020 and eventually 83% below 2005 levels by 2050.

6.6.2 Other Regulation

Various other GHG regulatory programs have been initiated and continue to evolve on international and regional levels. Internationally, nations will convene during December 2009 in Copenhagen, Denmark to negotiate and draft an agreement establishing the framework for addressing global climate change after the current Kyoto Protocol expires in 2012. The United States is expected to attend the conference and indicate its future role in reducing global GHG emissions.

Regionally, six Midwestern states joined the Midwest Greenhouse Gas Accord in November 2007. It is the third regional pact aimed at regulating greenhouse gases to reduce global warming. Missouri, however, has not signed as either a member or observer of this regional accord.

6.6.3 Potential Impact to Coal-Fired Power Generation Facilities

Any future regulation of GHG emissions (including cap and trade forms similar to CAIR) would likely result in additional expenditures for coal-fire power generation facilities in the form of purchases of allocations to offset all or a portion of its emissions of the regulated gases or investments in clean technology, energy efficiency, and sustainable design.

6.7 Clean Water Act Section 316(b)

Section 316(b) of the Clean Water Act (CWA) requires the Environmental Protection Agency (EPA) to ensure that the location, design, construction, and capacity of cooling water intake structures reflect the best technology available to minimize adverse environmental impacts. Potential harm from intake structures includes, but is not limited to, reduced fish populations due to losses of individual fish impinged on intake screens or entrained in a facility's cooling water system.

Federal regulations divide Section 316(b) into three rulemaking phases. Phase I applies to new electric generating plants and manufactures that withdraw more than 2 million gallons per day (MGD) of cooling water. Phase II applies to existing electric generating plants using at least 50 MGD of cooling water. Phase III applies to new offshore oil and gas extraction facilities that withdraw more than 2 MGD of cooling water.

The initial Phase II rulemaking was suspended in July 2007 and the EPA is now initiating a new 316(b) Phase II rulemaking process. The EPA expects this new rulemaking to apply to approximately 600 existing generating plants. The EPA may implement these regulations through the National Pollutant Discharge Elimination System (NPDES) permit renewal process. A facility's NPDES permit is typically renewed every 5-years.

The future cost of compliance with Section 316(b), Phase II for existing electric generating plants will vary widely and is dependent upon site specific conditions. Plant modifications employed in an effort to comply with Section 316(b) may include, but are not limited to, the installation of cooling towers, modifications to intake and discharge structures, and the optimization of cooling system design.

6.8 Waste Disposal

The EPA currently regulates coal combustion wastes disposed of and stored in landfills and surface impoundments as a solid waste under the Resource Conservation and Recovery Act (RCRA) Subtitle D. States were delegated the responsibility of regulating RCRA Subtitle D solid waste facilities. Recent EPA activities indicate that states may no longer solely regulate coal ash impoundments.

In March 2009, the EPA initiated an effort to address concerns associated with the disposal of coal combustion waste and by-products. The EPA's plan includes activities focused on the gathering of information regarding critical coal ash impoundments from electric utilities nationwide, conducting on-site assessments to determine the impoundments structural integrity and vulnerabilities, and ordering cleanup and repairs when necessary. By the end of 2009, EPA likely will develop new regulations covering these areas. The EPA likely will require appropriate remedial actions at those facilities found to pose a risk for potential failure. AmerenUE's Meramec, Sioux, Labadie, and Rush Island Power Stations are among the entities to which the EPA specifically sent letters directing participation in the above information collection effort.

As indicated above, federal scrutiny of existing coal combustion waste impoundments is ongoing and future federal regulation is anticipated in the near future. These federal actions may result in additional costs associated with physical changes to the facilities, clean-up and repairs, and/or other remedial actions. The actions necessary to comply with these impending federal activities are unknown at this time.¹⁸

¹⁸ On May 11, 2009, EPA took over the cleanup of TVA's Kingston coal ash spill under the Superfund law even though coal combustion waste is not currently regulated as a hazardous waste. This action may signal intent by EPA to revise its current position and begin to regulate coal combustion waste as a hazardous substance.

6.9 Antidegradation Requirements

In 2007, the Missouri Department of Natural Resources (MDNR) released the Antidegradation Rule and Implementation Procedure (the Procedure) (revised May 7, 2008) as part of its water quality regulations. The Procedure establishes a three-tired antidegradation program and requires compliance by all facilities with new or newly expanded discharges. Before the proposed discharge is authorized, the Procedure's steps must be complied with to ensure adequate protection of water quality. The specific steps to be followed depend upon which tier or tiers of antidegradation apply.

- Tier 1 protects existing uses and corresponding water quality conditions necessary to support such uses. Where an existing use is established, it must be protected even if it is not listed in the water quality standards as a designated use. Tier 1 requirements are applicable to all surface waters, regardless of ambient water quality.
- Tier 2 protects "high quality" waters water bodies where ambient water quality is better than the criteria associated with the designated water uses. Limited water quality degradation is allowed in high quality waters where it is demonstrated the degradation is necessary to fulfill important social or economic development.
- Tier 3 protects water quality in outstanding national resource waters. Except for temporary degradation, water quality cannot be lowered in such waters.

As seen in the differences in protection levels afforded the various tiers, the financial impact of complying with the Procedure will vary among facilities depending on the ambient water quality of the surface water where the discharge will occur; the quality and volume of the proposed wastewater discharge; the tier or tiers of antidegradation that will apply; and the corresponding social and economic impact of the proposed discharge. That said, compliance with the Procedure could result in significant financial expenditures associated with, not only the preparation of an antidegradation study to support a permit application, but extensive wastewater treatment technology in order to secure a wastewater discharge permit.

7.0 PLANT VISIT CONSIDERATIONS

On April 28-30, 2009, Black & Veatch conducted site visits at the Meramec, Sioux, Labadie, and Rush Island power plants. Detailed reports of our plant visits are included in Appendix B. Based on our findings from the site visits, we believe that AmerenUE's plants are in good condition. We find that, with continued maintenance and capital expenditures, economic factors will likely drive retirement decisions, not physical limitations.

APPENDIX A POWER PLANT LIFE DATA

	[A]	[B]	[C]	[D]	[E]	[F]	[G]	[H]	[1]	[J]
Line			Capacity		Year in	Current	Remaining		Retirement	
No.	Plant	State	MW	Unit	Service	Age	Life	Year	IRP	Age (a)
										(a)
1	Number of Units			133						
2	Maximum		1,300.00		2005	79.79				89
3	Minimum		3.50		1929	3.79				22
4	Median		172.80		1965	43.79				56
5	Average		255.73			41.71				55
	0									
6	Standard Deviation		253.37			12.81				9
7	95% Confidence Limit									
8	Maximum		752.34			66.81				74
9	Minimum		(240.89)			16.61				37
10	Cholla	Arizona	288.90	2	1978	30.79		2033		55
11	Cholla	Arizona	312.30	3	1980	28.79		2035		55
12	Cholla	Arizona	414.00	4	1981	27.79		2025	2025	44
13 14	Navajo Navajo	Arizona Arizona	803.10 803.10	NAV1 NAV2	1974 1975	34.79 33.79		2031 2031		57 56
14	Navajo	Arizona	803.10	NAV2 NAV3	1975	32.79		2031		55
16	Arapahoe	Colorado	48.00	3	1951	57.79		2013	2012	62
17	Arapahoe	Colorado	112.00	4	1955	53.79		2013	2012	58
18	Cameo	Colorado	22.00	1	1957	51.79		2013	2010	56
19	Cameo	Colorado	44.00	2	1960	48.79		2013	2010	53
20	Cherokee (CO)	Colorado	125.00	1	1957	51.79		2017		60
21	Cherokee (CO)	Colorado	125.00	2	1959	49.79		2019		60
22	Cherokee (CO)	Colorado	170.40	3	1962	46.79		2022	2024	60
23 24	Craig (CO) Craig (CO)	Colorado Colorado	446.40 446.40	1 2	1980 1979	28.79 29.79		2024 2024	2024 2024	44 45
24	Hayden	Colorado	190.00	1	1965	43.79		2024	2024	43 59
26	Hayden	Colorado	275.40	2	1976	32.79		2024	2024	48
27	Lakeside	Illinois	37.50	6	1961	47.79		2010		49
28	Lakeside	Illinois	37.50	7	1965	43.79		2010		45
29	Will County	Illinois	187.50	1	1955	53.79		2010		55
30	Will County	Illinois	183.70	2	1955	53.79		2010		55
31	Edwardsport	Indiana	40.20	7	1949	59.79		2011		62
32 33	Edwardsport H T Pritchard/Eagle Valley	Indiana Indiana	69.00 50.00	8 3	1951 1951	57.79 57.79		2011	2018	60 67
34	H T Pritchard/Eagle Valley	Indiana	69.00	4	1953	55.79			2018	65
35	H T Pritchard/Eagle Valley	Indiana	69.00	5	1953	55.79			2018	65
36	H T Pritchard/Eagle Valley	Indiana	113.60	6	1956	52.79			2018	62
37	Rockport	Indiana	1,300.00	1	1984	24.79		2044		60
38	Rockport	Indiana	1,300.00	2	1989	19.79		2022		33
39	Tanners Creek	Indiana	152.50	1	1951	57.79		2020	2015	69
40	Tanners Creek	Indiana	152.50	2	1952	56.79		2020	2015	68 66
41 42	Tanners Creek Tanners Creek	Indiana Indiana	215.40 579.70	3 4	1954 1964	54.79 44.79		2020 2020	2015	66 56
43	Whitewater Valley	Indiana	33.00	1	1955	53.79		2020	2015	60
44	Whitewater Valley	Indiana	60.90	2	1973	35.79			2025	52
45	Burlington (IA)	Iowa	212.00	1	1968	40.79	9	2018		50
46	Clinton (IA ADM)	lowa	7.50	GEN1	1954	54.79	3	2012		58
47	Clinton (IA ADM)	lowa	3.50	GEN2	1940	68.79	7	2016		76
48	Dubuque	lowa	28.70	3	1952	56.79	4	2012		60
49 50	Dubuque Dubuque	lowa Iowa	37.50 15.00	4 ST2	1959 1929	49.79 79.79	4 0	2012 2009		53 80
50 51	George Neal North	lowa	549.80	3	1929	33.79	13	2009		80 47
52	George Neal South	lowa	640.00	4	1979	29.79	15	2022		45
53	Lansing	lowa	11.50	2	1949	59.79	-	2013		64
54	Lansing	Iowa	37.50	3	1957	51.79		2013		56
55	Lansing	Iowa	274.50	4	1977	31.79		2009		32

Appendix A-1 Age at Planned Retirement Units Currently in Service – April 2009

Appendix A-1 (continued) Age at Planned Retirement Units Currently in Service – April 2009

	[A]	[B]	[C]	[D]	[E]	[F]	[G]	[H]	[1]	[J]
Line			Capacity		Year in	Current	Remaining		Retirement	
No.	Plant	State	ŃW	Unit	Service	Age	Life	Year	IRP	Age
										(a)
56	Louisa	Iowa	811.90	1	1983	25.79		2009		26
57	Muscatine	Iowa	25.00	7	1958	50.79		2010		52
58	Ottumwa (IA IPL)	Iowa	726.00	1	1981	27.79	21	2030		49
59	Prairie Creek 1 4	Iowa	23.00	1A	1997	11.79	16	2025		28
60	Prairie Creek 1 4	Iowa	23.00	2	1951	57.79	16	2025		74
61	Prairie Creek 1 4	Iowa	50.00	3	1958	50.79	16	2025		67
62	Prairie Creek 1 4	lowa	148.70	4	1967	41.79	9	2018		51
63	Holcomb East	Kansas Kansas	348.70	1 ST1	1983 1965	25.79	31	2040 2026		57 61
64 65	Quindaro Quindaro	Kansas	81.60 157.50	ST2	1965	43.79 37.79		2026		55
66	Hugh L Spurlock	Kentucky	357.60	1	1971	31.79		2026		55 63
67	Hugh L Spurlock	Kentucky	592.10	2	1981	27.79		2040		61
68	Hugh L Spurlock	Kentucky	329.40	3	2005	3.79		2042		40
69	James de Young	Michigan	11.50	3	1951	57.79		2011		60
70	Presque Isle	Michigan	54.40	3	1964	44.79		2012		48
71	Presque Isle	Michigan	57.80	4	1966	42.79		2012		46
72	Allen S King Plant	Minnesota	658.40	1	1958	50.79			2047	89
73	Black Dog	Minnesota	114.00	3	1955	53.79	4	2013	2011	58
74	Black Dog	Minnesota	180.00	4	1960	48.79	4	2013	2011	53
75	Clay Boswell	Minnesota	75.00	1	1958	50.79	14	2023		65
76	Clay Boswell	Minnesota	75.00	2	1960	48.79	14	2023		63
77	Clay Boswell	Minnesota	364.50	3	1973	35.79	26	2035		62
78	Clay Boswell	Minnesota	558.00	4	1980	28.79	20	2029		49
79	Hoot Lake	Minnesota	54.40	2	1959	49.79		2017	2019	60
80	Hoot Lake	Minnesota	75.00	3	1964	44.79		2017	2019	55
81	Riverside Repowering Project (MN)	Minnesota	238.80	8	1964	44.79		2009	2008	45
82	Riverside Repowering Project (MN)	Minnesota	165.00	ST7	1987	21.79		2009	2008	22
83	James River Power St	Missouri Missouri	22.00	1	1957	51.79		2017		60 60
84 85	James River Power St James River Power St	Missouri	22.00 44.00	2 3	1957 1960	51.79 48.79		2017 2020		60 60
86	James River Power St	Missouri	44.00 60.00	3 4	1960	46.79		2020		60 60
87	James River Power St	Missouri	105.00	5	1970	38.79		2024		59
88	Southwest	Missouri	194.00	ST1	1976	32.79		2029		53
89	Colstrip	Montana	778.00	GEN3	1984	24.79		2029	2029	45
90	Colstrip	Montana	778.00	GEN4	1986	22.79		2029	2029	43
91	North Valmy	Nevada	277.20	1	1981	27.79		2031	2021	50
92	North Valmy	Nevada	289.80	2	1985	23.79		2035	2025	50
93	Reid Gardner	Nevada	114.00	1	1965	43.79		2012		47
94	Reid Gardner	Nevada	114.00	2	1968	40.79		2012		44
95	Reid Gardner	Nevada	114.00	3	1976	32.79		2016		40
96	Reid Gardner	Nevada	270.00	4	1983	25.79		2023		40
97	Four Corners	New Mexico	190.00	1	1963	45.79		2016		53
98	Four Corners	New Mexico	190.00	2	1963	45.79		2016		53
99	Four Corners	New Mexico	253.40	3	1964	44.79		2016	0000	52
100	Coyote	North Dakota	450.00	1	1981	27.79		2012	2029	48
101	Conesville Musling guere Diver	Ohio	161.50	3	1962	46.79		2012		50
102 103	Muskingum River Muskingum River	Ohio Ohio	219.60 219.60	1 2	1953 1954	55.79 54.79		2015 2015		62 61
103	Muskingum River	Ohio	237.50	2	1954	51.79		2015		58
	Muskingum River	Ohio	237.50	4	1958	50.79		2015		57
	Cross	South Carolina	590.90	1	1995	13.79		2015		60
	Cross	South Carolina	556.20	2	1984	24.79		2033		60
108	Dolphus M Grainger	South Carolina	81.60	1	1966	42.79		2026		60
100	Dolphus M Grainger	South Carolina	81.60	2	1966	42.79		2026		60
110	Jefferies	South Carolina	172.80	3	1970	38.79		2030		60
111	Jefferies	South Carolina	172.80	4	1970	38.79		2030		60
	Winyah	South Carolina	315.00	1	1975	33.79		2034		59
113	Winyah	South Carolina	315.00	2	1977	31.79		2037		60
	Winyah	South Carolina	315.00	3	1980	28.79		2040		60
	Winyah	South Carolina	315.00	4	1981	27.79		2041		60
116	Ben French	South Dakota	25.00	ST1	1961	47.79		2013		52

Appendix A-1 (continued) Age at Planned Retirement Units Currently in Service – April 2009

	[A]	[B]	[C]	[D]	[E]	[F]	[G]	[H]	[1]	[J]
Line			Capacity		Year in	Current	Remaining		Retirement	
No.	Plant	State	MW	Unit	Service	Age	Life	Year	IRP	Age
										(a)
117	Big Stone	South Dakota	456.00	ST1	1975	33.79			2024	49
118	Carbon (UT)	Utah	75.00	1	1954	54.79		2010	2020	66
119	Carbon (UT)	Utah	113.60	2	1957	51.79		2010	2020	63
120	Hunter	Utah	488.30	ST1	1978	30.79		2025	2031	53
121	Hunter	Utah	488.30	ST2	1980	28.79		2025	2031	51
122	Hunter	Utah	495.60	ST3	1983	25.79		2025	2031	48
123	Huntington (UT)	Utah	498.00	1	1977	31.79		2019	2025	48
124	Huntington (UT)	Utah	498.00	2	1974	34.79		2019	2025	51
125	Blount Street	Wisconsin	23.00	5	1948	60.79		2012		64
126	Dave Johnston	Wyoming	113.60	1	1959	49.79		2020	2020	61
127	Dave Johnston	Wyoming	113.60	2	1961	47.79		2020	2020	59
128	Dave Johnston	Wyoming	229.50	3	1964	44.79		2020	2020	56
129	Dave Johnston	Wyoming	360.00	4	1972	36.79		2020	2020	48
130	Jim Bridger	Wyoming	577.90	1	1974	34.79		2020	2026	52
131	Jim Bridger	Wyoming	577.90	2	1975	33.79		2020	2026	51
132	Jim Bridger	Wyoming	577.90	3	1976	32.79		2020	2026	50
133	Jim Bridger	Wyoming	584.00	4	1979	29.79		2020	2026	47
134	Naughton	Wyoming	163.20	1	1963	45.79		2022	2022	59
135	Naughton	Wyoming	217.60	2	1968	40.79		2022	2022	54
136	Naughton	Wyoming	326.40	3	1971	37.79		2022	2022	51
137	Neil Simpson	Wyoming	21.70	5	1969	39.79		2020		51
138	Neil Simpson II	Wyoming	80.00	2	1995	13.79		2045		50
139	Osage (WY)	Wyoming	11.50	1	1948	60.79		2012		64
140	Osage (WY)	Wyoming	11.50	2	1949	59.79		2012		63
141	Osage (WY)	Wyoming	11.50	3	1952	56.79		2012		60
142	Wyodak	Wyoming	362.00	1	1978	30.79		2030	2028	52
	•									

Notes: (a) Retirement Date based on max of column [H] and [I]

	Appendix A-2 Age at Retirement Units Retired from Service Velocity Suite Database – April 2009									
	[A]	[B]	[C]	[D]	[E]	[F]	[G]			
Line No.	Plant	State	Capacity MW	Unit	Year in Service	Retirement Year	Age at Retirement			
1	Number of Units			586						
2 3	Maximum Minimum		818.10 0.30		1989 1900	2008 1960	92.00 9.00			
4	Median		12.25		1947	1985	44.00			
5	Average		33.12				44.13			
6	Standard Deviation		63.32				14.37			
7 8	95% Confidence Limit Maximum		157.22				72.31			
9	Minimum		(90.98)				15.96			
10	Gorgas 2 & 3	AL	69.00	5	1944	1989	45			
11	Gorgas 2 & 3	AL	69.00	4	1929	1977	48			
12 13	U S Alliance Coosa Pines Arapahoe	AL CO	5.00 44.00	AOW3 2	1942 1951	2003 2002	61 51			
14	Arapahoe	co	44.00	1	1950	2002	52			
15	Bayside Power Station	FL	187.50	4	1963	2003	40			
16	Bayside Power Station	FL	179.50	3	1960	2003	43			
17	Bayside Power Station	FL	125.00	2	1958	2003	45			
18	Bayside Power Station	FL	125.00	1	1957	2003	46			
19 20	Jefferson Smurfit Corp (FL) Arkwright	FL GA	9.30 49.00	GEN4 4	1963 1948	2003 2002	40 54			
20	Arkwright	GA	49.00	3	1948	2002	59			
22	Arkwright	GA	46.00	ST2	1942	2002	60			
23	Arkwright	GA	46.00	ST1	1941	2002	61			
24	Durango Georgia Paper Co	GA	18.70	NO3	1955	2006	51			
25	Durango Georgia Paper Co	GA	6.70	NO2	1947	2006	59			
26	Durango Georgia Paper Co	GA	4.00	NO1	1941	2006	65			
27	International Paper Co Savannah	GA	20.00	GEN7	1957	2001	44			
28	International Paper Co Savannah	GA	10.00	GEN6	1952	2001	49			
29 30	International Paper Co Savannah Mitchell (GA)	GA GA	7.50 27.50	GEN3 1	1940 1948	2001 2002	61 54			
31	Mitchell (GA)	GA	27.50	2	1948	2002	54			
32	Pepeekeo	HI	23.80	GEN1	1974	2004	30			
33	Ames Electric Services Power Plant (Ia Ames)	IA	12.60	ST4	1958	1986	28			
34	Ames Electric Services Power Plant (Ia Ames)	IA	7.50	ST3	1950	1984	34			
35	Boone (IA)	IA	3.50	3	1947	1977	30			
36 37	Boone (IA) Bridgeport (IA)	IA IA	3.50 25.00	4 3	1923 1957	1977 1981	54 24			
38	Bridgeport (IA)	IA	23.00	1	1953	1981	28			
39	Bridgeport (IA)	IA	23.00	2	1953	1981	28			
40	Carroll (IA)	IA	5.30	1	1952	1980	28			
41	Carroll (IA)	IA	5.30	2	1953	1990	37			
42	Denison (IA)	IA	3.00	4	1950	1986	36			
43	Des Moines (IA MWPWR)	IA	113.64	7	1964	1994	30			
44 45	Des Moines (IA MWPWR) Des Moines (IA MWPWR)	IA IA	75.00 5.00	6 3	1954 1949	1993 1990	39 41			
45	Des Moines (IA MWPWR)	IA	30.00	2	1949	1990	64			
47	Des Moines (IA MWPWR)	IA	20.00	1	1925	1990	65			
48	Eagle Grove	IA	8.00	1	1949	1980	31			
49	Hawkeye	IA	11.50	2	1954	1981	27			
50	Hawkeye	IA	8.00	1	1949	1981	32			
51	Humboldt	IA	20.30	4	1953	1999	46			

	[A]	[B]	[C]	[D]	[E]	[F]	[G]
Line No.	Plant	State	Capacity MW	Unit	Year in Service	Retirement Year	Age at Retirement
52	Humboldt	IA	9.40	1	1950	1999	49
53	Humboldt	IA	9.40	2	1950	1999	49
54	Iowa State Univ	IA	3.00	1	1949	2004	55
55	Lansing	IA	15.00	1	1948	2004	56
56	Maynard Station	IA	54.40	7	1958	1988	30
57	Muscatine	IA	12.50	6	1949	1985	36
58	Muscatine	IA	7.50	5	1944	1985	41
59	Pella	IA	4.00	4	1952	1992	40
60	Pella	IA	1.50	3	1948	1990	42
61	Prairie Creek 1 4	IA	23.00	1	1950	1996	46
62	Riverside (IA)	IA	46.00	ST4	1949	1988	39
63	Riverside (IA)	IA	2.50	ST2	1937	1983	46
64	Riverside (IA)	IA	20.00	ST3	1937	1983	46
65	Sibley One	IA	2.50	1	1948	1984	36
66	Sixth Street (IA)	IA	7.50	5	1917	1981	64
67	Streeter	IA	5.00	5	1954	1984	30
68	Streeter	IA	5.00	4	1949	1984	35
69	Webster City	IA	8.00	5	1960	1979	19
70	Webster City	IA	4.00	4	1950	1979	29
71	Webster City	IA	2.00	3	1939	1979	40
72	Webster City	IA	1.00	2	1928	1979	51
73	Webster City	IA	1.00	1	1921	1979	58
74	Carlyle	IL	3.00	3	1949	1985	36
75	Dixon	IL	69.00	5	1953	1978	25
76	Dixon	IL	50.00	4	1945	1978	33
77	Fairfield (IL)	IL	4.00	3	1948	1975	27
78	Fairfield (IL)	IL	2.50	2	1942	1975	33
79	Fairfield (IL)	IL	1.80	1	1939	1975	36
80	Fisk Street	IL	25.00	11	1949	1977	28
81	Fisk Street	IL	173.00	18	1949	1977	28
82	Joliet 9	IL	107.00	5	1950	1978	28
83	Lakeside	IL	20.00	5	1953	1982	29
84	Lakeside	IL	20.00	4	1949	1982	33
85	Mascoutah	IL	1.50	2	1967	1976	9
86	Mascoutah	IL	2.00	1	1965	1976	11
87	Moline	IL	12.00	ST3	1950	1976	26
88	Mt Carmel	IL	7.50	3	1952	1983	31
89	Mt Carmel	IL	2.00	1	1941	1990	49
90	Peru (IL)	IL	2.50	2	1938	1975	37
91	Peru (IL)	IL	1.00	ST1	1936	1975	39
92	Powerton	IL	105.00	4	1940	1974	34
93	Powerton	IL	105.00	3	1930	1974	44
94	Powerton	IL	55.00	2	1929	1974	45
95	Powerton	IL	55.00	1	1928	1974	46
96	R S Wallace	IL	113.60	7	1958	1985	27
97	R S Wallace	IL	85.90	6	1952	1985	33
98	R S Wallace	IL	40.20	5	1949	1985	36
99	R S Wallace	IL	40.30	4	1941	1985	44
100	R S Wallace	IL	25.00	3	1939	1985	46
101	Waukegan	IL	130.00	5	1931	1978	47
102	Waukegan	IL	121.00	6	1952	2007	55
103	4 AC Station	IN	67.50	14TG	1963	1999	36

	[A]	[B]	[C]	[D]	[E]	[F]	[G]
Line No.	Plant	State	Capacity MW	Unit	Year in Service	Retirement Year	Age at Retirement
104	4 AC Station	IN	67.50	15TG	1963	1999	36
105	Breed	IN	495.55	1	1960	1994	34
106	Crawfordsville	IN	4.50	3	1947	1976	29
107	Crawfordsville	IN	5.00	1	1939	1970	31
108	Crawfordsville	IN	3.50	2	1928	1960	32
109	Dresser Station	IN	50.00	6	1945	1975	30
110	Dresser Station	IN	50.00	5	1944	1975	31
111	Dresser Station	IN	50.00	4	1941	1975	34
112	F B Culley	IN	46.00	1	1955	2006	51
113	Frankfort	IN	17.00	3	1962	1977	15
114	Frankfort	IN	10.00	2	1952	1977	25
115	Frankfort	IN	6.00	1	1941	1977	36
116	Jasper 1	IN	5.00	4	1949	1975	26
117	Jasper 1	IN	2.00	1	1938	1975	37
118	Johnson Street	IN	15.00	4	1948	1970	22
119	Johnson Street	IN	15.00	1	1934	1970	36
120	Johnson Street	IN	15.00	2	1934	1970	36
121	Johnson Street	IN	15.00	3	1934	1970	36
122	Lawton Park	IN	15.00	3	1941	1975	34
123	Lawton Park	IN	15.00	2	1934	1975	41
124	Michigan City	IN	4.00	11	1930	1980	50
125	Perry K	IN	12.50	5	1938	1984	46
126	Perry K	IN	5.00	HS	1938	2000	62
127	Perry K	IN	15.00	3	1924	1989	65
128	Perry W	IN	11.63	7	1980	1997	17
129	Peru (IN)	IN	5.00	1	1933	1977	44
130	Smurfit Wabash	IN	2.00	7240	1947	2001	54
131	Smurfit Wabash	IN	2.00	8323	1947	2001	54
132	State Line Energy	IN	150.00	ST2	1938	1979	41
133	State Line Energy	IN	200.00	ST1	1929	1978	49
134	Twin Branch	IN	77.00	3	1940	1974	34
135	Twin Branch	IN	40.00	1	1925	1974	49
136	Twin Branch	IN	40.00	2	1925	1974	49
137	Wahington (IN)	IN	5.00	2	1957	1977	20
138	Wahington (IN)	IN	5.00	4	1957	1977	20
139	Wahington (IN)	IN	5.00	1	1947	1977	30
140	Wahington (IN)	IN	3.00	3	1938	1977	39
141	Lawrence Energy Center (KS)	KS	38.00	2	1952	2000	48
142	Lawrence Energy Center (KS)	KS	10.00	ST1	1939	1993	54
143	Cane Run	KY	112.50	2	1956	1985	29
144	Cane Run	KY	112.50	1	1954	1985	31
145	Green River (KY)	KY	37.50	1	1950	2003	53
	Green River (KY)	KY	37.50	2	1950	2003	53
147	Henderson I	KY	5.00	3	1951	1971	20
148	Henderson I	KY	5.00	4	1951	1971	20
149	Henderson I	KY	32.30	6	1968	2008	40
150	Henderson I	KY	11.50	5	1956	2008	52
151	Owensboro	KY	34.50	4	1954 1045	1978	24
152	Owensboro	KY	8.00	3	1945	1974	29
153 154	Owensboro	KY	7.50	1	1939	1977 1077	38
154 155	Owensboro Paddya Rup	KY KY	7.50 69.00	2	1939 1949	1977 1981	38 32
155	Paddys Run	Νī	09.00	4	1949	1901	32

	[A]	[B]	[C]	[D]	[E]	[F]	[G]
Line No.	Plant	State	Capacity MW	Unit	Year in Service	Retirement Year	Age at Retirement
156	Paddys Run	KY	74.70	6	1952	1984	32
157	Paddys Run	KY	74.70	5	1950	1983	33
158	Paddys Run	KY	69.00	3	1947	1981	34
159	Paddys Run	KY	25.00	1	1942	1979	37
160	Paddys Run	KY	25.00	2	1942	1979	37
161	Pineville	KY	37.50	3	1951	2002	51
162	Indeck Turners Falls Energy CNTR	MA	21.90	GEN1	1989	1999	10
163	R Paul Smith Power Station	MD	15.00	1	1900	1990	90
164	R Paul Smith Power Station	MD	35.00	2	1900	1990	90
165	Advance	MI	22.00	3	1967	2000	33
166	Advance	MI	7.50	1	1953	2000	47
167	Advance	MI	7.50	2	1953	2000	47
168	Bayside (MI)	MI	14.00	4	1968	2002	34
169	Bayside (MI)	MI	7.50	3	1954	2002	48
170	Bayside (MI)	MI	5.00	2	1950	1999	49
171	Bayside (MI)	MI	2.50	1	1946	2002	56
172	Cargill Salt Inc	MI	0.70	DCTG	1935	2002	66
173	Cargill Salt Inc	MI	1.20	DCT	1935	2002	67
174	Coldwater	MI	3.00	ST5	1962	1999	37
175	Coldwater	MI	5.00	6	1962	1999	37
176	Coldwater	MI	3.00	ST4	1940	1999	59
177	Conners Creek	MI	2.00	48	1938	1981	43
178	Conners Creek	MI	2.00	47	1937	1981	44
179	Conners Creek	MI	2.00	42	1936	1981	45
180	Conners Creek	MI	2.00	41	1935	1981	46
181	Gladston (MI GSTONE)	MI	3.00	1	1955	1980	25
182	Gladston (MI GSTONE)	MI	3.00	2	1955	1980	25
183	J B Simms	MI	10.00	1	1955	1999	38
184	James de Young	MI	8.00	1	1940	1983	43
185	James de Young	MI	8.00	2	1940	1983	43
186	Marysville	MI	2.00	45	1931	1981	50
187	Marysville	MI	2.00	44	1928	1981	53
188	Marysville	MI	2.00	43	1927	1981	54
189	Marysville	MI	50.00	6	1930	1995	65
190	Marysville	MI	10.00	3	1900	1972	72
191	Marysville	MI	30.00	2	1900	1972	72
192	Marysville	MI	30.00	4	1900	1972	72
193	Marysville	MI	30.00	5	1900	1972	72
194	Mistersky	MI	20.00	2	1927	1979	52
195	Mistersky	MI	20.00	3	1927	1979	52
196	Mistersky	MI	20.00	4	1927	1979	52
197	Ottawa Street	MI	25.00	3	1951	1993	42
198		MI	25.00	2	1949	1993	44
199		MI	4.00	5	1939	1988	49
200	Ottawa Street	MI	25.00	1	1940	1993	53
201	Pennsalt	MI	2.50	11	1964	1985	21
202	Pennsalt	MI	2.50	18	1964	1985	21
202	Pennsalt	MI	5.00	12	1964	1985	21
200	Pennsalt	MI	6.00	14	1964	1985	21
205	Pennsalt	MI	6.00	15	1964	1985	21
206	Pennsalt	MI	7.50	16	1964	1985	21
207	Pennsalt	MI	7.50	17	1964	1985	21
							-

	[A]	[B]	[C]	[D]	[E]	[F]	[G]
Line No.	Plant	State	Capacity MW	Unit	Year in Service	Retirement Year	Age at Retirement
208	Port Huron	MI	4.00	3	1969	1985	16
209	Port Huron	MI	2.00	2	1966	1985	19
210	Presque Isle	MI	37.50	2	1962	2006	44
211	Presque Isle	MI	25.00	1	1955	2006	51
212	Saginaw Station	MI	100.00	ST1	1920	1973	53
213	Trenton Channel	MI	4.00	45	1930	1977	47
214	Trenton Channel	MI	50.00	4	1926	1974	48
215	Trenton Channel	MI	50.00	5	1926	1974	48
216	Trenton Channel	MI	50.00	6	1926	1974	48
217	Trenton Channel	MI	2.00	33	1927	1977	50
218	Trenton Channel	MI	4.00	44	1927	1977	50
219	Trenton Channel	MI	50.00	1	1924	1974	50
220	Trenton Channel	MI	50.00	2	1924	1974	50
221	Trenton Channel	MI	50.00	3	1924	1974	50
222	Trenton Channel	MI	4.00	42	1924	1977	53
223	Trenton Channel	MI	4.00	43	1924	1977	53
224	Wyandotte (MI)	MI	6.00	2	1942	1984	42
225	Wyandotte (MI)	MI	4.00	1	1939	1984	45
226	Alexandria (MN)	MN	3.00	ST3	1949	1981	32
227	Benson (MN BENSON)	MN	0.30	1	1940	1982	42
228	Benson (MN BENSON)	MN	0.30	2	1929	1981	52
229	Black Dog	MN	81.00	1	1952	2001	49
230	Blue Earth	MN	2.00	3	1944	1987	43
231	Blue Earth	MN	1.50	2	1938	1984	46
232	Canby	MN	5.00	2	1942	1975	33
233	Canby	MN	3.00	1	1931	1975	44
234	Crookston	MN	5.00	2	1949	1975	26
235	Crookston	MN	5.00	1	1948	1975	27
236	Detroit Lakes	MN	2.00	2	1937	1982	45
237	Hibbing	MN	2.50	2	1941	1983	42
238	Hibbing	MN	5.00	1	1941	1984	43
239	Hibbing	MN	1.50	4	1941	1995	54
240	High Bridge	MN	50.00	4	1944	1991	47
241	High Bridge	MN	163.20	6	1959	2007	48
242	High Bridge	MN	50.00	3	1942	1991	49
243	High Bridge	MN	113.60	5	1956	2007	51
244	High Bridge	MN	35.00	2	1928	1991	63
245	High Bridge	MN	32.00	1	1924	1991	67
246	Hoot Lake	MN	7.50	1	1948	2005	57
247	Litchfield	MN	3.00	ST1	1948	1990	42
248	Litchfield	MN	1.00	ST2	1930	1977	47
249	Madison (MN)	MN	1.00	1	1949	1970	21
250	Minnesota Valley	MN	46.00	3	1953	2006	53
251	Moorhead	MN	25.00	7	1970	1999	29
252	Moorhead	MN	6.00	5	1952	1984	32
253	Moorhead	MN	3.00	4	1948	1984	36
254	Moorhead	MN	3.00	3	1940	1984	44
255	New Ulm	MN	6.00	2	1946	1984	38
256	North Broadway	MN	8.00	2	1936	1982	46
257	North Broadway	MN	5.00	1	1931	1982	51
258 259	Ortonville Riverside Repowering Project (MN)	MN MN	16.50 6.00	1 7	1950	1983 1976	33 27
209	Riverside Repowering Project (win)	IVIIN	0.00	1	1949	1970	21

	[A]	[B]	[C]	[D]	[E]	[F]	[G]
Line No.	Plant	State	Capacity MW	Unit	Year in Service	Retirement Year	Age at Retirement
260	Riverside Repowering Project (MN)	MN	35.00	2	1931	1987	56
261	Sleepy Eye	MN	1.25	4	1960	1986	26
262	Springfield (MN)	MN	0.80	1	1937	1976	39
263	Springfield (MN)	MN	4.00	4	1961	2002	41
264	Springfield (MN)	MN	2.00	3	1946	1998	52
265	Springfield (MN)	MN	1.00	2	1940	1994	54
266	Virginia	MN	5.00	1	1949	1992	43
267	Virginia	MN	2.50	4	1937	1996	59
268	Virginia	MN	1.50	3	1930	1996	66
269	Virginia	MN	1.00	2	1922	1990	68
270	Willmar	MN	1.00	2	1928	1976	48
271	Willmar	MN	4.00	ST1	1949	2006	57
272	Chillicothe	MO	2.50	4	1939	1982	43
273	Chillicothe	MO	6.00	6	1958	2004	46
274	Chillicothe	MO	1.50	3	1929	1980	51
275	Chillicothe	MO	5.00	5	1948	2004	56
276	Chillicothe	MO	2.50	4A	1938	2004	66
277	Coleman (MO)	MO	6.30	1	1959	1985	26
278	Columbia (MO CLMBIA)	MO	8.50	2	1947	1975	28
279	Columbia (MO CLMBIA)	MO	5.00	1	1938	1975	37
280	Columbia (MO CLMBIA)	MO	4.00	4	1929	1975	46
281	Fulton (MO)	MO	6.00	4	1959	1982	23
282	Fulton (MO)	MO	3.00	3	1949	1982	33
283	Fulton (MO)	MO	2.00	2	1940	1982	42
284	Fulton (MO)	MO	1.00	1	1935	1982	47
285	Grand Avenue	MO	30.00	8	1936	1982	46
286	Hannibal	MO	10.00	2	1951	1990	39
287	Hannibal	MO	17.00	3	1937	1990	53
288	Hannibal	MO	8.00	1	1936	1990	54
289	Hawthorne (MO)	MO	112.50	3	1953	1984	31
290	Hawthorne (MO)	MO	69.00	1	1951	1984	33
291	Hawthorne (MO)	MO	69.00	2	1951	1984	33
292	Southeast Missouri State Univ	MO	6.20	GEN3	1972	2007	35
293	Wright (MS)	MS	2.50	5	1926	1981	55
294	Buck Steam Station (NC)	NC	35.00	1	1926	1981	55
295	Buck Steam Station (NC)	NC	35.00	2	1926	1981	55
296	Cape Fear	NC	122.28	4	1943	1994	51
297	Cape Fear	NC	31.25	3	1942	1994	52
298	Enka	NC	0.30	GEN8	1984	2001	17
299	Enka	NC	5.00	GE12	1959	2001	42
300	Enka	NC	4.00	GE11	1957	2001	44
301	Enka	NC	4.00	GE10	1948	2001	53
	Enka	NC	3.00	GEN9	1937	2001	64 25
303	Kannapolis Energy PRTNR Spencer	NC	2.50	GEN3	1965	2000	35
304 305	Kannapolis Energy PRTNR Spencer Kannapolis Energy PTNRS	NC NC	1.00 15.00	GEN1 GEN3	1939 1971	2000 2003	61 32
306 307	Kannapolis Energy PTNRS	NC NC	7.50 7.50	GEN2 TG6	1950	2003 2006	53 50
	Plymouth (NC) Plymouth (NC)	NC		TG6 TG4	1956		50 53
308 309	Riverbend (NC)	NC	7.50 55.00	1 1	1949 1929	2002 1981	53 52
309	Riverbend (NC)	NC	55.00 55.00	2	1929	1981	52
310	Tobaccoville Utility Plant	NC	40.30	GEN1	1929	2004	52 19
511		NO	+0.50	OLINI	1303	2004	13

	[A]	[B]	[C]	[D]	[E]	[F]	[G]
Line No.	Plant	State	Capacity MW	Unit	Year in Service	Retirement Year	Age at Retirement
312	Tobaccoville Utility Plant	NC	40.30	GEN2	1985	2004	19
313	Beulah	ND	7.50	3	1949	1986	37
314	Beulah	ND	2.50	1	1927	1985	58
315	Beulah	ND	3.50	2	1927	1985	58
316	Drayton (MNKOTA)	ND	6.80	1	1965	2002	37
317	G F Wood	ND	5.00	1	1949	1983	34
318	G F Wood	ND	11.50	3	1951	1985	34
319	G F Wood	ND	5.00	2	1950	1985	35
320	William J Neal	ND	25.00	1	1952	1991	39
321	William J Neal	ND	25.00	2	1952	1991	39
322	Fremont 1	NE	10.00	5	1950	1976	26
323	Fremont 1	NE	5.00	4	1946	1976	30
324	Fremont 1	NE	3.00	3	1932	1976	44
325	Fremont 1	NE	3.00	1	1928	1976	48
326	Fremont 1	NE	2.00	2	1924	1976	52
327	Harold Kramer	NE	45.50	3	1951	1991	40
328	Harold Kramer	NE	45.50	1	1949	1991	42
329	Harold Kramer	NE	45.50	2	1949	1991	42
330	Jones St	NE	10.00	10	1937	1974	37
331	Jones St	NE	25.00	9	1929	1974	45
332	Jones St	NE	20.00	8	1925	1974	49
333	Jones St	NE	20.00	7	1921	1974	53
334	Jones St	NE	15.00	6	1917	1974	57
335	Deepwater (NJ)	NJ	27.20	7	1957	1994	37
336	Deepwater (NJ)	NJ	20.00	5	1942	1994	52
337	Howard M Down	NJ	4.00	4	1936	1979	43
338	Missouri Avenue	NJ	29.00	6	1950	1974	24
339	Missouri Avenue	NJ	29.00	7	1950	1974	24
340	Raton	NM	1.50	3	1937	1970	33
341	Raton	NM	0.80	1	1937	1977	40
342	Raton	NM	0.80	2	1937	1977	40
343	Raton	NM	3.70	4	1951	1996	45
344	Mohave (NV)	NV	818.10	1	1971	2005	34
345	Mohave (NV)	NV	818.10	2	1971	2005	34
346	AES Greenidge	NY	20.00	2	1942	1985	43
347	AES Greenidge	NY	20.00	1	1938	1985	47
348	AES Westover	NY	30.00	6	1900	1972	72
349	Deferiet New York	NY	8.10	WEST	1946	2007	61
350	Huntley Generating	NY	100.00	66	1954	2007	53
351	Huntley Generating	NY	100.00	65	1953	2007	54
352	Huntley Generating	NY	100.00	64	1948	2005	57
353	Huntley Generating	NY	80.00	63	1942	2003	61
354		NY	6.30	12TG	1941	2000	59
	Lovett	NY	200.60	LOV5	1969	2008	39
356	Lovett	NY	179.50	LOV4	1966	2007	41
357	Rochester Beebee	NY	81.60	12	1959	1999	40
358	Russell Station	NY	81.60	4	1957	2008	51
359	Russell Station	NY	62.50	3	1953	2008	55
360	Russell Station	NY	62.50	2	1950	2008	58
361	Russell Station	NY	46.00	1	1948	2008	60
362	Samuel A Carlson	NY	15.00	3	1938	1983	45
363	Samuel A Carlson	NY	13.00	4	1930	1978	48

	[A]	[B]	[C]	[D]	[E]	[F]	[G]
Line No.	Plant	State	Capacity MW	Unit	Year in Service	Retirement Year	Age at Retirement
364	Samuel A Carlson	NY	5.00	2	1924	1973	49
365	Acme (OH)	OH	6.00	TOPR	1973	1992	19
366	Acme (OH)	ОH	112.50	6	1949	1992	43
367	Acme (OH)	OH	72.00	2	1951	1995	44
368	Acme (OH)	ОH	72.00	5	1941	1992	51
369	Acme (OH)	OH	25.00	1	1937	1992	55
370	Acme (OH)	OH	35.00	4	1929	1992	63
371	Ashtabula	ОН	46.00	6	1972	2003	31
372	Ashtabula	OH	46.00	7	1972	2003	31
373	Ashtabula	OH	46.00	8	1953	2002	49
374	Ashtabula	OH	46.00	9	1953	2003	50
375	Avon Lake	OH	233.00	8	1959	1987	28
376	Avon Lake	OH	50.00	5	1943	1983	40
377	Avon Lake	OH	35.00	4	1929	1983	54
378	Avon Lake	OH	35.00	3	1928	1983	55
379	Avon Lake	OH	35.00	1	1926	1983	57
380	Avon Lake	OH	35.00	2	1926	1983	57
381	Columbus (OH)	OH	15.00	8	1966	1987	21
382	Columbus (OH)	OH	13.00	6	1950	1977	27
383	Columbus (OH)	OH	13.00	7	1957	1987	30
384	Columbus (OH)	OH	8.00	1	1929	1977	48
385	Columbus (OH)	OH	8.00	3	1925	1987	62
386	Conesville	OH	148.00	1	1959	2006	47
387	Conesville	OH	136.00	2	1957	2006	49
388	Dover (OH)	OH	4.00	2	1944	2007	63
389	East Palestine	OH	7.50	4	1962	1982	20
390	East Palestine	OH	5.00	3	1950	1982	32
391	East Palestine	OH	2.50	1	1945	1982	37
392	East Palestine	OH	1.50	2	1935	1982	47
393	Edgewater (OH)	OH	69.00	3	1949	1993	44
394	Edgewater (OH)	OH	20.00	2	1924	1983	59
395	Frank M Tait	OH	147.05	5	1959	1987	28
396	Frank M Tait	OH	147.05	4	1958	1987	29
397	Goodyear	OH	7.50	T 3	1984	2006	22
398	Goodyear	OH	12.50	T 2	1977	2006	29
399	Goodyear	OH	7.50	T 1	1975	2006	31
400	Goodyear	OH	12.50	T 4	1953	2006	53
401	Gorge (OH)	OH	40.24	7	1948	1993	45
402	Gorge (OH)	OH	40.24	6	1943 1976	1993	50
403	Hamilton Hamilton	OH OH	10.00 3.00	4	1976	1986 1975	10 46
404	Hamilton	OH		1			
405			3.00	2 3	1929	1975	46 57
406	Hamilton Lake Road (OH)	OH	7.50		1929	1986 1993	57 26
407	Mad River	OH	85.00	11	1967		
408	Mad River	OH OH	23.00 20.00	3 2	1949 1938	1985 1985	36 47
409 410		OH	20.00 25.00	∠ 1	1938	1985	47 58
410	Mad River McCracken Power Plant	OH	25.00 3.10	NO2	1927	2005	58 17
411	McCracken Power Plant	OH	5.00	NO2 NO1	1966	2005	54
412	Miami Fort	OH	65.00	4	1951	1982	40
413	Miami Fort	OH	65.00 65.00	4	1942	1982	40 44
414	Norwalk (OH)	OH	18.00	5	1938	1982	13
-15		011	10.00	0	1000	1002	10

	[A]	[B]	[C]	[D]	[E]	[F]	[G]
Line No.	Plant	State	Capacity MW	Unit	Year in Service	Retirement Year	Age at Retirement
416	Norwalk (OH)	ОН	6.00	4	1957	1982	25
417	Norwalk (OH)	ОH	3.00	3	1949	1982	33
418	Norwalk (OH)	ОН	3.00	2	1938	1982	44
419	Orrville	OH	2.50	6	1940	1984	44
420	Orrville	OH	1.50	5	1928	1984	56
421	Painesville	OH	25.00	6	1976	1989	13
422	Painesville	OH	3.00	2	1946	1983	37
423	Painesville	OH	3.00	1	1941	1983	42
424	Philo	OH	125.00	6	1957	1975	18
425	Philo	OH	85.00	4	1942	1975	33
426	Philo	OH	85.00	5	1942	1975	33
427	Philo	OH	40.00	2	1928	1975	47
428	Philo	OH	109.00	3	1928	1975	47
429	Picway	OH	34.50	4	1949	1980	31
430	Picway	OH	30.00	3	1943	1980	37
431	Piqua	OH	0.80	10	1987	2007	20
432	Piqua	OH	1.00	5	1947	1987	40
433	Piqua	OH	4.00	1	1933	1975	42
434	Piqua	OH	4.00	2	1933	1975	42
435	Piqua	OH	20.00	7	1961	2007	46
436	Piqua	OH	12.50	6	1951	2007	56
437	Piqua	OH	7.50	4	1947	2007	60
438	Piqua	OH	4.00	3	1940	2007	67
439	Poston	OH	75.00	4	1954	1987	33
440	Poston	OH	69.00	3	1952	1987	35
441	Poston	OH	44.00	2	1950	1987	37
442	Poston	OH	44.00	1	1949	1987	38
443	R E Burger	OH	62.50	2	1947	1994	47
444	R E Burger	OH	62.50	1	1944	1994	50
445	Shelby Munic Light Plant	OH	12.50	1	1967	1999	32
446	St Marys (OH)	OH	10.00	6	1967	2007	40
447	St Marys (OH)	OH	2.50	4	1946	1996	50
448	St Marys (OH)	OH	6.00	5	1957	2007	50
449	Tidd P FBC	ОН	115.00	2	1948	1979	31
450	Tidd P FBC	ОН	70.00	1	1903	1995	92
451	Toronto	OH	69.00	6	1949	2003	54
452	Toronto	OH	69.00	7	1949	2003	54
453	Toronto	OH	35.00	5	1940	2003	63
454	Woodcock	OH	10.00	5	1950	1979	29
455	Woodcock	OH	10.00	4	1947	1979	32
456	Woodcock	OH	8.00	3	1941	1979	38
457	Woodcock	OH	5.00	1	1938	1979	41
458		OH	5.00	2	1938	1979	41
459	Amalgamated Sugar Nyssa	OR	12.00	1	1987	2005	18
460	Amalgamated Sugar Nyssa	OR	0.50	3	1942	2005	63
461	Amalgamated Sugar Nyssa	OR	1.50	2	1942	2005	63
462	Crawford (PA)	PA	35.00	2	1926	1978	52
463	Crawford (PA)	PA	35.00	1	1924	1978	54
464	Crawford (PA)	PA	5.00	4	1900	1977	77
465	Crawford (PA)	PA	42.00	3	1900	1977	77
466		PA	14.00	GEN8	1971	2002	31
467	Erie Mill	PA	19.00	GEN7	1971	2002	31

	[A]	[B]	[C]	[D]	[E]	[F]	[G]
Line No.	Plant	State	Capacity MW	Unit	Year in Service	Retirement Year	Age at Retirement
468	Erie Mill	PA	4.00	GEN4	1936	2002	66
469	Erie Mill	PA	7.50	GEN6	1936	2002	66
470	F R Phillips	PA	179.00	4	1956	2000	44
471	F R Phillips	PA	81.00	3	1950	2000	50
472	F R Phillips	PA	81.00	2	1949	2000	51
473	F R Phillips	PA	69.00	1	1943	2000	57
474	Front Street (PA)	PA	18.80	1	1953	1991	38
475	Front Street (PA)	PA	50.00	5	1952	1991	39
476	Front Street (PA)	PA	28.80	4	1944	1991	47
477	Front Street (PA)	PA	15.00	3	1928	1991	63
478	Front Street (PA)	PA	10.00	2	1917	1991	74
479	General Electric Erie PA Power	PA	14.00	STM3	1949	2003	54
480	General Electric Erie PA Power	PA	9.00	STM4	1939	2003	64
481	General Electric Erie PA Power	PA	5.00	STM2	1929	2003	74
482	Holtwood	PA	15.00	15	1900	1972	72
483	Holtwood	PA	15.00	16	1900	1972	72
484	Hunlock Power Station	PA	23.00	1	1959	1974	15
485	Lock Haven Mill	PA	24.70	GEN4	1984	2002	18
486	Lock Haven Mill	PA	5.00	GEN3	1946	2002	56
487	Lock Haven Mill	PA	5.00	GEN1	1938	2002	64
488	Martins Creek	PA	156.20	MC2	1956	2007	51
489	Martins Creek	PA	156.20	MC1	1954	2007	53
490	New Castle Plant	PA	35.00	2	1947	1993	46
491	New Castle Plant	PA	35.00	1	1939	1993	54
492	Richmond Generating Station	PA	165.00	12	1935	1983	48
493	Saxton	PA	11.00	2	1900	1979	79
494	Saxton	PA	37.00	3	1900	1979	79
495	Seward	PA	27.00	2	1942	1980	38
496	Seward	PA	35.00	3	1942	1980	38
497	Seward	PA	156.20	5	1957	2003	46
498	Seward	PA	62.00	4	1950	2003	53
499	Shippingport	PA	100.00	1	1957	1982	25
500	Sonoco Products Co	PA	2.50	2	1952	2005	53
501	Warren (PA)	PA	42.00	2	1949	2002	53
502	Warren (PA)	PA	42.00	1	1948	2002	54
503	Williamsburg	PA	28.30	5	1944	1991	47
504	Williamsburg	PA	6.00	1	1900	1990	90
505	Williamsburg	PA	9.00	3	1900	1990	90
506	Lockhart	SC	5.00	1	1921	1977	56
507	Kirk (SD)	SD	5.00	3	1961	1993	32
508	Kirk (SD)	SD	16.50	4	1956	1996	40
509	Kirk (SD)	SD	5.00	1	1935	1993	58
510	Kirk (SD)	SD	5.00	2	1935	1993	58
511	Lawrence (SD)	SD	23.00	3	1951	1977	26
512	Lawrence (SD)	SD	13.00	2	1949	1977	28
513	Lawrence (SD)	SD	12.00	1	1948	1977	29
514	Mitchell (SD)	SD	8.00	1	1948	1979	31
515	Mitchell (SD)	SD	8.00	3	1948	1979	31
516	Mitchell (SD)	SD	5.00	2	1929	1977	48
517	Mobridge	SD	8.00	2	1950	1977	27
518	Kingsport Mill	ΤN	4.00	NO4	1937	1999	62
519	Lowland	ΤN	0.30	GEN4	1985	2005	20

	[A]	[B]	[C]	[D]	[E]	[F]	[G]
Line No.	Plant	State	Capacity MW	Unit	Year in Service	Retirement Year	Age at Retirement
520	Lowland	ΤN	5.00	GEN3	1951	2005	54
521	Lowland	ΤN	5.00	GEN5	1951	2005	54
522	Lowland	ΤN	5.00	GEN1	1947	2005	58
523	Lowland	ΤN	5.00	GEN2	1947	2005	58
524	Old Hickory Plant	ΤN	3.00	G10	1933	2002	69
525	Sandow	ТΧ	121.00	GEN2	1954	2006	52
526	Sandow	ТΧ	121.00	GEN3	1954	2006	52
527	Sandow	ТΧ	121.00	GEN1	1953	2006	53
528	Cedar	UT	7.50	1	1945	1987	42
529	Cedar	UT	7.50	2	1945	1987	42
530	Geneva Steel	UT	50.00	GEN1	1944	2002	58
531	Hale	UT	46.00	2	1950	1991	41
532	Hale	UT	15.00	1	1936	1979	43
533	Provo	UT	2.50	3	1941	1989	48
534	Provo	UT	2.00	1	1940	1989	49
535	Provo	UT	2.00	2	1940	1989	49
536	Brantly	VA	11.00	3	1953	1980	27
537	Brantly	VA	11.00	2	1952	1980	28
538	Brantly	VA	6.00	1	1949	1980	31
539	Chesterfield	VA	69.00	2	1949	1981	32
540	Dan River (VA)	VA	6.00	GEN2	1952	2006	54
541	Dan River (VA)	VA	3.00	GEN1	1947	2006	59
542	Glen Lyn	VA	34.00	4	1927	1974	47
543	Glen Lyn	VA	34.00	3	1924	1974	50
544	Rock Tenn Co (VA)	VA	2.00	1	1977	2000	23
545	J Edward Moran	VT	10.00	2	1954	1985	31
546	Longview (WA COWLITZ)	WA	3.00	5	1900	1973	73
547	Longview (WA COWLITZ)	WA	8.00	1	1900	1973	73
548	Longview (WA COWLITZ)	WA	8.00	2	1900	1973	73
549	Longview (WA COWLITZ)	WA	8.00	4	1900	1973	73
550	Longview (WA COWLITZ)	WA	8.00	3	1900	1974	74
551	Washington State Univ	WA	2.00	GEN1	1963	2005	42
552		WI	5.00	3	1925	1986	61
553	Columbus Street	WI	10.00	3	1941	2003	62
554	Columbus Street	WI	5.00	2	1935	2003	68
555	East Wells	WI	15.00	1	1939	1982	43
556	Edgewater (WI)	WI	30.00	2	1942	1985	43
557	Edgewater (WI)	WI	30.00	1	1931	1980	49
558	Green Bay West Mill	WI	25.00	GEN8	1977	2004	27
559	Green Bay West Mill	WI	2.50	GEN4	1947	2002	55
560	Green Bay West Mill	WI	3.00	GEN3	1940	2002	62
561	Green Bay West Mill	WI	3.00	GEN2 GEN1	1933	2002	69 72
562	Green Bay West Mill	WI	1.50	•=	1929	2002	73
563 564	Menasha (MNSHA) Menasha (MNSHA)	WI WI	4.00 4.00	1	1949 1949	1989 1989	40 40
	· · · · · ·			2			40 31
565 566	North Oak Creek North Oak Creek	WI WI	130.00 130.00	4	1957 1955	1988 1988	
	North Oak Creek			3		1988	33 25
567 568	North Oak Creek	WI WI	120.00 120.00	2 1	1954 1953	1989 1989	35 36
569	Port Washington	WI	80.00	5	1953	1989	30 41
569 570	Port Washington	WI	80.00	5 4	1950	2002	53
570	Port Washington	WI	80.00	4	1949	2002	53 56
571		~ ~ 1	00.00	0	10-0	2004	00

	[A]	[B]	[C]	[D]	[E]	[F]	[G]
Line			Capacity		Year in	Retirement	Age at
No.	Plant	State	ŃW	Unit	Service	Year	Retirement
572	Port Washington	WI	80.00	2	1943	2004	61
573	Port Washington	WI	80.00	1	1935	2004	69
574	Pulliam	WI	30.00	4	1947	2007	60
575	Pulliam	WI	30.00	3	1943	2007	64
576	Richland Center	WI	7.50	4	1966	1987	21
577	Richland Center	WI	4.00	3	1953	1987	34
578	Richland Center	WI	1.50	2	1939	1985	46
579	Richland Center	WI	1.25	1	1937	1985	48
580	Wildwood	WI	16.50	5	1968	1994	26
581	Wildwood	WI	12.50	4	1962	1994	32
582	Cabin Creek (WV)	WV	85.00	9	1943	1981	38
583	Cabin Creek (WV)	WV	85.00	8	1942	1981	39
584	Cabin Creek (WV)	WV	22.00	4	1921	1974	53
585	Cabin Creek (WV)	WV	25.00	3	1919	1974	55
586	Rivesville	WV	11.00	1	1900	1973	73
587	Rivesville	WV	13.00	2	1900	1973	73
588	Rivesville	WV	22.00	3	1900	1973	73
589	Rivesville	WV	27.00	4	1900	1973	73
590	Windsor	WV	60.00	7	1941	1975	34
591	Windsor	WV	60.00	8	1941	1975	34
592	Neil Simpson	WY	3.00	1	1961	1980	19
593	Neil Simpson	WY	2.00	4	1948	1982	34
594	Neil Simpson	WY	1.00	2	1928	1980	52

Appe	ndix A-3		
Age of Existing	g Coal Fi	red Unit	s
Generating Units	Currently	y in Serv	vice
Velocity Suite Da	atabase –	April 20)09
1	[B]	ī <u>_</u> 1	וחז

	Velocity Suite Dat				(=)	(5)
	[A]	[B]	[C]	[D]	[E]	[F]
Line No.	Plant	State	Capacity MW	Unit	Year in Service	Current Age
1	Number of Units			1,439		
2	Maximum		1,425.60		2009	88
3	Minimum		0.40		1921	0
4	Median		150.00		1967	42
5	Average		243.77			41
6	Standard Deviation		260.52			15
7	95% Confidence Limit					
8 9	Maximum Minimum		754.40 (266.86)			70 12
10	A E Staley Decatur Plant Cogeneration	IL	62.00	GEN1	1989	20
11 12	Sagamore Plant Cogeneration ACE Cogeneration Co	IN CA	7.40 108.00	GEN1 GEN1	1984 1990	25 19
13	AES Beaver Valley Partners Beaver Valley	PA	35.00	GEN2	1987	22
14	AES Beaver Valley Partners Beaver Valley	PA	114.00	GEN3	1987	22
15	AES Cayuga	NY	155.30	CAY1	1955	54
16 17	AES Cayuga	NY NY	167.20	CAY2	1955	54 59
17	AES Greenidge AES Greenidge	NY	50.00 112.50	3 4	1950 1953	59 56
10	AES Hawaii	HI	203.00	GEN1	1992	17
20	Aurora (PR)	PR	227.00	1	2002	7
21	Aurora (PR)	PR	227.00	2	2002	7
22	AES Shady Point Inc	OK	175.00	GEN1	1990	19
23	AES Shady Point Inc	OK	175.00	GEN2	1990	19
24 25	AES Somerset LLC AES Thames	NY CT	655.10 213.90	GEN1 GEN1	1984 1989	25 20
25 26	AES Marrior Run Cogeneration F	MD	213.90	GEN1	1989	10
27	AES Westover	NY	43.80	7	1943	66
28	AES Westover	NY	75.00	8	1951	58
29	Ag Processing Inc	IA	8.50	EC	1982	27
30	Stockton Cogeneration Co	CA	60.00	GEN1	1988	21
31	Charles R Lowman	AL	66.00	1	1969	40
32 33	Charles R Lowman Charles R Lowman	AL AL	236.00 236.00	2 3	1978 1980	31 29
34	E C Gaston	AL	272.00	1	1960	49
35	E C Gaston	AL	272.00	2	1960	49
36	E C Gaston	AL	272.00	3	1961	48
37	E C Gaston	AL	952.00	5	1974	35
38	E C Gaston	AL	244.80	ST4	1962	47
39 40	Gadsden Gadsden	AL AL	69.00	1 2	1949	60 60
40 41	Gorgas 2 & 3	AL	69.00 788.80	2 10	1949 1972	37
42	Gorgas 2 & 3	AL	125.00	6	1951	58
43	Gorgas 2 & 3	AL	125.00	7	1952	57
44	Gorgas 2 & 3	AL	187.50	8	1956	53
45	Gorgas 2 & 3	AL	190.40	9	1958	51
46	Greene County (AL)	AL	299.20	1	1965	44
47 48	Greene County (AL) James H Miller Jr	AL AL	269.20 705.50	2 1	1966 1978	43 31
48 49	James H Miller Jr James H Miller Jr	AL	705.50 705.50	1	1978	31 24
49 50	James H Miller Jr	AL	705.50	3	1985	24
51	James H Miller Jr	AL	705.50	4	1991	18
52	James M Barry Electric Generating Plant	AL	153.10	1	1954	55
53	James M Barry Electric Generating Plant	AL	153.10	2	1954	55
54	James M Barry Electric Generating Plant	AL	272.00	3	1959	50
55	James M Barry Electric Generating Plant	AL	403.70	4	1969	40

Appendix A-3 (continued) Age of Existing Coal Fired Units Generating Units Currently in Service Velocity Suite Database – April 2009 [B] [C]

	[A]	abase - [B]	- April 200 [C]	[D]	[E]	[F]
Line No.	Plant	State	Capacity MW	Unit	Year in Service	Current Age
56	James M Barry Electric Generating Plant	AL	788.80	5	1971	38
57	Warrick	IN	144.00	1	1960	49
58	Warrick	IN	144.00	2	1964	45
59	Warrick	IN	144.00	3	1965	44
60	Warrick	IN	323.00	4	1970	39
61	Armstrong Power Station	PA	163.20	ARM1	1958	51
62	Armstrong Power Station	PA	163.20	ARM2	1959	50
63	Hatfields Ferry Power Station	PA	576.00	1	1969	40
64 67	Hatfields Ferry Power Station	PA	576.00	2	1970	39
65 66	Hatfields Ferry Power Station Mitchell Power Station	PA PA	576.00	3 3	1971 1963	38 46
67	R Paul Smith Power Station	MD	299.20 75.00	11	1963	40 51
68	R Paul Smith Power Station	MD	34.50	9	1938	62
69	Clay Boswell	MN	75.00	1	1947	51
70	Clay Boswell	MN	75.00	2	1960	49
71	Clay Boswell	MN	364.50	3	1973	36
72	Clay Boswell	MN	558.00	4	1980	29
73	Syl Laskin	MN	58.00	1	1953	56
74	Syl Laskin	MN	58.00	2	1953	56
75	Taconite Harbor Energy Center	MN	84.00	GEN1	1957	52
76	Taconite Harbor Energy Center	MN	84.00	GEN2	1957	52
77	Taconite Harbor Energy Center	MN	84.00	GEN3	1967	42
78	Amalgamated Sugar Co LLC (The)	ID	1.50	1500	1948	61
79	Amalgamated Sugar Co LLC (The)	ID	2.50	2500	1948	61
80	Amalgamated Sugar Co LLC (The)	ID	6.20	4000	1994	15
81	Amalgamated Sugar Co LLC Nampa	ID	2.20	2250	1948	61
82	Amalgamated Sugar Co LLC Nampa	ID	6.00	6500	1968	41
83	Coffeen	IL	388.90	1	1965	44
84 85	Coffeen Hutsonville	IL IL	616.50	2	1972	37 56
60 86	Hutsonville	IL	75.00 75.00	3 4	1953 1954	55
87	Meredosia	IL	57.50	1	1934	61
88	Meredosia	IL	57.50	2	1949	60
89	Meredosia	IL.	239.30	3	1960	49
90	Newton (IL)	IL	617.40	1	1977	32
91	Newton (IL)	IL	617.40	2	1982	27
92	Duck Creek	IL	441.00	1	1976	33
93	E D Edwards	IL	136.00	1	1960	49
94	E D Edwards	IL	280.50	2	1968	41
95	E D Edwards	IL	363.80	3	1972	37
96	Labadie	MO	573.70	1	1970	39
97	Labadie	MO	573.70	2	1971	38
98	Labadie	MO	621.00	3	1972	37
99	Labadie	MO	621.00	4	1973	36
100 101	Meramec Meramec	MO MO	137.50 137.50	1 2	1953 1954	56 55
101	Meramec	MO	289.00	2	1954	50
102	Meramec	MO	359.00	4	1959	48
103	Rush Island	MO	621.00	1	1976	33
105	Rush Island	MO	621.00	2	1977	32
106	Sioux	MO	549.70	1	1967	42
107	Sioux	MO	549.70	2	1968	41
108	ACS Crookston	MN	3.50	G1	1954	55
109	ACS Crookston	MN	3.00	G2	1975	34
110	ACS Drayton	ND	6.00	G1	1965	44
111	ACS East Grand Forks	MN	2.50	G1	1990	19
112	ACS East Grand Forks	MN	5.00	G2	1990	19
113	ACS Hillsboro	ND	13.30	G1	1990	19
114	ACS Moorhead	MN	3.00	G1	1948	61
115	ACS Moorhead	MN	2.00	G2	1961	48

Appendix A-3 (continued) Age of Existing Coal Fired Units Generating Units Currently in Service Velocity Suite Database – April 2009 [A] [B] [C]

	[A]	abase – [B]	[C]	9 [D]	[E]	[F]
Line			Capacity		Year in	
No.	Plant	State	MW	Unit	Service	Current Age
116	Richard H Gorsuch	ОН	50.00	1	1988	21
117	Richard H Gorsuch	OH	50.00	2	1988	21
118	Richard H Gorsuch	OH	50.00	3	1988	21
119	Richard H Gorsuch	OH	50.00	4	1988	21
120	Ames Electric Services Power Plant (la Ames)	IA	71.30	ST6	1982	27
121	Anheuser Busch Inc St Louis	MO	11.00	GEN1	1947	62
122	Anheuser Busch Inc St Louis	MO	11.00	GEN3	1948	61
123	Anheuser Busch Inc St Louis	MO	4.10	GEN4	1939	70
124	Clinch River	VA	237.50	1	1958	51
125	Clinch River	VA	237.50	2	1958	51
126	Clinch River	VA	237.50	3	1961	48
127	Glen Lyn	VA	100.00	5	1944	65
128	Glen Lyn	VA	237.50	6	1957	52
129	John E Amos	WV	816.30	1	1971	38
130	John E Amos	WV	816.30	2	1972	37
131	John E Amos	WV	1,300.00	3	1973	36
132	Kanawha River	WV	219.60	1	1953	56
133	Kanawha River	WV	219.60	2	1953	56
134	Mountaineer	WV	1,300.00	1	1980	29
135	Phil Sporn	WV	152.50	1	1950	59
136	Phil Sporn	WV	152.50	2	1950	59
137	Phil Sporn	WV	152.50	3	1951	58
138	Phil Sporn	WV	152.50	4	1952	57
139	Phil Sporn	WV	495.50	5	1960	49
140	Lake Road (MO)	MO	90.00	4	1966	43
141	Sibley (MO)	MO	55.00	1	1960	49
142	Sibley (MO)	MO	50.00	2	1962	47
143	Sibley (MO)	MO	419.00	3	1969	40
144	Archer Daniels Midland Cedar Rapids	IA IA	31.00	GEN1	1988	21 21
145 146	Archer Daniels Midland Cedar Rapids	IA	31.00	GEN2	1988	21
140	Archer Daniels Midland Cedar Rapids Archer Daniels Midland Cedar Rapids	IA	31.00 31.00	GEN3 GEN4	1988 1988	21
147	Archer Daniels Midland Cedar Rapids	IA	31.00	GEN4 GEN5	1988	14
140	Archer Daniels Midland Cedar Rapids	IA	101.10	GEN5 GEN6	2000	9
150	Archer Daniels Midland Mankato	MN	6.10	GEN1	1987	22
151	Clinton (IA ADM)	IA	7.50	GEN1	1954	55
152	Clinton (IA ADM)	IA	3.50	GEN2	1940	69
153	Clinton (IA ADM)	IA	9.40	GEN3	1965	44
154	Clinton (IA ADM)	IA	4.00	GEN4	1974	35
155	Clinton (IA ADM)	IA	7.00	GEN5	1991	18
156	Decatur (IL ADM)	IL	31.00	GEN2	1987	22
157	Decatur (IL ADM)	IL.	31.00	GEN3	1987	22
158	Decatur (IL ADM)	IL	31.00	GEN4	1987	22
159	Decatur (IL ADM)	IL	31.00	GEN5	1987	22
160	Decatur (IL ADM)	IL	31.00	GEN6	1994	15
161	Decatur (IL ADM)	IL	75.00	GEN7	1997	12
162	Decatur (IL ADM)	IL	105.00	GEN8	2004	5
163	Des Moines (IA ADM)	IA	7.90	GEN1	1988	21
164	Lincoln (NE)	NE	7.90	GEN1	1988	21
165	Peoria (IL)	IL	1.50	GEN1	1934	75
166	Peoria (IL)	IL	1.50	GEN2	1934	75
167	Peoria (IL)	IL	4.00	GEN3	1954	55
168	Peoria (IL)	IL	4.00	GEN4	1985	24
169	Apache Station	AZ	204.00	ST2	1979	30
170	Apache Station	AZ	204.00	ST3	1979	30
171	Cholla	AZ	113.60	1	1962	47
172	Cholla	AZ	288.90	2	1978	31
173	Cholla	AZ	312.30	3	1980	29

[F]

[D]

[E]

Appendix A-3 (continued) Age of Existing Coal Fired Units Generating Units Currently in Service Velocity Suite Database – April 2009 [A] [B] [C]

	[A]	[B]	[C]	נטן	[=]	[F]
Line			Capacity		Year in	
No.	Plant	State	MW	Unit	Service	Current Age
174	Cholla	AZ	414.00	4	1981	28
175	Four Corners	NM	190.00	1	1963	46
176	Four Corners	NM	190.00	2	1963	46
177	Four Corners	NM	253.40	3	1964	45
178	Four Corners	NM	818.10	4	1969	40
179	Four Corners	NM	818.10	5	1970	39
180	New Madrid (Memphis)	MO	600.00	1	1972	37
181	New Madrid (Memphis)	MO	600.00	2	1977	32
182	Thomas Hill	MO	180.00	1	1966	43
183	Thomas Hill	MO	285.00	2	1969	40
184	Thomas Hill	MO	670.00	3	1982	27
185	Battle River	AB	158.50	3	1969	40
186	Battle River	AB	158.50	4	1981	28
187	Battle River	AB	375.00	5	1981	28
188	Sheerness	AB	389.00	1	1986	23
189	Sheerness	AB	383.00	2	1990	19
190	Deepwater (NJ)	NJ	73.50	6	1954	55
191	Chena	AK	5.00	1	1952	57
192	Chena	AK	2.50	2	1952	57
193	Chena	AK	20.00	5	1975	34
194	Austin Northeast Station (MN)	MN	31.90	1	1971	38
195	Antelope Valley	ND	434.90	1	1984	25
196	Antelope Valley	ND	434.90	2	1986	23
197	Laramie River	WY	570.00	1	1981	28
198	Laramie River	WY	570.00	2	1981	28
199	Laramie River	WY	570.00	3	1982	27
200	Leland Olds 1 & 2	ND	216.00	1	1966	43
201	Leland Olds 1 & 2	ND	440.00	2	1975	34
202	HMP & L Station 2	KY KY	180.00	GEN1 GEN2	1973	36 35
203 204	HMP & L Station 2 W N Clark	CO	185.00 18.70	GEN2	1974 1955	55 54
204 205	W N Clark	co	25.00	2	1955	54 50
205	Ben French	SD	25.00	ST1	1959	48
200	Neil Simpson	WY	23.00	5	1961	40
207	Neil Simpson II	WY	80.00	2	1995	14
200	Osage (WY)	ŴŶ	11.50	1	1935	61
210	Osage (WY)	ŴŶ	11.50	2	1949	60
211	Osage (WY)	ŴŶ	11.50	3	1952	57
212	Wygen	WY	88.00	1	2003	6
213	Black River Generation	NY	55.50	GEN1	1989	20
214	Canton North Carolina	NC	7.50	GEN8	1937	72
215	Canton North Carolina	NC	7.50	GEN9	1941	68
216	Canton North Carolina	NC	7.50	GN10	1946	63
217	Canton North Carolina	NC	7.50	GN11	1949	60
218	Canton North Carolina	NC	10.00	GN12	1952	57
219	Canton North Carolina	NC	12.50	GN13	1979	30
220	Bowater Newsprint Calhoun Operations	ΤN	19.00	GEN1	1954	55
221	Bowater Newsprint Calhoun Operations	ΤN	19.20	GEN2	1954	55
222	U S Alliance Coosa Pines	AL	5.00	AOW1	1942	67
223	U S Alliance Coosa Pines	AL	5.00	AOW2	1942	67
224	U S Alliance Coosa Pines	AL	5.00	AOW4	1942	67
225	U S Alliance Coosa Pines	AL	5.00	AOW5	1942	67
226	Bunge Milling Cogeneration Inc	IL	20.00	GEN1	1989	20
227	Rittman Paperboard	OH	5.00	GEN2	1940	69
228	Cardinal	OH	615.20	1	1967	42
229	Cardinal	OH	615.20	2	1967	42
230	Cardinal	OH	650.00	3	1977	32
231	Cargill Salt Inc	MI	2.00	ACTG	1968	41

[F]

Appendix A-3 (continued) Age of Existing Coal Fired Units Generating Units Currently in Service Velocity Suite Database – April 2009 [A] [B] [C]

Capacity Year in MW Unit Sonico C

Line No.	Plant	State	Capacity MW	Unit	Year in Service	Current Age
232	Corn Wet Milling Plant	TN	25.00	GEN1	1985	24
233	Cargill Inc Corn Milling Divis	IA	20.00	GEN2	1952	57
234	Catalyst Paper Snowflake	AZ	27.20	GEN1	1961	48
235	Catalyst Paper Snowflake	AZ	43.30	GEN2	1974	35
236	Cinergy Solutions of Narrows	VA	6.00	GEN1	1942	67
237	Cinergy Solutions of Narrows	VA	6.00	GEN2	1942	67
238	Cinergy Solutions of Narrows	VA	6.00	GEN3	1944	65
239	Cinergy Solutions of Narrows	VA	9.20	GEN4	1966	43
240	Menominee Aquisition Corp	MI	2.50	ST2	1950	59
241	Chamois	MO	15.00	1	1953	56
242	Chamois	MO	44.00	2	1960	49
243	Fair Station	IA	25.00	1	1960	49
244	Fair Station	IA	37.50	2	1967	42
245	Central Soya Co Inc	IN	2.00	3516	1950	59
246	Carneys Point Generating Plant	NJ	285.00	GEN1	1993	16
247	Wygen II	WY	90.00	ST1	2008	1
248	Red Hills Generating Facility	MS	513.70	RHGF	2002	7
249	G F Weaton Power Station	PA	60.00	GEN1	1958	51
250	G F Weaton Power Station	PA	60.00	GEN2	1958	51
251	Perry K	IN	15.00	4	1925	84
252	Perry K	IN LA	5.00 720.70	6	1938	71 23
253 254	Dolet Hills Rodemacher	LA	558.00	1 2	1986 1982	23 27
254	Silver Bay Power Co	MN	50.00	GEN1	1955	54
256	Silver Bay Power Co	MN	81.60	GEN2	1962	47
257	Cedar Bay Generating Co LP	FL	291.60	GEN1	1993	16
	Logan Generating Plant	NJ	242.30	GEN1	1994	15
259	Portsmouth Cogeneration Plant	VA	57.40	GEN1	1988	21
260	Portsmouth Cogeneration Plant	VA	57.40	GEN2	1988	21
261	Centennial Hardin (MT)	MT	115.70	ST1	2006	3
262	Trigen Colorado	со	7.50	GEN1	1976	33
263	Trigen Colorado	со	7.50	GEN2	1977	32
264	Trigen Colorado	СО	20.00	GEN3	1983	26
265	Trigen Colorado	CO	0.40	VBPT	1997	12
266	Martin Drake	CO	50.00	5	1962	47
267	Martin Drake	CO	75.00	6	1968	41
268	Martin Drake	CO	132.00	7	1974	35
269	Ray D Nixon	CO	207.00	ST1	1980	29
270	Columbia (MO CLMBIA)	MO	16.50	5	1957	52
271	Columbia (MO CLMBIA)	MO	22.00	7	1965	44
272	Conesville	OH	161.50	3	1962	47
273	Conesville	OH	841.50	4	1973	36
274	Conesville	OH	443.90	5	1976	33
275	Conesville	OH	443.90	6	1978	31
276	Picway	OH	106.20	5	1955	54
277	Carbon II	COA	350.00	1	1993	16
278	Carbon II	COA	350.00	2	1993	16
279 280	Carbon II Carbon II	COA COA	350.00 350.00	3 4	1995 1996	14 13
280 281	Jose Lopez Portillo (Rio Escondido)	COA	300.00	4	1996	27
282	Jose Lopez Portillo (Rio Escondido)	COA	300.00	2	1982	26
282	Jose Lopez Portillo (Rio Escondido)	COA	300.00	2	1985	20
283	Jose Lopez Portillo (Rio Escondido)	COA	300.00	4	1987	24
285	Edge Moor	DE	75.00	EM3	1954	55
286	Edge Moor	DE	176.80	EM4	1966	43
287	Brandon Shores	MD	685.00	1	1984	25
288	Brandon Shores	MD	685.00	2	1991	18
289	C P Crane	MD	190.40	1	1961	48

Appendix A-3 (continued) Age of Existing Coal Fired Units Generating Units Currently in Service Velocity Suite Database – April 2009 [A] [B] [C]

	[A]	adase – [B]	[C]	9 [D]	[E]	(F)
	[/]		[0]		[=]	[··]
Line			Capacity		Year in	
No.	Plant	State	MW	Unit	Service	Current Age
290	C P Crane	MD	209.40	2	1963	46
291	Herbert A Wagner	MD	136.00	2	1959	50
292	Herbert A Wagner	MD	359.00	3	1966	43
293	B C Cobb	MI	156.30	4	1956	53
294	B C Cobb	MI	156.30	5	1957	52
295 296	D E Karn D E Karn	MI MI	272.00 272.00	1 2	1959 1961	50 48
290	J C Weadock	MI	156.30	7	1955	48 54
298	J C Weadock	MI	156.30	8	1958	54
299	J H Campbell	MI	265.20	1	1962	47
300	J H Campbell	MI	403.90	2	1967	42
301	J H Campbell	MI	916.80	3	1980	29
302	J R Whiting	MI	106.30	1	1952	57
303	J R Whiting	MI	106.30	2	1952	57
304	J R Whiting	MI	132.80	3	1953	56
305	Earl F Wisdom	IA	33.00	ST1	1960	49
306	Corn Products International	IL	22.50	TGO1	1991	18
307	Corn Products International	IL	22.50	TGO2	1991	18
308	Corn Products Winston Salem	NC	0.90	900	1993	16
309	Cornell Univ Central Heating	NY	1.80	TG1	1988	21
310	Cornell Univ Central Heating J K Spruce	NY	5.70	TG2	1988	21 17
311 312	J T Deely	TX TX	566.00 486.00	1 1	1992 1977	32
312	J T Deely	TX	446.00	2	1977	32
314	Crawfordsville	IN	11.50	4	1955	54
315	Crawfordsville	IN	12.60	5	1965	44
316	Plant Crisp	GA	12.50	1	1957	52
317	Alma	WI	15.00	1	1947	62
318	Alma	WI	15.00	2	1947	62
319	Alma	WI	15.00	3	1951	58
320	Alma	WI	54.40	4	1957	52
321	Alma	WI	81.60	5	1960	49
322	Genoa No3	WI	345.60	ST3	1969	40
323	John P Madgett	WI	387.00	1	1979	30
324	J M Stuart	OH	610.20	1	1971	38
325	J M Stuart	OH	610.20	2	1970	39
326	J M Stuart	OH	610.20	3 4	1972	37
327 328	J M Stuart Killen Station	OH OH	610.20 660.60	4 2	1974 1982	35 27
320	O H Hutchings	OH	69.00	1	1962	61
330	O H Hutchings	OH	69.00	2	1949	60
331	O H Hutchings	OH	69.00	3	1950	59
332	O H Hutchings	OH	69.00	4	1951	58
333	O H Hutchings	OH	69.00	5	1952	57
334	O H Hutchings	OH	69.00	6	1953	56
335	Central Power & Lime Inc	FL	125.00	GEN1	1988	21
336	Bonanza	UT	499.50	1	1986	23
337	Belle River	MI	697.50	ST1	1984	25
338	Belle River	MI	697.50	ST2	1985	24
339	Harbor Beach	MI	121.00	1	1968	41
340	Monroe (MI)	MI	817.20	1	1971	38
341	Monroe (MI)	MI	822.60	2	1973	36
342	Monroe (MI)	MI	822.60	3	1973	36
343	Monroe (MI)	MI	817.20	4	1974	35
344 345	River Rouge	MI MI	292.50	2	1957	52 51
345 346	River Rouge St Clair	MI	358.10 168.70	3 1	1958 1953	51
340 347	St Clair	MI	156.20	2	1953	56 56
577		1111	100.20	-	1000	00

[F]

[E]

Appendix A-3 (continued) Age of Existing Coal Fired Units Generating Units Currently in Service Velocity Suite Database – April 2009 [A] [B] [C] [D]

	[A]	[Þ]	[U]	נטן	[=]	[[]
Line			Capacity		Year in	
No.	Plant	State	MW	Unit	Service	Current Age
348 349	St Clair St Clair	MI MI	156.20	3 4	1954 1954	55 55
		MI	168.70			
350	St Clair St Clair	MI	352.70	6 7	1961	48 40
351			544.50	7	1969	
352 353	Trenton Channel Trenton Channel	MI MI	120.00		1949	60 59
353 354	Trenton Channel	MI	120.00	8 9	1950 1968	59 41
355	Brayton PT	MA	535.50 241.00	GEN1	1963	41
356	Brayton PT	MA	241.00	GEN1 GEN2	1963	40
357	Brayton PT	MA	642.60	GEN2 GEN3	1964	45 51
358	Salem Harbor	MA	81.90	GEN3 GEN1	1958	57
359	Salem Harbor	MA	82.00	GEN2	1952	57
360	Salem Harbor	MA	165.70	GEN2 GEN3	1952	51
361	Kincaid Generation LLC	IL	659.50	1	1956	42
362	Kincaid Generation LLC	IL	659.50	2	1968	42
363	Dover (OH)	OH	19.50	4	1968	41
364	TS Power Plant	NV	200.00	ST	2008	1
365	Belews Creek	NC	1,080.10	1	1974	35
366	Belews Creek	NC	1,080.10	2	1974	34
367	Buck Steam Station (NC)	NC	80.00	3	1975	68
368	Buck Steam Station (NC)	NC	40.00	4	1941	67
369	Buck Steam Station (NC)	NC	125.00	4 5	1942	56
370	Buck Steam Station (NC)	NC	125.00	6	1953	56
371	Cliffside	NC	40.00	1	1940	69
372	Cliffside	NC	40.00	2	1940	69
373	Cliffside	NC	40.00 65.00	3	1948	61
374	Cliffside	NC	65.00	4	1948	61
375	Cliffside	NC	570.90	5	1972	37
376	Dan River (NC)	NC	70.00	1	1949	60
377	Dan River (NC)	NC	70.00	2	1950	59
378	Dan River (NC)	NC	150.00	3	1955	54
379	G G Allen	NC	165.00	1	1957	52
380	G G Allen	NC	165.00	2	1957	52
381	G G Allen	NC	275.00	3	1959	50
382	G G Allen	NC	275.00	4	1960	49
383	G G Allen	NC	275.00	5	1961	48
384	Marshall (NC DUKE)	NC	350.00	1	1965	44
385	Marshall (NC DUKE)	NC	350.00	2	1966	43
386	Marshall (NC DUKE)	NC	648.00	3	1969	40
387	Marshall (NC DUKE)	NC	648.00	4	1970	39
388	Riverbend (NC)	NC	100.00	4	1952	57
389	Riverbend (NC)	NC	100.00	5	1952	57
390	Riverbend (NC)	NC	133.00	6	1954	55
391	Riverbend (NC)	NC	133.00	7	1954	55
392	W S Lee	SC	90.00	1	1951	58
393	W S Lee	SC	90.00	2	1951	58
394	W S Lee	SC	175.00	3	1958	51
395	Cayuga	IN	531.00	1	1970	39
396	Cayuga	IN	531.00	2	1972	37
397	Edwardsport	IN	40.20	7	1949	60
398	Edwardsport	IN	69.00	8	1951	58
399	Gibson Station	IN	667.90	1	1976	33
400	Gibson Station	IN	667.90	2	1975	34
401	Gibson Station	IN	667.90	3	1978	31
402	Gibson Station	IN	667.90	4	1979	30
403	Gibson Station	IN	667.90	5	1982	27
404	R Gallagher	IN	150.00	1	1959	50
405	R Gallagher	IN	150.00	2	1958	51

[F]

[E]

Appendix A-3 (continued) Age of Existing Coal Fired Units Generating Units Currently in Service Velocity Suite Database – April 2009 [A] [B] [C] [D]

	[A]	[b]	[C]	נטן	[=]	[F]
Line			Capacity		Year in	
No.	Plant	State	MW	Unit	Service	Current Age
406	R Gallagher	IN	150.00	3	1960	49
407	R Gallagher	IN	150.00	4	1961	48
408	Wabash River	IN	112.50	2	1953	56
409	Wabash River	IN	123.20	3	1954	55
410	Wabash River	IN	112.50	4	1955	54
411	Wabash River	IN	125.00	5	1956	53
412	Wabash River	IN	387.00	6	1968	41
413	Wabash River	IN	304.50	IGCC	1995	14
414	East Bend	KY	669.30	2	1981	28
415	Miami Fort	OH	100.00	5	1949	60
416	Miami Fort	OH OH	163.20	6 7	1960	49
417 418	Miami Fort Miami Fort	OH	557.10 557.70	8	1975 1978	34 31
410	W H Zimmer	OH	1,425.60	ST1	1978	18
420	Walter C Beckjord	OH	115.00	1	1952	57
421	Walter C Beckjord	OH	112.50	2	1953	56
422	Walter C Beckjord	OH	125.00	3	1954	55
423	Walter C Beckjord	OH	163.20	4	1958	51
424	Walter C Beckjord	OH	244.80	5	1962	47
425	Walter C Beckjord	OH	460.80	6	1969	40
426	Baldwin Energy Complex	IL	625.10	1	1970	39
427	Baldwin Energy Complex	IL	634.50	2	1973	36
428	Baldwin Energy Complex	IL	634.50	3	1975	34
429	Havana	IL	488.00	6	1978	31
430	Hennepin Power Station	IL	75.00	1	1953	56
431	Hennepin Power Station	IL	231.30	2	1959	50
432 433	Vermillion Power Station Vermillion Power Station	IL IL	73.50 108.80	1 2	1955 1956	54 53
433	Wood River (IL)	IL	112.50	4	1956	55
435	Wood River (IL)	IL	387.60	5	1964	45
436	Danskammer Generating Station	NY	147.10	3	1959	50
437	Danskammer Generating Station	NY	239.40	4	1967	42
438	Kinston North Carolina Plant	NC	7.50	GEN1	1952	57
439	Kinston North Carolina Plant	NC	7.50	GEN2	1952	57
440	May Plant	SC	5.50	GEN1	1952	57
441	May Plant	SC	5.50	GEN2	1952	57
442	May Plant	SC	19.00	GEN3	1993	16
443	Old Hickory Plant	TN	1.00	IG	1993	16
444	Waynesboro Virginia	VA	3.00	GEN2	1929	80
445 446	Waynesboro Virginia	VA KY	3.40 27.00	GEN4 1	1929 1954	80 55
440 447	Dale (KY) Dale (KY)	KY	27.00	2	1954	55 55
448	Dale (KY)	KY	81.00	3	1957	52
449	Dale (KY)	KY	81.00	4	1960	49
450	Hugh L Spurlock	KY	357.60	1	1977	32
451	Hugh L Spurlock	KY	592.10	2	1981	28
452	Hugh L Spurlock	KY	329.40	3	2005	4
453	Hugh L Spurlock	KY	278.00	4	2009	0
454	J Sherman Cooper	KY	113.60	1	1965	44
455	J Sherman Cooper	KY	230.40	2	1969	40
456	Tenn Eastman Division A Division of East	TN	6.00	TG10	1946	63
457	Tenn Eastman Division A Division of East	TN	6.00	TG11	1949	60 50
458 459	Tenn Eastman Division A Division of East	TN TN	6.00	TG12 TG13	1953	56 49
459 460	Tenn Eastman Division A Division of East Tenn Eastman Division A Division of East	TN	7.00 10.00	TG13 TG14	1960 1962	49 47
460	Tenn Eastman Division A Division of East	TN	7.50	TG14	1962	46
462	Tenn Eastman Division A Division of East	TN	10.40	TG16	1966	40
463	Tenn Eastman Division A Division of East	TN	10.40	TG17	1966	43

	velocity Suite Dat		-			
	[A]	[B]	[C]	[D]	[E]	[F]
Line			Conocity		Year in	
Line No.	Plant	State	Capacity MW	Unit	Service	Current Age
464	Tenn Eastman Division A Division of East	TN	10.40	TG18	1967	42
465	Tenn Eastman Division A Division of East	TN	10.40	TG19	1970	39
466	Tenn Eastman Division A Division of East	TN	10.40	TG20	1972	37
467	Tenn Eastman Division A Division of East	TN	15.00	TG21	1969	40
468	Tenn Eastman Division A Division of East	TN	15.40	TG22	1982	27
469	Tenn Eastman Division A Division of East	TN	16.80	TG24	1983	26
470	Tenn Eastman Division A Division of East	TN	18.00	TG25	1994	15
471 472	Tenn Eastman Division A Division of East	TN TN	16.60	TG26	1994	15
472	Tenn Eastman Division A Division of East Tenn Eastman Division A Division of East	TN	6.00 6.00	TGO7 TGO8	1936 1939	73 70
473	Tenn Eastman Division A Division of East	TN	6.00	TGO8	1939	68
475	Kodak Park Site	NY	10.40	13TG	1948	61
476	Kodak Park Site	NY	10.40	14TG	1948	61
477	Kodak Park Site	NY	17.50	15TG	1956	53
478	Kodak Park Site	NY	15.00	17TG	1968	41
479	Kodak Park Site	NY	12.50	22TG	1954	55
480	Kodak Park Site	NY	25.60	41TG	1964	45
481	Kodak Park Site	NY	25.60	42TG	1967	42
482	Kodak Park Site	NY	25.60	43TG	1969	40
483	Kodak Park Site	NY	25.60	44TG	1987	22
484	Dwayne Collier Battle Cogeneration	NC	67.50	GEN1	1990	19
485	Dwayne Collier Battle Cogeneration	NC	67.50	GEN2	1990	19
486	Joppa Steam	IL	183.30	1	1953	56
487	Joppa Steam	IL	183.30	2	1953	56
488	Joppa Steam	IL	183.30	3	1954	55
489	Joppa Steam	IL	183.30	4	1954	55
490	Joppa Steam	IL	183.30	5	1955	54
491	Joppa Steam	IL	183.30	6	1955	54
492	Alloy Steam	WV	40.00	GEN3	1950	59
493	Asbury	MO	212.80	1	1970	39
494	Asbury	MO	18.70	2	1986	23
495	Riverton	KS	37.50	7	1950	59
496	Riverton	KS	50.00	8	1954	55
497	Independence (AR)	AR	850.00	1 2	1983	26
498	Independence (AR) White Bluff	AR AR	850.00	∠ 1	1984	25 29
499 500	White Bluff	AR	850.00	2	1980 1981	29 28
500	Roy S Nelson	LA	850.00 614.60	6	1981	28
502	Roxboro Cogeneration Facility	NC	67.50	GEN1	1987	22
502	Southport	NC	67.50	GEN1	1987	22
504	Southport	NC	67.50	GEN2	1987	22
505	Genesee (CAN)	AB	410.00	1	1994	15
506	Genesee (CAN)	AB	410.00	2	1989	20
507	Genesee (CAN)	AB	495.00	3	2005	4
508	Cromby Generating Station	PA	187.50	1	1954	55
509	Eddystone Generating Station	PA	353.60	1	1960	49
510	Eddystone Generating Station	PA	353.60	2	1960	49
511	Ashtabula	OH	256.00	5	1958	51
512	Bay Shore	OH	140.60	1	1955	54
513	Bay Shore	OH	140.60	2	1959	50
514	Bay Shore	OH	140.60	3	1963	46
515	Bay Shore	OH	217.60	4	1968	41
516	Bruce Mansfield	PA	913.70	1	1976	33
517	Bruce Mansfield	PA	913.70	2	1977	32
518	Bruce Mansfield	PA	913.70	3	1980	29
519	Eastlake (OH)	OH	123.00	1	1953	56
520	Eastlake (OH)	OH OH	123.00	2 3	1953	56 55
521	Eastlake (OH)	ОП	123.00	3	1954	55

[F]

[E]

	[A]	[D]	[C]	נטן	[⊏]	נרן
Line			Capacity		Year in	
No.	Plant	State	MW	Unit	Service	Current Age
522		OH	208.00	4	1956	53
522 523	Eastlake (OH) Eastlake (OH)	OH	208.00 680.00	4 5	1956	37
523	Lake Shore	OH	256.00	18	1962	47
525	R E Burger	OH	103.40	3	1950	59
526	R E Burger	OH	156.20	4	1955	53 54
527	R E Burger	OH	156.20	5	1955	54
528	W H Sammis	OH	190.40	1	1959	50
529	W H Sammis	OH	190.40	2	1960	49
530	W H Sammis	OH	190.40	3	1961	48
531	W H Sammis	ОH	190.40	4	1962	47
532	W H Sammis	ОH	334.00	5	1967	42
533	W H Sammis	OH	680.00	6	1969	40
534	W H Sammis	OH	680.00	7	1971	38
535	Marcus Hook	PA	17.50	1	1970	39
536	Green Bay West Mill	WI	28.20	GEN10	2005	4
537	Green Bay West Mill	WI	10.00	GEN5	1954	55
538	Green Bay West Mill	WI	18.70	GEN6	1963	46
539	Green Bay West Mill	WI	28.90	GEN7	1969	40
540	Green Bay West Mill	WI	43.20	GEN9	1985	24
541	Muskogee Mill	OK	25.00	GEN1	1978	31
542	Muskogee Mill	OK	44.50	GEN2	1979	30
543	Muskogee Mill	OK	44.50	GEN3	1982	27
544	Port of Stockton District Ener	CA	54.00	STG	1987	22
545	Franklin Heating	MN	6.50	GEN6	2006	3
546	Lon Wright	NE	16.50	6	1957	52
547	Lon Wright	NE	22.00	7	1963	46
548	Lon Wright	NE	91.50	8	1977	32
549	Deerhaven Generating Station	FL WY	250.70	2 TC1	1981	28 41
550 551	General Chemical General Chemical	WY	15.00 15.00	TG1 TG2	1968 1977	32
552	Bowen	GA	805.80	1 1	1971	38
553	Bowen	GA	788.80	2	1972	37
554	Bowen	GA	952.00	3	1972	35
555	Bowen	GA	952.00	4	1975	34
556	Hammond	GA	125.00	1	1954	55
557	Hammond	GA	125.00	2	1954	55
558	Hammond	GA	125.00	3	1955	54
559	Hammond	GA	578.00	4	1970	39
560	Harllee Branch	GA	299.20	1	1965	44
561	Harllee Branch	GA	359.00	2	1967	42
562	Harllee Branch	GA	544.00	3	1968	41
563	Harllee Branch	GA	544.00	4	1969	40
564	Jack McDonough	GA	299.20	1	1963	46
565	Jack McDonough	GA	299.20	2	1964	45
566	Kraft	GA	54.40	2	1961	48
567	Kraft	GA	103.50	3	1965	44
568	Kraft	GA	126.00	4	1972	37
569	Kraft	GA	50.00	ST1	1958	51
570	McIntosh (GA SAVNAH)	GA	177.60	1	1979	30
571	Mitchell (GA)	GA	163.20	3	1964	45
572	Scherer	GA	891.00	1	1982	27
573	Scherer	GA	891.00	2	1984	25
574	Scherer	GA	891.00	3	1987	22
575 576	Scherer Wansley (GPC)	GA GA	891.00	4	1989 1976	20 33
576 577	Wansley (GPC) Wansley (GPC)	GA GA	952.00 952.00	1 2	1976 1978	33 31
577 578	Yates	GA	952.00 122.50	2 1	1978	59
578 579	Yates	GA	122.50	2	1950	59 59
515	14.00	04	122.00	-	1000	00

	velocity Suite Dat		-			
	[A]	[B]	[C]	[D]	[E]	[F]
			0	<u>г г</u>		
Line			Capacity		Year in	
No.	Plant	State	MW	Unit	Service	Current Age
580	Yates	GA	122.50	3	1952	57
581	Yates	GA	156.20	4	1957	52
582	Yates	GA	156.20	5	1958	51
583	Yates	GA	403.70	6	1974	35
584	Yates	GA	403.70	7	1974	35
585	Healy	AK	28.00	1	1967	42
586	J B Simms	MI	80.00	3	1983	26
587	Platte	NE	109.80	1	1982	27
588	Grda 1 & 2	OK	490.00	1	1981	28
589	Grda 1 & 2	OK	520.00	2	1985	24
590	Coal Creek	ND	605.00	1	1979	30
591	Coal Creek	ND	605.00	2	1980	29
592	Stanton (ND)	ND	190.20	1	1967	42
593	Henderson (MS)	MS	20.00	H3	1967	42
593 594	Crist	FL	93.70	4	1959	50
594 595	Crist	FL	93.70 93.70	4 5	1959	48
		FL		5 6	1961	40 39
596	Crist		369.70			
597	Crist	FL	578.00	7	1973	36
598	Lansing Smith	FL	149.60	1	1965	44
599	Lansing Smith	FL	190.40	2	1967	42
600	Scholz	FL	49.00	1	1953	56
601	Scholz	FL	49.00	2	1953	56
602	Hamilton	OH	25.00	8	1965	44
603	Hamilton	OH	50.60	9	1975	34
604	Whelan Energy Center	NE	76.30	1	1981	28
605	Missouri Chemical Works	MO	8.60	GEN1	1943	66
606	Missouri Chemical Works	MO	8.60	GEN2	1943	66
607	Hibbing	MN	10.00	3	1965	44
608	Hibbing	MN	19.50	5	1985	24
609	Hibbing	MN	6.40	6	1996	13
610	James de Young	MI	11.50	3	1951	58
611	James de Young	MI	22.00	4	1962	47
612	James de Young	MI	29.30	5	1969	40
613	Frank E Ratts	IN	116.60	1	1970	39
614	Frank E Ratts	IN	116.60	2	1970	39
615	Merom	IN	540.00	1	1983	26
616	Merom	IN	540.00	2	1982	27
617	Blue Valley	MO	25.00	2	1958	51
618	Blue Valley	MO	65.00	3	1965	44
619	Blue Valley	MO	25.00	ST1	1958	51
620	Missouri City	MO	23.00	1	1954	55
621	Missouri City	MO	23.00	2	1954	55
622	Clifty Creek	IN	217.20	1	1955	54
623	Clifty Creek	IN	217.20	2	1955	54
624	Clifty Creek	IN	217.20	3	1955	54
625	Clifty Creek	IN	217.20	4	1955	54
626	Clifty Creek	IN	217.20	5	1955	54
627	Clifty Creek	IN	217.20	6	1956	53
628	Rockport	IN	1,300.00	1	1984	25
629	Rockport	IN	1,300.00	2	1989	20
630	Tanners Creek	IN	1,500.00	1	1951	58
631	Tanners Creek	IN	152.50	2	1952	57
632	Tanners Creek	IN	215.40	2	1952	55
633	Tanners Creek	IN	213.40 579.70	4	1954	45
634	AES Petersburg (IN)	IN	579.70 574.20	4	1964	45 23
	AES Petersburg (IN)	IN				42
635 626	5 ()	IN	253.40	ST1	1967	42 40
636 637	AES Petersburg (IN) AES Petersburg (IN)	IN	471.00 574.30	ST2 ST3	1969 1977	40 32
037		IIN	574.50	010	1911	52

[F]

[E]

	[A]	[B]	[C]	נטן	[=]	[F]
Line			Capacity		Year in	
No.	Plant	State	MW	Unit	Service	Current Age
638	H T Pritchard/Eagle Valley	IN	50.00	3	1951	58
639	H T Pritchard/Eagle Valley	IN	69.00	4	1953	56
640	H T Pritchard/Eagle Valley	IN	69.00	5	1953	56
641	H T Pritchard/Eagle Valley	IN	113.60	6	1956	53
642	Harding Street	IN	113.50	5	1958	51
643	Harding Street	IN	113.60	6	1961	48
644	Harding Street	IN	470.90	7	1973	36
645	Augusta Mill	GA	27.00	1	1960	49
646	Augusta Mill	GA	39.00	2	1965	44
647	Augusta Mill	GA	18.70	3	1965	44
648	International Paper Co Savannah	GA	82.80	GE10	1998	11
649	International Paper Co Savannah	GA	71.20	GEN9	1981	28
650	Plymouth (NC)	NC	7.50	TG7	1952	57
651	Plymouth (NC)	NC	25.00	TG8	1964	45
652	Roanoke Rapids North Carolina	NC	22.50	GEN1	1966	43
653	Sartell Mill	MN	20.40	ABB2	1982	27
654	Thilmany Pulp Paper	WI	15.60	GEN3	1962	47
655	Thilmany Pulp Paper	WI	12.00	GEN4	1967	42
656	Coleto Creek	TX	600.40	1	1980	29
657	Burlington (IA)	IA	212.00	1	1968	41
658 650	Dubuque	IA IA	28.70	3 4	1952	57
659 660	Dubuque Dubuque	IA	37.50 15.00	ST2	1959 1929	50 80
661	Lansing	IA	11.50	2	1929	60
662	Lansing	IA	37.50	3	1943	52
663	Lansing	IA	274.50	4	1977	32
664	M L Kapp	IA	218.40	2	1967	42
665	Ottumwa (IA IPL)	IA	726.00	1	1981	28
666	Prairie Creek 1 4	IA	23.00	1A	1997	12
667	Prairie Creek 1 4	IA	23.00	2	1951	58
668	Prairie Creek 1 4	IA	50.00	3	1958	51
669	Prairie Creek 1 4	IA	148.70	4	1967	42
670	Sutherland (IA)	IA	37.50	1	1955	54
671	Sutherland (IA)	IA	37.50	2	1955	54
672	Sutherland (IA)	IA	81.60	3	1961	48
673	Seaford Delaware Plant	DE	10.00	GEN1	1939	70
674	Seaford Delaware Plant	DE	10.00	GEN2	1939	70
675	Seaford Delaware Plant	DE	10.00	GEN3	1939	70
676	Iowa State Univ	IA	13.20	GEN3	1978	31
677	Iowa State Univ	IA	6.20	GEN4	1960	49
678	Iowa State Univ	IA	11.50	GEN5	1970	39
679	Iowa State Univ	IA	15.10	GEN6	2005	4
680	Birchwood Power Facility	VA	258.30	1	1996	13
681	Cogentrix Hopewell	VA	57.40	GEN1	1987	22
682	Cogentrix Hopewell	VA	57.40	GEN2	1987	22
683	Samuel A Carlson	NY	28.70	5	1951	58
684	Samuel A Carlson	NY	25.00	6	1968	41
685	Jasper 2 St Johns River Power Park	IN FL	14.50	1 1	1968	41 22
686 687	St Johns River Power Park	FL	679.00 679.00	2	1987 1988	22
688	Jefferson Smurfit Corp (FL)	FL	74.40	Z GEN6	1982	21
689	John Deere Dubuque Works	IA	3.50	GEN0 GEN2	1962	60
690	John Deere Dubuque Works	IA	3.00	GEN2 GEN3	1949	20
691	John Deere Dubuque Works	IA	7.50	GEN4	1964	45
692	Nearman Creek	KS	261.00	ST1	1981	28
693	Quindaro	KS	81.60	ST1	1965	44
694	Quindaro	KS	157.50	ST2	1971	38
695	Hawthorne (MO)	MO	594.30	5	1969	40
	- \ - /	-				-

[F]

[E]

	[^]		[U]	נטן	[⊏]	[[]
Line			Capacity		Year in	
No.	Plant	State	мw	Unit	Service	Current Age
696	latan	MO	726.00	1	1980	29
690 697	La Cygne	KS	893.00	1	1980	36
698		KS	685.00	2	1973	32
699	La Cygne Montrose	MO	188.00	1	1977	51
700		MO		2		49
700	Montrose Montrose	MO	188.00	2	1960 1964	49 45
701	Kucc	UT	188.00 50.00	1	1904	43 66
702	Kucc	UT	25.00	2	1943	66
703	Kucc	UT	25.00	2	1943	63
704	Kucc	UT	82.00	4	1940	51
705	Big Sandy	KY	280.50	1	1958	46
707	Big Sandy	KY	816.30	2	1969	40
708	E W Brown	KY	113.60	1	1909	40 52
709	E W Brown	KY	179.50	2	1963	46
710	E W Brown	KY	446.30	3	1903	38
711	Ghent	KY	556.90	1	1974	35
712	Ghent	KY	556.30	2	1977	32
713	Ghent	KY	556.50	3	1981	28
714	Ghent	KY	556.20	4	1984	25
715	Green River (KY)	KY	75.00	3	1954	55
716	Green River (KY)	KY	113.60	4	1959	50
717	Tyrone (KY)	KY	75.00	3	1953	56
718	Kimberly Clark Corp Munising M	MI	6.20	M387	1930	79
719	Lafarge Corp Alpena	MI	3.20	GE10	1999	10
720	Lafarge Corp Alpena	MI	12.00	GEN6	1952	57
721	Lafarge Corp Alpena	MI	10.00	GEN7	1955	54
722	Lafarge Corp Alpena	MI	11.00	GEN8	1991	18
723	Lafarge Corp Alpena	MI	11.00	GEN9	1994	15
724	C D McIntosh Jr	FL	363.80	3	1982	27
725	Lamar Plant	co	25.00	4	1972	37
726	Eckert Station	MI	44.00	1	1954	55
727	Eckert Station	MI	44.00	2	1958	51
728	Eckert Station	MI	47.00	3	1960	49
729	Eckert Station	MI	80.00	4	1964	45
730	Eckert Station	MI	80.00	5	1968	41
731	Eckert Station	MI	80.00	6	1970	39
732	Erickson	MI	154.70	1	1973	36
733	Logansport	IN	18.00	4	1958	51
734	Logansport	IN	25.00	5	1964	45
735	Intermountain	UT	900.00	ST1	1986	23
736	Intermountain	UT	900.00	ST2	1987	22
737	Big Cajun 2	LA	626.00	ST1	1981	28
738	Big Cajun 2	LA	626.00	ST2	1982	27
739	Big Cajun 2	LA	619.00	ST3	1983	26
740	Louisiana Pacific Corp	MI	7.50	GEN1	1957	52
741	Cane Run	KY	163.20	4	1962	47
742	Cane Run	KY	209.40	5	1966	43
743	Cane Run	KY	272.00	6	1969	40
744	Mill Creek (KY)	KY	355.50	1	1972	37
745	Mill Creek (KY)	KY	355.50	2	1974	35
746	Mill Creek (KY)	KY	462.60	3	1978	31
747	Mill Creek (KY)	KY	543.60	4	1982	27
748	Trimble Station (LGE)	KY	566.10	1	1990	19
749	Fayette Power Project	ТΧ	615.00	1	1979	30
750	Fayette Power Project	ТΧ	615.00	2	1980	29
751	Fayette Power Project	ТΧ	460.00	3	1988	21
752	Big Brown	ТΧ	593.40	1	1971	38
753	Big Brown	ТΧ	593.40	2	1972	37

[F]

[E]

	[A]	[b]	[U]	נטן	[=]	[F]
Line			Capacity		Year in	
No.	Plant	State	MW	Unit	Service	Current Age
754	Martin Lake	TX	793.20	. 1	1977	32
755	Martin Lake	TX	793.20	2	1978	31
756	Martin Lake	TX	793.20	3	1979	30
757	Monticello (TX)	ТХ	593.40	1	1974	35
758	Monticello (TX)	ΤХ	593.40	2	1975	34
759	Monticello (TX)	ТΧ	793.20	3	1978	31
760	Sandow No 4	ТΧ	590.60	4	1981	28
761	Blount Street	WI	23.00	5	1948	61
762	Blount Street	WI	50.00	6	1957	52
763	Blount Street	WI	50.00	7	1961	48
764	Brandon	MB	105.00	5	1970	39
765	Columbus Street	WI	10.00	4	1950	59
766	Columbus Street	WI	22.00	5	1956	53
767	Shiras	MI	21.00	2	1972	37
768	Shiras	MI	44.00	3	1983	26
769	Marshall (MO)	MO	6.00	4	1956	53
770	Marshall (MO)	MO	16.50	5	1967	42
771	H R Milner	AB	150.30	1	1972	37
772	Heskett	ND	40.00	1	1954	55
773	Heskett	ND	75.00	2	1963	46
774	Lewis & Clark	MT	50.00 35.00		1958	51
775 776	Luke Mill Luke Mill	MD MD		GEN1 GEN2	1958 1979	51 30
777	Tyrone (PA)	PA	30.00 7.50	TG6	1979	51
778	Menasha (MNSHA)	Ŵ	6.90	5	2006	3
779	Endicott Generating	MI	55.00	1	1982	27
780	T B Simon Power Plant	MI	12.50	GEN1	1965	44
781	T B Simon Power Plant	MI	12.50	GEN2	1966	43
782	T B Simon Power Plant	MI	15.00	GEN3	1974	35
783	T B Simon Power Plant	MI	21.00	GEN4	1993	16
784	T B Simon Power Plant	MI	24.00	GEN5	2006	3
785	George Neal North	IA	147.00	1	1964	45
786	George Neal North	IA	349.20	2	1972	37
787	George Neal North	IA	549.80	3	1975	34
788	George Neal South	IA	640.00	4	1979	30
789	Louisa	IA	811.90	1	1983	26
790	Riverside (IA)	IA	5.00	3HS	1949	60
791	Riverside (IA)	IA	136.00	5	1961	48
792	Walter Scott Jr Energy Center	IA	49.00	ST1	1954	55
793	Walter Scott Jr Energy Center	IA	81.60	ST2	1958	51
794	Walter Scott Jr Energy Center	IA	725.80	ST3	1978	31
795	Walter Scott Jr Energy Center	IA	790.00	ST4	2007	2
796	E J Stoneman	WI	18.00	1	1951	58
797	E J Stoneman	WI	35.00	2	1954	55
798	Crawford (IL)	IL	239.30	7	1958	51
799	Crawford (IL)	IL 	358.10	8	1961	48
800	Fisk Street	IL DA	374.00	19	1959	50
801 802	Homer City Station Homer City Station	PA PA	660.00	1 2	1969	40 40
	Homer City Station	PA PA	660.00		1969	40 32
803 804	Joliet 29	PA IL	692.00 660.00	3 7	1977 1965	32 44
804 805	Joliet 29	IL IL	660.00 660.00	8	1965	44
806	Joliet 9	IL	360.40	6	1959	43 50
807	Powerton	IL	892.80	5	1939	37
808	Powerton	IL	892.80	6	1972	34
809	Waukegan	IL	326.40	7	1958	51
810	Waukegan	IL	355.30	8	1962	47
811	Will County	IL.	187.50	1	1955	54
	,					

	Velocity Suite Dat	abase –	- April 200	9		
	[A]	[B]	[C]	[D]	[E]	[F]
Line			Capacity		Year in	
No.	Plant	State	MW	Unit	Service	Current Age
812	Will County	IL	183.70	2	1955	54
813	Will County	IL	299.20	3	1957	52
814	Will County	IL	598.40	4	1963	46
815	Hillsboro	ND	13.30	1	1986	23
816	Milton R Young	ND	257.00	ST1	1970	39
817	Milton R Young	ND	477.00	ST2	1977	32
818	Chalk Point	MD	364.00	1	1964	45
819	Chalk Point	MD	364.00	2	1965	44
820	Dickerson	MD	196.00	2	1960	49
821	Dickerson	MD	196.00	3	1962	47
822	Dickerson	MD	196.00	ST1	1959	50
823	Morgantown Generating Station	MD	626.00	ST1	1970	39
824	Morgantown Generating Station	MD	626.00	ST2	1971	38
825	Potomac River	VA	92.00	1	1949	60
826	Potomac River	VA	92.00	2	1950	59
827	Potomac River	VA	110.00	3	1954	55
828	Potomac River	VA	110.00	4	1956	53
829	Potomac River	VA	110.00	5	1957	52
830	Jack Watson	MS	299.20	4	1968	41
831	Jack Watson	MS	578.00	5	1973	36
832	Victor J Daniel Jr	MS	548.30	1	1977	32
833	Victor J Daniel Jr	MS	548.30	2	1981	28
834	Mobile Energy Services Co LLC	AL	43.10	GEN5	1985	24
835	Albright	WV	69.00	1	1952	57
836	Albright	WV	69.00	2	1952	57
837	Albright	WV	140.20	3	1954	55
838	Fort Martin	WV	576.00	1	1967	42
839	Fort Martin	WV	576.00	2	1968	41
840	Harrison (WV)	WV	684.00	1	1972	37
841	Harrison (WV)	WV	684.00	2	1973	36
842	Harrison (WV)	WV	684.00	3	1974	35
843	Pleasants	WV	684.00	1	1979	30
844	Pleasants	WV	684.00	2	1980	29
845	Rivesville	WV	35.00	5	1943	66
846	Rivesville	WV	74.70	6	1951	58
847	Willow Island	WV	50.00	1	1949	60
848	Willow Island	WV	163.20	2	1960	49
849	Morton Salt Rittman	ОН	1.50	GEN1	1978	31
850	MT Poso Cogeneration	CA	62.00	TG01	1989	20
851	Mount Tom	MA	136.00	1	1960	49
852	Muscatine	IA	25.00	7	1958	51
853	Muscatine	IA	75.00	8	1969	40
854	Muscatine	IA	18.00	8Ă	2000	9
855	Muscatine	IA	175.50	9	1983	26
856	Gerald Gentleman	NE	681.30	1	1979	30
857	Gerald Gentleman	NE	681.30	2	1982	27
858	Sheldon (NE)	NE	108.80	1	1961	48
859	Sheldon (NE)	NE	119.90	2	1965	44
860	Reid Gardner	NV	114.00	1	1965	44
861	Reid Gardner	NV	114.00	2	1968	41
862	Reid Gardner	NV	114.00	3	1900	33
863	Reid Gardner	NV	270.00	4	1983	26
864	Belledune	NB	510.00	4	1983	16
865	Grand Lake	NB	60.00	8	1993	45
866	Juniata Locomotive Shop	PA	2.00	o GEN1	1964	45 54
867	Juniata Locomotive Shop	PA PA	2.00	GEN1 GEN2	1955	54 54
868	Marshall (TX)	TX	2.00	8511	1955	54 88
869	Bailly	IN	190.40	7	1921	00 47
009	Damy	IIN	150.40	I	1902	+/

	Velocity Suite Dat	abase –	· April 200	9		
	[A]	[B]	[C]	[D]	[E]	[F]
Line		ГТ	Capacity		Year in	
No.	Plant	State	MW	Unit	Service	Current Age
870	Bailly Mahiron City	IN	413.10	8	1968	41
871	Michigan City	IN	540.00	12	1974	35
872	R M Schahfer	IN	540.00	14	1976	33
873	R M Schahfer	IN	556.40	15	1979	30
874	R M Schahfer	IN	423.50	17 18	1983	26
875 876	R M Schahfer Allen S King Plant	IN MN	423.50 658.40	10	1986 1958	23 51
877	Black Dog	MN	114.00	3	1955	54
878	Black Dog	MN	180.00	4	1955	49
879	Riverside Repowering Project (MN)	MN	238.80	8	1964	45
880	Riverside Repowering Project (MN)	MN	165.00	ST7	1987	22
881	Sherburne County	MN	689.00	2	1977	32
882	Sherburne County	MN	859.00	3	1987	22
883	Bay Front	WI	20.00	4	1949	60
884	Bay Front	WI	20.00	5	1952	57
885	Bay Front	WI	28.00	6	1957	52
886	Lingan	NS	150.40	1	1979	30
887	Lingan	NS	150.40	2	1980	29
888	Lingan	NS	150.40	3	1983	26
889	Lingan	NS	150.40	4	1984	25
890	PT Tupper	NS	150.00	2	1973	36
891	Trenton	NS	160.00	6	1991	18
892	Dunkirk Generating Station	NY	96.00	DUN1	1950	59
893	Dunkirk Generating Station	NY	96.00	DUN2	1950	59
894	Dunkirk Generating Station	NY	217.60	DUN3	1959	50
895	Dunkirk Generating Station	NY	217.60	DUN4	1960	49
896	Dover Energy (NRG)	DE	18.00	ST1	1985	24
897	Huntley Generating	NY	218.00	67	1957	52
898	Huntley Generating	NY	218.00	68	1958	51
899	Indian River Generating Station (DE)	DE	81.60	1	1957	52
900	Indian River Generating Station (DE)	DE	81.60	2	1959	50
901	Indian River Generating Station (DE)	DE	176.80	3	1970	39
902	Indian River Generating Station (DE)	DE	442.40	4	1980	29
903	Limestone (NRG)	ТΧ	893.00	1	1985	24
904	Limestone (NRG)	ТΧ	956.80	2	1986	23
905	W A Parish	ТΧ	734.10	5	1977	32
906	W A Parish	TX	734.10	6	1978	31
907	W A Parish	TX	614.60	7	1980	29
908	W A Parish	TX	614.60	8	1982	27
909	Gavin	OH	1,300.00	1	1974	35
910	Gavin	OH	1,300.00	2	1975	34
911	Kammer	WV	237.50	1 2	1958	51
912	Kammer	WV	237.50		1958	51
913	Kammer Mitchell (WV)	WV WV	237.50	3	1959	50
914 915	Mitchell (WV)	WV	816.30 816.30	1 2	1971 1971	38 38
	Muskingum River	OH		1		56
916 917	Muskingum River	OH	219.60 219.60	2	1953 1954	56 55
917	Muskingum River	OH	237.50	2	1954	52
910	Muskingum River	OH	237.50	3 4	1957	52 51
920	Muskingum River	OH	615.20	4 5	1958	41
920 921	Kyger Creek	OH	217.30	1	1908	54
922	Kyger Creek	OH	217.30	2	1955	54
923	Kyger Creek	OH	217.30	3	1955	54
923 924	Kyger Creek	OH	217.30	4	1955	54
925	Kyger Creek	OH	217.30	5	1955	54
926	Muskogee	OK	572.00	4	1977	32
927	Muskogee	OK	572.00	5	1978	31
	J. J				-	

[F]

[E]

	[^]	[D]	[C]	[D]	[⊏]	[[]
Line			Capacity		Year in	
No.	Plant	State	MW	Unit	Service	Current Age
928	Muskogee	ОК	572.00	6	1984	25
929	Sooner	OK	569.00	1	1979	30
930	Sooner	OK	569.00	2	1980	29
931	Nebraska City	NE	651.60	1	1979	30
932	North Omaha	NE	73.50	1	1954	55
933	North Omaha	NE	108.80	2	1957	52
934	North Omaha	NE	108.80	3	1959	50
935	North Omaha	NE	136.00	4	1963	46
936	North Omaha	NE	217.60	5	1968	41
937	Atikokan GS	ON	227.00	1	1982	27
938	Lambton GS	ON	520.00	1	1969	40
939	Lambton GS	ON	520.00	2	1969	40
940	Lambton GS	ON	520.00	3	1969	40
941	Lambton GS	ON	520.00	4	1969	40
942	Nanticoke	ON	505.00	1	1973	36
943	Nanticoke	ON	505.00	2	1973	36
944	Nanticoke	ON	510.00	3	1973	36
945	Nanticoke	ON	505.00	4	1973	36
946	Nanticoke	ON	505.00	5	1973	36
947	Nanticoke	ON	505.00	6	1973	36
948	Nanticoke	ON ON	505.00	7	1973	36
949	Nanticoke	ON	505.00	8 2	1973	36 28
950 951	Thunder Bay GS Thunder Bay GS	ON	165.00 165.00	2	1981 1981	28
952	Avon Lake	OH	86.00	7	1981	60
953 953	Avon Lake	OH	680.00	9	1949	39
954	Cheswick Power Plant	PA	637.00	1	1970	39
955	Elrama Power Plant	PA	100.00	UNT1	1952	57
956	Elrama Power Plant	PA	100.00	UNT2	1953	56
957	Elrama Power Plant	PA	125.00	UNT3	1954	55
958	Elrama Power Plant	PA	185.00	UNT4	1960	49
959	New Castle Plant	PA	98.00	3	1952	57
960	New Castle Plant	PA	114.00	4	1958	51
961	New Castle Plant	PA	136.00	5	1964	45
962	Niles (OH ORION)	OH	132.80	UNT1	1954	55
963	Niles (OH ORION)	OH	132.80	UNT2	1954	55
964	Stanton Energy Center	FL	464.50	1	1987	22
965	Stanton Energy Center	FL	464.50	2	1996	13
966	Orrville	OH	25.00	10	1971	38
967	Orrville	OH	25.00	11	1971	38
968	Orrville	OH	22.00	9	1961	48
969	Big Stone	SD	456.00	ST1	1975	34
970	Coyote	ND	450.00	1	1981	28
971	Hoot Lake	MN	54.40	2	1959	50
972	Hoot Lake	MN	75.00	3	1964	45
973	Elmer Smith	KY	163.20	1	1964	45
974	Elmer Smith	KY	282.10	2	1974	35
975	Chillicothe (OH)	OH	10.60	T 10	1952	57
976	Chillicothe (OH)	OH	24.00	T 11	1958	51
977	Chillicothe (OH)	OH	31.00	T 12	1967	42
978	Chillicothe (OH)	OH	27.20	T 13	1978	31
979	P H Glatfelter Co	PA	6.00 5.10	GEN1	1948	61 61
980	P H Glatfelter Co	PA	5.10	GEN3	1948	61
981 082	P H Glatfelter Co	PA PA	7.50	GEN4	1962	47
982	P H Glatfelter Co	DA UT	45.90	GEN5	1989 1054	20 55
983 984	Carbon (UT) Carbon (UT)	UT	75.00 113.60	1 2	1954 1957	55 52
964 985	Dave Johnston	WY	113.60	2 1	1957	52 50
900		VVI	113.00	1	1909	50

	Velocity Suite Data	abase –	April 200	9		
	[A]	[B]	[C]	[D]	[E]	[F]
Line			Canacity		Veerie	
Line	Diant	Chata	Capacity	الم ال	Year in	
No.	Plant	State	MW	Unit	Service	Current Age
986	Dave Johnston	WY	113.60	2	1961	48
987	Dave Johnston	WY	229.50	3	1964	45
988	Dave Johnston	WY	360.00	4	1972	37
989	Hunter	UT	488.30	ST1	1978	31
990	Hunter	UT	488.30	ST2	1980	29
991	Hunter	UT	495.60	ST3	1983	26
992	Huntington (UT)	UT	498.00	1	1977	32
993	Huntington (UT)	UT	498.00	2	1974	35
994	Jim Bridger	WY	577.90	1	1974	35
995	Jim Bridger	WY	577.90	2	1975	34
996	Jim Bridger	WY	577.90	3	1976	33
997	Jim Bridger	WY	584.00	4	1979	30
998	Naughton	WY	163.20	1	1963	46
999	Naughton	WY	217.60	2	1968	41
1000	5	WY	326.40	3	1971	38
1001		WY	362.00	1	1978	31
	Grandmother	WI	6.30	GEN1	1948	61
	Grandmother	WI	9.40	GEN2	1978	31
	Painesville	OH	16.50	5	1965	44
	Painesville	OH	22.00	7	1990	19
	Park 500 Philip Morris USA	VA	6.10	TG2	1984	25
	Park 500 Philip Morris USA	VA	13.00	TG3	1983	26
	Pella	IA	11.50	5	1964	45
	Pella	IA	26.50	6	1972	37
	Peru (IN)	IN	22.00	2	1959	50
	Peru (IN)	IN	12.50	3	1949	60
	Rawhide	CO	293.60	ST1	1984	25
	Twin Oaks Power	TX	174.60	1	1990	19
	Twin Oaks Power	TX OR	174.60	2	1991	18
	Boardman (OR)	MN	601.00	1 VPLS	1980	29
	Potlatch (Crow Wing) Natrium Plant	WV	0.60		1959 1943	50 66
	Natrium Plant	WV	7.50 7.50	GEN3 GEN4	1943	66
	Natrium Plant	ŴV	26.00	GEN4 GEN6	1943	55
	Natrium Plant	ŴV	20.00 82.00	GEN0 GEN7	1954	43
	PPL Brunner Island	PA	363.30	BI1	1960	43
	PPL Brunner Island	PA	405.00	BI2	1965	40
	PPL Brunner Island	PA	790.40	BI3	1969	44
	Colstrip	MT	358.00	GEN1	1975	34
	Colstrip	MT	358.00	GEN2	1976	33
	Colstrip	MT	778.00	GEN3	1984	25
	Colstrip	MT	778.00	GEN4	1986	23
1028	J E Corette Plant	MT	172.80	GEN1	1968	41
	Montour	PA	820.00	MT1	1972	37
	Montour	PA	17.20	MT11	1973	36
1031		PA	833.00	MT2	1973	36
	Pearl Station	IL	22.00	1	1967	42
	lvorydale	ОH	12.50	GEN1	1965	44
	Asheville	NC	206.60	1	1964	45
	Asheville	NC	207.00	2	1971	38
	Cape Fear	NC	140.60	5	1956	53
	Cape Fear	NC	187.90	6	1958	51
	H B Robinson	SC	206.60	1	1960	49
	L V Sutton	NC	112.50	1	1954	55
	L V Sutton	NC	112.50	2	1955	54
	L V Sutton	NC	446.60	3	1972	37
1042		NC	75.00	1	1952	57
1043		NC	75.00	2	1951	58
		-			-	-

[F]

[E]

	[A]	[D]	[C]	נטן	[⊏]	נרן
Line			Capacity		Year in	
No.	Plant	State	MW	Unit	Service	Current Age
1044		NC	252.40	3	1962	
1044	Lee Mayo	NC	252.40 735.80	3	1962	47 26
1045		NC	410.80	1	1965	43
1040		NC	657.00	2	1968	43
1048	Roxboro	NC	745.20	3	1973	36
	Roxboro	NC	745.20	4	1980	29
	W H Weatherspoon	NC	46.00	1	1949	60
	W H Weatherspoon	NC	46.00	2	1950	59
	W H Weatherspoon	NC	73.50	3	1952	57
1053	Crystal River	FL	440.50	1	1966	43
1054	Crystal River	FL	523.80	2	1969	40
1055	Crystal River	FL	739.20	4	1982	27
1056	Crystal River	FL	739.20	5	1984	25
1057	Bridgeport Station	СТ	400.00	3	1968	41
	Hudson Generating Station	NJ	659.70	2	1968	41
1059	Mercer Generating Station	NJ	326.40	1	1960	49
	Mercer Generating Station	NJ	326.40	2	1961	48
	Arapahoe	CO	48.00	3	1951	58
	Arapahoe	CO	112.00	4	1955	54
1063		CO	22.00	1	1957	52
	Cameo	CO	44.00	2	1960	49
	Cherokee (CO)	CO	125.00	1	1957	52
	Cherokee (CO)	CO	125.00	2	1959	50
	Cherokee (CO)	CO	170.40	3 4	1962	47
	Cherokee (CO) Comanche (CO)	CO CO	380.80 382.50	4 1	1968 1973	41 36
	Comanche (CO)	co	396.00	2	1975	34
	Hayden	co	190.00	1	1975	34 44
	Hayden	co	275.40	2	1905	33
1072	Pawnee	co	552.30	1	1981	28
	Valmont	co	191.70	5	1964	45
1075	Merrimack	NH	113.60	1	1960	49
	Merrimack	NH	345.60	2	1968	41
1077	Schiller	NH	50.00	4	1952	57
1078	Schiller	NH	50.00	6	1957	52
1079	San Juan	NM	369.00	1	1976	33
1080	San Juan	NM	369.00	2	1973	36
1081	San Juan	NM	555.00	3	1979	30
1082	San Juan	NM	555.00	4	1982	27
1083	Northeastern	OK	473.00	3	1979	30
1084		OK	473.00	4	1980	29
	Purdue Univ	IN	30.80	GEN1	1995	14
1086		IN	10.60	GEN2	1969	40
	Raton	NM	7.50	5	1961	48
1088	B L England	NJ	136.00	1	1962	47
	B L England	NJ	163.20	2	1964	45
	Conemaugh	PA	936.00	1	1970	39
	Conemaugh	PA	936.00	2	1970	39
	Keystone (PA)	PA	936.00	1	1967	42
	Keystone (PA)	PA	936.00	2	1968	41
	Portland (PA)	PA PA	172.00	1	1958	51 47
	Portland (PA) Shawville	PA PA	255.00 125.00	2 1	1962 1954	47 55
	Shawville	PA PA	125.00	2	1954	55 55
	Shawville	PA PA	125.00	2	1954	55 50
	Shawville	PA	188.00	4	1959	49
	Titus	PA	75.00	1	1900	58
1100		PA	75.00	2	1951	58
				-		

	Velocity Suite Dat	abase –	- April 200	9		
	[A]	[B]	[C]	[D]	[E]	[F]
Line			Capacity		Year in	
No.	Plant	State	MW	Unit	Service	Current Age
	Titus	PA	75.00	3	1953	56
	Whitewater Valley	IN	33.00	1	1955	54
	Whitewater Valley	IN	60.90	2	1973	36
	Rio Bravo Jasmin	CA	38.20	UP9	1989	20
	Rio Bravo Poso	CA	38.20	UP8	1989	20
1107	()	MN	8.00	1	1948	61
1108	· · · · · · · · · · · · · · · · · · ·	MN	12.00	2	1953	56
1109 1110		MN MN	25.00 54.00	3 4	1962 1969	47 40
	· · · · · · · · · · · · · · · · · · ·	MI				
1111	Muskegon Muskegon	MI	19.10 28.30	GEN4 GEN5	1968 1989	41 20
1112	5	MA	28.30	GEN5 GEN1	1989	70
	Norton Powerhouse	MA	3.10	GEN2	1954	55
	Coronado	AZ	410.90	CO1	1954	30
	Coronado	AZ	410.90	CO1	1979	29
1117		AZ	803.10	NAV1	1980	35
	Navajo	AZ	803.10	NAV2	1974	34
1119	•	AZ	803.10	NAV2	1976	33
1120	San Miguel	TX	410.00	1	1982	27
1121	-	SC	590.90	1	1995	14
	Cross	SC	556.20	2	1984	25
	Cross	SC	591.00	3	2007	2
	Cross	SC	600.00	4	2008	1
1125	Dolphus M Grainger	SC	81.60	1	1966	43
1126		SC	81.60	2	1966	43
1127		SC	172.80	3	1970	39
1128	Jefferies	SC	172.80	4	1970	39
1129	Winyah	SC	315.00	1	1975	34
1130	Winyah	SC	315.00	2	1977	32
1131	Winyah	SC	315.00	3	1980	29
1132	Winyah	SC	315.00	4	1981	28
1133	Boundary Dam	SK	66.00	1	1959	50
	Boundary Dam	SK	66.00	2	1960	49
	Boundary Dam	SK	150.00	3	1969	40
1136	,	SK	150.00	4	1970	39
1137		SK	150.00	5	1973	36
1138	,	SK	292.50	6	1977	32
1139	1	SK	307.80	1	1983	26
1140	•	SK	315.00	2	1981	28
1141	Shand	SK	297.80		1992	17
	Savannah Sugar Refinery	GA	3.00	GEN2	1959	50
1143	5 ,	GA	2.70	GENA	1948	61
	Savannah Sugar Refinery	GA	1.00	GENC	1946	63
1140	Savannah Sugar Refinery Argus Cogeneration Plant	GA CA	5.00	GEND TG8	1985	24
	Argus Cogeneration Plant	CA	27.50 27.50	TG9	1978 1978	31 31
1147	5 F	FL	714.60	109	1978	25
1140		FL	714.60	2	1985	23
1149		OH	12.50	1A	1968	41
1151	, ,	OH	12.50	2	1973	36
	Shelby Munic Light Plant	OH	7.00	4	1954	55
	North Valmy	NV	277.20	1	1981	28
	North Valmy	NV	289.80	2	1985	24
	Sikeston	MO	261.00	1	1981	28
	Smurfit Stone Container Corp (MI)	MI	15.60	GEN1	1966	43
1157	• • •	MA	5.70	TG	1985	24
1158	Somerset Station	MA	100.00	SOM6	1959	50
1159	Canadys Steam	SC	136.00	1	1962	47

[F]

[E]

	[A]	[D]	[U]	נטן	[⊑]	[[]
Line			Capacity		Year in	
No.	Plant	State	MW	Unit	Service	Current Age
1160	Canadys Steam	SC	136.00	2	1964	45
1161		SC	217.60	3	1967	42
	Cogeneration South	SC	99.20	1	1999	10
	Соре	SC	417.30	ST1	1996	13
1164	McMeekin	SC	146.80	1	1958	51
1165	McMeekin	SC	146.80	2	1958	51
	Urquhart	SC	100.00	3	1955	54
1167	US DOE SRS (D Area)	SC	9.40	HP 1	1952	57
1168	US DOE SRS (D Area)	SC	9.40	HP 2	1952	57
1169	US DOE SRS (D Area)	SC	9.40	HP 3	1952	57
	US DOE SRS (D Area)	SC	12.50	LP 1	1952	57
	US DOE SRS (D Area)	SC	12.50	LP 2	1952	57
	US DOE SRS (D Area)	SC	12.50	LP 3	1952	57
	US DOE SRS (D Area)	SC	12.50	LP 4	1952	57
	Wateree	SC	385.90	1	1970	39
	Wateree	SC	385.90	2	1971	38
	Williams (SC SCGC)	SC	632.70	ST1	1973	36
	R D Morrow	MS	200.00	1	1978	31
	R D Morrow	MS	200.00	2	1978	31
1179 1180	Marion	IL IL	33.00	1 2	1963	46
1181	Marion Marion	IL IL	33.00	2	1963 1963	46 46
-	A B Brown	IN	33.00 265.20	ST1	1903	30
	A B Brown	IN	265.20	ST2	1986	23
	F B Culley	IN	103.70	2	1966	43
	F B Culley	IN	265.20	3	1973	36
	Flint Creek (AR)	AR	558.00	1	1978	31
	Pirkey	ΤХ	721.00	1	1985	24
1188	Welsh Station	ТΧ	558.00	1	1977	32
1189	Welsh Station	ТΧ	558.00	2	1980	29
1190	Welsh Station	ТΧ	558.00	3	1982	27
1191	0	ТΧ	360.00	1	1976	33
	Harrington	ТΧ	360.00	2	1978	31
	Harrington	TX	360.00	3	1980	29
1194	Tolk	TX	568.00	1	1982	27
	Tolk	TX	568.00	2	1985	24
1196 1197	SP Newsprint (GA) James River Power St	GA MO	45.00	GEN1 1	1989	20 52
1197	James River Power St	MO	22.00 22.00	2	1957 1957	52 52
1198		MO	44.00	2	1957	49
1200		MO	60.00	4	1964	45
1200	James River Power St	MO	105.00	5	1970	39
1202		MO	194.00	ST1	1976	33
1203	Dallman	IL	90.20	1	1968	41
1204	Dallman	IL	90.20	2	1972	37
1205	Dallman	IL	207.30	3	1978	31
1206	Lakeside	IL	37.50	6	1961	48
1207	Lakeside	IL	37.50	7	1965	44
	Cogentrix of Richmond Inc	VA	57.40	GEN1	1992	17
	Cogentrix of Richmond Inc	VA	57.40	GEN2	1992	17
	Cogentrix of Richmond Inc	VA	57.40	GEN3	1992	17
	Cogentrix of Richmond Inc	VA	57.40	GEN4	1992	17
	State Line Energy	IN	225.00	ST3	1955	54
	State Line Energy	IN WI	388.00	ST4	1962	47
	Capitol Heat & Power Capitol Heat & Power	WI	1.50 1.50	1 2	1963 1964	46 45
	UW Madison Charter St Plant	WI	9.70	2 1	1964	45 44
1210		WI	1.00	1	1951	58
	,					

[F]

[E]

	[A]	[B]	[C]	נטן	[=]	[F]
Line			Capacity		Year in	
No.	Plant	State	MW	Unit	Service	Current Age
		SC		GEN3		
1218 1219	· · · · · · · · · · · · · · · · · · ·	WI	79.10 17.00	GEN3 GEN1	1987	22 45
	Biron Mill	WI	7.50	GEN1 GEN3	1964 1947	43 62
1220		WI		GEN3 GEN4		52
	Biron Mill	WI	15.60	GEN4 GEN5	1957	22
1222		WI	21.50 2.50	1ST	1987 1940	69
	Niagara Mill	WI	9.30	2ST	1940	45
1224		WI	9.30 4.10	GEN4	1951	45 58
	Tuscola		6.00	TG2	1951	56
	Smart Papers LLC	OH	6.00	GEN3	1933	85
1228		OH	7.50	GEN5	1924	79
1229	•	OH	10.50	GEN6	1930	79
	Holcomb East	KS	348.70	1	1983	26
1231		NY	90.60	GEN1	1991	18
	Trigen Syracuse Energy Corp	NY	10.50	GEN2	2002	7
	Big Bend (FL)	FL	445.50	1	1970	39
	Big Bend (FL)	FL	445.50	ST2	1973	36
	Big Bend (FL)	FL	445.50	ST3	1976	33
	Big Bend (FL)	FL	486.00	ST4	1985	24
	Polk Station	FL	326.30	1	1996	13
	Allen Steam Plant (TN)	TN	330.00	1	1959	50
	Allen Steam Plant (TN)	TN	330.00	2	1959	50
	Allen Steam Plant (TN)	TN	330.00	3	1959	50
	Bull Run (TN)	TN	950.00	1	1967	42
	Colbert	AL	200.00	1	1955	54
	Colbert	AL	200.00	2	1955	54
1244	Colbert	AL	200.00	3	1955	54
1245	Colbert	AL	200.00	4	1955	54
1246	Colbert	AL	550.00	5	1965	44
1247	Cumberland (TN)	ΤN	1,300.00	1	1973	36
1248	Cumberland (TN)	ΤN	1,300.00	2	1973	36
1249		ΤN	300.00	1	1956	53
1250	Gallatin (TN)	ΤN	300.00	2	1957	52
1251	Gallatin (TN)	ΤN	327.60	3	1959	50
1252	Gallatin (TN)	ΤN	327.60	4	1959	50
1253	John Sevier	ΤN	200.00	1	1955	54
1254	John Sevier	ΤN	200.00	2	1955	54
1255	John Sevier	ΤN	200.00	3	1956	53
1256	John Sevier	ΤN	200.00	4	1957	52
1257		ΤN	125.00	1	1951	58
1258		ΤN	172.80	10	1959	50
1259		TN	125.00	2	1951	58
1260		TN	125.00	3	1952	57
1261	Johnsonville (TN)	TN	125.00	4	1952	57
	Johnsonville (TN)	TN	147.00	5	1952	57
	Johnsonville (TN)	TN	147.00	6	1953	56
1264		TN	172.80	7	1958	51
1265		TN	172.80	8	1959	50
1266		TN	172.80	9	1959	50 55
	Kingston	TN	175.00	1	1954	55 55
1268	0	TN TN	175.00	2	1954	55 55
1269 1270		TN	175.00 175.00	3 4	1954 1954	55 55
1270	•	TN	200.00	4 5	1954	55 54
1271	•	TN	200.00	5 6	1955	54 54
1272	•	TN	200.00	7	1955	54 54
1273	Kingston	TN	200.00	8	1955	54 54
1274	Kingston	TN	200.00	9	1955	54 54
.2.0			200.00	0		U T

[F]

[E]

	[A]	[B]	[C]	נטן	[=]	[F]
Line			Capacity		Year in	
No.	Plant	State	MW	Unit	Service	Current Age
1276	Paradise (KY)	KY	704.00		1963	46
1277		KY	704.00	2	1963	46
1278	Paradise (KY)	KY	1,150.20	3	1970	39
1279	Shawnee (KY)	KY	175.00	1	1953	56
	Shawnee (KY)	KY	175.00	10	1956	53
1281		KY	175.00	2	1953	56
1282	Shawnee (KY)	KY	175.00	3	1953	56
	Shawnee (KY)	KY	175.00	4	1954	55
1284	Shawnee (KY)	KY	175.00	5	1954	55
1285	Shawnee (KY)	KY	175.00	6	1954	55
1286	Shawnee (KY)	KY	175.00	7	1954	55
1287	Shawnee (KY)	KY	175.00	8	1955	54
1288	Shawnee (KY)	KY	175.00	9	1955	54
1289	Widows Creek	AL	140.60	1	1952	57
1290	Widows Creek	AL	140.60	2	1952	57
1291	Widows Creek	AL	140.60	3	1952	57
1292	Widows Creek	AL	140.60	4	1953	56
1293		AL	140.60	5	1954	55
1294		AL	140.60	6	1954	55
	Widows Creek	AL	575.00	7	1961	48
	Widows Creek	AL	550.00	8	1965	44
	Tes Filer City Station	MI	70.00	GEN1	1990	19
	Gibbons Creek	ТΧ	453.50	1	1983	26
	Fox Valley Energy Center	WI	6.50	1	1999	10
	Centralia Complex	WA	729.90	BD21	1972	37
	Centralia Complex	WA	729.90	BD22	1973	36
	Keephills	AB	392.00	1	1983	26
1303	•	AB	393.00	2	1984	25
1304		AB	304.00	1	1970	39
1305		AB	304.00	2	1973	36
	Sundance	AB AB	380.00	3 4	1976	33
	Sundance Sundance	AB	433.00 380.00	4 5	1977 1978	32 31
	Sundance	AB	433.00	6	1978	29
	Wabamun Generation Station	AB	300.00	4	1967	42
1311		CO	446.40	1	1980	29
	Craig (CO)	co	446.40	2	1979	30
	Craig (CO)	co	463.40	3	1984	25
1314	• • •	NM	257.00	1	1984	25
	Nucla	CO	11.50	1	1959	50
	Nucla	CO	11.50	2	1959	50
	Nucla	СО	11.50	3	1959	50
1318	Nucla	CO	79.30	ST4	1991	18
1319	Grand Avenue Steam Plant	MO	5.00	ST	1998	11
1320	H Wilson Sundt Generating Station	AZ	173.30	4	1967	42
1321	Springerville Generating Station	AZ	424.80	1	1985	24
1322	Springerville Generating Station	AZ	424.80	2	1990	19
1323	Springerville Generating Station	AZ	450.00	ST3	2006	3
1324	Eielson Air Force Base Central	AK	2.50	TG1	1952	57
	Eielson Air Force Base Central	AK	2.50	TG2	1952	57
	Eielson Air Force Base Central	AK	5.00	TG3	1955	54
1327		AK	5.00	TG4	1969	40
	Eielson Air Force Base Central	AK	10.00	TG5	1987	22
1329	,	AK	5.00	GEN1	1955	54
	Utility Plants Section	AK	5.00	GEN3	1955	54
1331		AK	5.00	GEN4	1955	54
	Utility Plants Section	AK	5.00	GEN5	1989	20
1333	Radford Army Ammunition	VA	6.00	GEN1	1990	19

[F]

Appendix A-3 (continued) Age of Existing Coal Fired Units Generating Units Currently in Service Velocity Suite Database – April 2009 [A] [B] [C] [D]

[E]

	[^]	[D]	[0]		[[]	[']
Line			Capacity		Year in	
No.	Plant	State	MW	Unit	Service	Current Age
1334	Radford Army Ammunition	VA	6.00	GEN2	1990	19
1335	,	VA	6.00	GEN3	1990	19
	Radford Army Ammunition	VA	6.00	GEN4	1990	19
1337	Txi Riverside Cement	CA	12.00	GEN1	1954	55
1338	Txi Riverside Cement	CA	12.00	GEN2	1954	55
1339	Hunlock Power Station	PA	49.90	3	1959	50
1340	Union Carbide South Charleston	WV	6.00	GEN8	1953	56
1341	Univ of Alaska Fairbanks	AK	10.00	GEN3	1981	28
	Univ of Illinois Abbott	IL	12.50	T10	2004	5
	Univ of Illinois Abbott	IL	12.50	T11	2004	5
	Univ of Illinois Abbott	IL	7.00	T12	2004	5
	Univ of Illinois Abbott	IL	7.50	T6	1959	50
	Univ of Illinois Abbott	IL	7.50	T7	1962	47
	Univ of Iowa Main	IA	3.00	GEN1	1947	62
	Univ of Iowa Main	IA	3.00	GEN2	1956	53
	Univ of Iowa Main	IA	15.00	GEN6	1974	35
	UNC Chapel Hill Cogeneration	NC	28.00	ST1	1991	18
1351	Univ of Northern Iowa Univ of Notre Dame	IA IN	7.50 3.00	GEN1 GEN1	1982 1962	27 47
	Univ of Notre Dame	IN	3.00 1.70	GEN1 GEN2	1962	57
	Univ of Notre Dame	IN	2.00	GEN2 GEN5	1952	53
	Univ of Notre Dame	IN	5.00	GEN6	1967	42
	Univ of Notre Dame	IN	9.40	GEN7	2000	9
	Escanaba	MI	11.50	1	1958	51
	Escanaba	MI	11.50	2	1958	51
1359		FL	395.40	GEN1	1995	14
	Vanderbilt Univ	ΤN	6.50	GEN1	1988	21
1361	Vanderbilt Univ	ΤN	4.50	GEN2	1989	20
1362	Howard M Down	NJ	25.00	10	1970	39
1363	Virginia	MN	4.00	1A	1992	17
1364	Virginia	MN	7.50	5	1954	55
1365	Virginia	MN	18.70	6	1971	38
	Bremo Bluff	VA	69.00	3	1950	59
1367		VA	185.20	4	1958	51
1368		VA	185.20	3	1959	50
	Chesapeake	VA	112.50	ST1	1953	56
1370	1	VA	112.50	ST2	1954	55
1371	Chesapeake	VA	239.30	ST4	1962	47
1372		VA	112.50	3	1952	57
1373	Chesterfield	VA	187.50	4	1960	49
	Chesterfield	VA	359.00	5	1964	45
1375	Chesterfield Clover	VA VA	693.90 424.00	6 1	1969 1995	40 14
1376		VA VA		2	1995	14
1378		VA VA	424.00 69.90	GEN1	1990	13
	Mecklenburg Cogeneration Facil	VA VA	69.90	GEN2	1992	17
	MT Storm	ŴV	570.20	1	1965	44
1381		ŴV	570.20	2	1966	43
	MT Storm	ŴV	522.00	3	1973	36
	North Branch (WV)	ŴV	80.00	1	1992	17
	Yorktown	VA	187.50	1	1957	52
	Yorktown	VA	187.50	2	1959	50
	Rhinelander Mill	WI	4.00	GEN3	1940	69
	Rhinelander Mill	WI	9.30	GEN6	1958	51
1388		KS	720.00	1	1978	31
1389		KS	720.00	2	1980	29
1390	Jeffrey Energy Center	KS	720.00	3	1983	26
1391	Lawrence Energy Center (KS)	KS	49.00	3	1955	54

	Velocity Suite Dat	abase –	- April 200	9		
	[A]	[B]	[C]	[D]	[E]	[F]
Line			Capacity		Year in	
Line No.	Plant	State	MW	Unit	Service	Current Age
	Lawrence Energy Center (KS)	KS	114.00	4	1960	49
	Lawrence Energy Center (KS)	KS	403.00	5	1971	38
	Tecumseh Energy Center	KS	82.00	7	1957	52
	Tecumseh Energy Center	KS	150.00	8	1962	47
	Hugo (OK) D B Wilson	OK KY	446.00	ST 1	1982	27 25
	Kenneth Coleman	KY	440.00	UN1 GEN1	1984	25 40
	Kenneth Coleman	KY	174.20 174.20	GEN1 GEN2	1969 1970	40 39
	Kenneth Coleman	KY	174.20	GEN2 GEN3	1970	38
	R A Reid	KY	96.00	GEN1	1966	43
	Robert D Green	KY	264.00	GEN1	1900	30
	Robert D Green	KY	264.00	GEN2	1979	28
	Altavista Power Station	VA	71.10	1	1992	17
	Hopewell	VA	71.10	1	1992	17
	Southampton	VA	71.10	1	1992	17
	Roanoke Valley 1	NC	182.30	GEN1	1992	15
	Roanoke Valley II	NC	57.80	GEN2	1995	14
	White Pine Copper Refinery Inc	MI	20.00	GEN1	1954	55
	White Pine Copper Refinery Inc	MI	20.00	GEN2	1954	55
	Willmar	MN	18.00	3	1970	39
	Milwaukee County	WI	11.00	NA	1996	13
	Pleasant Prairie	WI	616.50	1	1980	29
	Pleasant Prairie	Ŵ	616.50	2	1985	24
	Pleasant Prairie	WI	1.70	4	2008	1
	Presque Isle	MI	54.40	3	1964	45
	Presque Isle	MI	57.80	4	1966	43
	Presque Isle	MI	90.00	5	1974	35
	Presque Isle	MI	90.00	6	1975	34
	Presque Isle	MI	90.00	7	1978	31
	Presque Isle	MI	90.00	8	1978	31
	Presque Isle	MI	90.00	9	1979	30
	South Oak Creek	WI	275.00	5	1959	50
1424	South Oak Creek	WI	275.00	6	1961	48
1425	South Oak Creek	WI	317.60	7	1965	44
1426	South Oak Creek	WI	324.00	8	1967	42
1427	Valley (WI)	WI	136.00	1	1968	41
1428		WI	136.00	2	1969	40
1429	Columbia (WI)	WI	512.00	1	1975	34
1430	Columbia (WI)	WI	511.00	2	1978	31
1431		WI	60.00	3	1951	58
	Edgewater (WI)	WI	330.00	4	1969	40
	Edgewater (WI)	WI	380.00	5	1985	24
1434		WI	100.00	1	1959	50
	Nelson Dewey	WI	100.00	2	1962	47
	Pulliam	WI	50.00	5	1949	60
	Pulliam	WI	69.00	6	1951	58
	Pulliam	WI	81.60	7	1958	51
	Pulliam	WI	149.60	8	1964	45
	Weston	WI	60.00	1	1954	55
	Weston	WI	81.60	2	1960	49
	Weston	WI	350.50	3	1981	28
	Weston	WI	500.00	4	2008	1
1444		MI	11.50	4	1948	61
	Wyandotte (MI)	MI	22.00	5	1958	51
1446		MI	7.50	6	1969	40
1447	Wyandotte (MI)	MI	32.00	7	1986	23

APPENDIX B PLANT SITE VISIT MEMORANDA

Appendix B-1 Meramec Station Site Visit Memorandum

Black & Veatch Memorandum

May 13, 2009

Meramec Generating Station Site Visit Conducted April 30, 2009

Participants included: <u>AmerenUE</u> John Beck, Plant Manager Jim Zelah,

Black & Veatch Jim Hurt Debashis Bose

The Meramec Generating Station (Meramec Facility), which has 4 pulverized coal subcritical power generating units, is located south east of the city of St. Louis, Missouri on the banks of the Meramec and Mississippi Rivers. The Meramec River flows into the Mississippi River adjacent to the plant. Units 1 and 2 are identical units built in 1953 and 1954 respectively, each with a capacity of 138 MW. Unit 3 with capacity of 289 MW was built in 1959 while Unit 4 with capacity of 359 MW was built in 1961.

The Meramec Facility was originally designed to burn Illinois coal, which has a heat content of around12,000 btu/lb (HHV). However a decision was made in around 1980 to switch to Powder River basin (PRB) coal. The average heat content of the PRB coal is approximately 8,400 btu/lb and is transported to the site by rail (unit train). Each unit train includes 135 railcars and delivers about 15,000 tons of PRB coal. The Meramec Facility also has a barge loading and unloading facility at site that is currently not operated. A coal loading system allows loading of coal to barges for transport to other AmerenUE plants. In addition the Meramec Facility has a natural gas pipeline coming into the site. Units 1 and 2 can make full load firing gas; however, natural gas is primarily used for start-up of all units.

Black & Veatch Professionals (Black & Veatch) visited the Meramec Facility power generation station site on April 30, 2009 in order to determine if there were any currently known issues that could affect the life expectancy of the generating facility. During the site visit:

- Black & Veatch conducted a walk down of each unit to observe the condition of the:
 - ♦ control room,
 - boiler and associated systems,
 - air quality control equipment,
 - ash systems,
 - fuel yard,
 - turbine deck and associated systems,
 - major electrical equipment.
 - Black & Veatch met with plant personnel to discuss:
 - Recent and planned expenditures required to maintain the economic viability, safety, and reliability of each unit,
 - Programs that are being utilized to develop, update and justify the capital projects budget,
 - Equipment outage plans and reports,
 - Corrective action programs,
 - Predictive and preventive maintenance programs,

• Unit operating routines (historical and projected).

During the site visit of the Meramec Facility, Black & Veatch noted a few challenging issues with respect to plant operations:

- The plant site is landlocked with low probability of expanding beyond its existing boundaries.
- Since the plant was built in 1950-1960, significant development has taken place around the plant including an elementary school, a new residential neighborhood and a large municipal solid waste treatment plant. This could expose the plant to stricter environment regulation which in turn might limit future operations of the plant.
- No scrubbers are currently planned to be installed on any of the units at the Meramec Facility.
- The site at the plant is too small to accommodate scrubbers without affecting the coal yard area. If the scrubbers are to be built, the coal yard would have to be reduced and the plant will have to decrease the level of coal stock pile adjacent to the units.
- There is no spare capacity on the coal mills, when the plant is operating at full load all mills are required.

Black & Veatch reviewed NERC GADS data provided by AmerenUE for 2003-2008 and compared with industry data for units of similar size and equipment. Specifically, equivalent availability factor, forced outage rate, and equivalent forced outage rate were reviewed and compared. The units at Meramec Facility were better than the industry averages in all three categories.

Based on interviews with plant personnel conducted during a site visit of the Meramec Facility along with technical information provided by AmerenUE, Black & Veatch did not identify issues that it believes would shorten the physical life of the plant, provided the existing operations and maintenance practices as well as capital investment programs are continued. Major issues appeared to be fully disclosed and discussed. Most of the issues identified are typical for assets of this type and age and nearly all have technical solutions. It is also recognized that these are aging units that will experience equipment and systems failures over the years unless significant expenditures are made. Based on available information, the (2001-2013) historical and long term forecast capital expenditure plan developed by AmerenUE and reviewed by Black & Veatch includes cost estimates for addressing the equipment and system issues which are most critical.

Black & Veatch personnel did not find evidence that would indicate that these units cannot continue to operate in a manner similar to recent experience based on the following assumptions:

- The units will continue to be operated in a mode consistent with industry practice for units of this type and age.
- Information provided by AmerenUE personnel regarding the generating station is complete and accurate.
- Application of operations and maintenance programs consistent with industry practices for units of the type and age will continue.
- Application of corrective action, and predictive and preventive maintenance programs that will enable AmerenUE to minimize exposure to catastrophic failures.
- Application of programs at the plant as well as corporate level to assure that personnel are competent to operate and maintain the facilities in a manner consistent with prudent industry practices.
- The capital expenditure estimates in the long term capital plan developed by AmerenUE will be periodically reviewed and adjusted in a timely manner to accomodate changing regulations, or as differing conditions are encountered. AmerenUE will implement the long term capital plan in a timely manner.

Based on the foregoing, Black & Veatch does not foresee any technical reasons that would cause the currently operating generation assets at the Meramec Facility to be retired prematurely. Black & Veatch can not opine as to whether there will be economic, operational, or environmental issues which might adversely affect the viability of the generating assets in the future.

Plant staff appeared knowledgeable and conducted themselves professionally. Operating practices at the plant appear prudent and consistent with generally accepted utility practices.

Appendix B-2 Sioux Station Site Visit Memorandum

Black & Veatch Memorandum

May 13, 2009

Sioux Generating Station Site Visit Conducted April 28 & 29, 2009

Participants included: <u>AmerenUE</u> Karl Blank, Plant Manager Mike Romano, Superintendent of Production Harry Benhardt, Superintendent of Tech Support Patrick Weir, Supervising Engineer Jim Riegerix, Outage Coordinator

Black & Veatch Jim Teaney Matt Oakes

The Sioux Generating Station (Sioux Facility), which has 2 supercritical cyclone fired, power generating units, is located on the north side of the city of St. Louis, Missouri on the south banks of the Mississippi river. Unit 1 was built in 1967 and has a nameplate capacity of 550 MW. Unit 2 was built in 1968 and also has a nameplate capacity of 550 MW.

The Sioux Facility has the capability to burn both Illinois coal and Power River Basin (PRB) coal. The PRB coal is delivered to the site by rail while the Illinois coal is received by barge. In the past, the Sioux Facility had also blended in pet coke as well as chipped rubber tires into the coal fuel, but not at the current time. There is no natural gas supply at the Sioux Facility site.

Black & Veatch Professionals (Black & Veatch) visited the Sioux power generation station site on April 28 and 29, 2009 in order to determine if there were any currently known issues that could affect the life expectancy of the generating facility. During this visit:

- Black & Veatch conducted a walk down of each unit to observe the condition of the:
 - control room,
 - boiler and associated systems,
 - air quality control equipment,
 - ash systems,
 - fuel yard,
 - turbine deck and associated systems,
 - major electrical equipment.
- Black & Veatch met with plant personnel to discuss:
 - Recent and planned expenditures required to maintain the economic viability, safety, and reliability of each unit,
 - Programs that are being utilized to develop, update and justify the capital projects budget,
 - Equipment outage plans and reports,
 - Corrective action programs,
 - Predictive and preventive maintenance programs,
 - Unit operating routines (historical and projected).

During the site visit of the Sioux facility, Black & Veatch noted a few issues, some of which are being addressed. These issues include:

- No black start capability at the plant site. An emergency generator is on site.
- No natural gas supply at the plant site.
- Units are run in load following operation. Previously during minimum load the cyclones were cycled off. In 1999, the plant stopped cycling the cyclones off during minimum load. This change reduces the thermal stress on the cyclone tubes, thereby reducing tube failures.
- In 2006, the plant quit burning a blend of chipped tires. This seemed to reduce the boiler tube leaks.
- There is limited space remaining in the on-site ash ponds for disposal. The plant has purchased an additional area of land which is being prepared for landfill of fly ash and scrubber waste.
- Twice annually the plant treats the circulating water intake for zebra mussels.

Black & Veatch reviewed and compared NERC GADS data provided by AmerenUE for 2003-2008 with industry data for units of similar size and technology. Specifically, equivalent availability factor, forced outage rate, and equivalent forced outage rate were reviewed and compared. The units at Sioux were better than the industry averages in all three categories.

Based on interviews with plant personnel conducted during a site visit of the Sioux power generating station along with technical information provided by AmerenUE, Black & Veatch did not identify issues that it believes would shorten the physical life of the plant, provided the existing operations and maintenance practices as well as capital expenditure programs are continued. Major issues appeared to be fully disclosed and discussed. Most of the issues identified are typical for assets of this type and age and nearly all have technical solutions. It is also recognized that these are aging units that will experience equipment and systems failures over the years unless significant expenditures are made. Based on available information, the (2001-2013) historical and long term forecast capital expenditure plan developed by AmerenUE and reviewed by Black & Veatch includes cost estimates for addressing the equipment and system issues which are most critical.

Black & Veatch did not find any evidence that would indicate that these units cannot continue to operate in a manner similar to industry norms based on the following assumptions:

- The units continue to be operated in a mode consistent with industry practice for units of this type and age.
- Information provided by AmerenUE personnel regarding the generating station is complete and accurate.
- Application of operations and maintenance programs consistent with industry practices for units of the type and age will continue.
- Application of corrective action, and predictive and preventive maintenance programs that will enable AmerenUE to minimize exposure to catastrophic failures.
- Application of programs at the plant as well as corporate level to assure that personnel are competent to operate and maintain the facilities in a manner consistent with prudent industry practices.
- The capital expenditure estimates in the long term capital plan developed by AmerenUE will be periodically reviewed and adjusted in a timely manner to accomodate changing regulations, or as differing conditions are encountered. AmerenUE will implement the long term capital plan in a timely manner.

Based on the foregoing, Black & Veatch does not foresee any technical reasons that would cause the currently operating generation assets at the Sioux Facility to be retired prematurely. Black & Veatch cannot opine as to whether there will be economic, operational, or environmental issues which might adversely affect the viability of the generating assets in the future.

Plant staff appeared knowledgeable and conducted themselves professionally. Operating practices at the plant appear prudent and consistent with generally accepted utility practices.

Appendix B-3 Labadie Station Site Visit Memorandum

Black & Veatch Memorandum

May 13, 2009

Labadie Generating Station Site Visit Conducted April 30, 2009

Participants included: <u>AmerenUE</u> Wes Straatman, Power Operations Services Engineer

Black & Veatch Jim Teaney Matt Oakes

The Labadie Generating Station (Labadie Facility), which has 4 pulverized coal subcritical power generating units, is located south west of the city of St. Louis, Missouri on the banks of the Missouri river. Units 1 and 2 were built in 1970 and 1971, respectively and both have a nameplate capacity of 574 MW. Units 3 and 4 were built in 1972 and 1973, respectively and both have a nameplate capacity of 621 MW.

The Labadie Facility currently only burns Power River Basin (PRB) coal which is delivered to the site by one rail provider. A natural gas main supply is available at the south side of the site, but the plant is not currently tied into it.

Black & Veatch Professionals (Black & Veatch) visited the Labadie power generation station site on April 28 and 29, 2009 in order to determine if there were any currently known issues that could affect the life expectancy of the generating facility. During this visit:

- Black & Veatch conducted a walk down of each unit to observe the condition of the:
 - control room,
 - boiler and associated systems,
 - air quality control equipment,
 - ash systems,
 - fuel yard,
 - turbine deck and associated systems,
 - major electrical equipment.
- Black & Veatch met with plant personnel to discuss:
 - Recent and planned expenditures required to maintain the economic viability, safety, and reliability of each unit,
 - Programs that are being utilized to develop, update and justify the capital projects budget.
 - Equipment outage plans and reports
 - Corrective action programs
 - Predictive and preventive maintenance programs
 - Unit operating routines (historical and projected).

During the site visit of the Labadie facility, Black & Veatch noted a few challenging issues, some of which were being addressed.

- No black start capability at the plant site. A 5 MW emergency generator is on site.
- No auxiliary boiler at the site.

- A natural gas main was available at the south side of the site, but the plant is not currently tied into it.
- Coal is only available by rail and from one rail service provider.
- There was limited space remaining on-site for disposal and storage of bottom ash and fly ash. An additional area of land has been purchased near the site to do so.
- Some issues with the burners wearing out prematurely. Plant cannot replace them with an improved burner design due to current fit and lack of additional space required.

Black & Veatch reviewed NERC GADS data provided by AmerenUE for 2003-2008 and compared with industry data for units of similar size and equipment. Specifically, equivalent availability factor, forced outage rate, and equivalent forced outage rate were reviewed and compared. The units at Labadie were better than the industry averages in all three categories.

Based on interviews with plant personnel conducted during a site visit of the Labadie power generating station along with technical information provided by AmerenUE, Black & Veatch did not identify any issues that it believes would limit the physical life of the plant, provided the existing operations and maintenance practices as well as capital expenditure programs are continued. Major issues appeared to be fully disclosed and discussed. Most of these issues are typical for assets of this type and age and nealy all have technical solutions. It is also recognized that these are aging units that will experience equipment and systems failures over the years unless significant expenditures are made. Based on information available at the time, the (2001-2013) historical and long term forecast capital expenditure plan developed by AmerenUE and reviewed by Black & Veatch includes cost estimates for addressing these equipment and system issues.

Black & Veatch personnel did not find evidence that would indicate that these units cannot continue to operate in a manner similar to recent experience based on the following assumptions:

- The units will continue to be operated in a mode consistent with industry practice for units of this type and age.
- Information provided by AmerenUE personnel regarding the generating station is complete and accurate.
- Application of operations and maintenance programs consistent with industry practices for units of the type and age will continue.
- Application of corrective action, and predictive and preventive maintenance programs that will enable AmerenUE to minimize exposure to catastrophic failures.
- Application of programs at the plant as well as corporate level to assure that personnel are competent to operate and maintain the facilities in a manner consistent with prudent industry practices.
- The capital expenditure estimates in the long term capital plan developed by AmerenUE will be periodically reviewed and adjusted in a timely manner to accomodate changing regulations, or as differing conditions are encountered. AmerenUE will implement the long term capital plan in a timely manner.

Based on the foregoing, Black & Veatch does not foresee any technical reasons that would cause the currently operating generation assets at the Labadie Facility to be retired prematurely. Black & Veatch can not opine as to whether there will be economic, operational, or environmental issues which might adversely affect the viability of the generating assets in the future.

Plant staff appeared knowledgeable and conducted themselves professionally. Operating practices at the plant appear prudent and consistent with generally accepted utility practices.

Appendix B-4 Rush Island Station Site Visit Memorandum

Black & Veatch Memorandum

May 13, 2009

Rush Island Generating Station Site Visit Conducted April 28 & 29, 2009

Participants included:

<u>AmerenUE</u> David L. Strubberg, Plant Manager Gregory Vasel, Superintendent, Technical Support Andrew Williamson, Superintendent, Productions Paul Starks, Superintendent, Maintenance Gary Blessing, Supervising Engineer

Black & Veatch Jim Hurt Debashis Bose

The Rush Island Facility, which has 2 pulverized coal (PC) subcritical power generating units, is located in Festus, Missouri on the banks of the Mississippi river. The two units are identical units built in 1976 and 1977 respectively, each with a nameplate capacity of 621 MW.

The Rush Island Facility was originally designed to burn Illinois coal, which has a heat content of around 12,000 btu/lb. The plant now burns Powder River basin (PRB) coal. The average heat content of the PRB coal is approximately 8,400 btu/lb (HHV) and is transported to the site by rail. The Rush Island Facility also has a barge unloading facility at site, which gives an alternative coal transportation option. However, due to current coal supply restrictions, the Rush Island Facility cannot use the barge facility for delivery of coal. The coal contract for the Rush Island Facility was renewed in 2008 and runs through 2018. The plant uses fuel oil for start-up because natural gas is not available at the site. Plant personnel are not aware of any natural gas pipelines near the site. A competing railroad is not available to the site.

Black & Veatch Professionals (Black & Veatch) visited the Rush Island Facility power generation station site on April 30, 2009 in order to determine if there were any currently known issues that could affect the life expectancy of the generating facility. During the site visit:

- Black & Veatch conducted a walk down of each unit to observe the condition of the:
 - control room,
 - boiler and associated systems,
 - air quality control equipment,
 - ash systems,
 - fuel yard,
 - turbine deck and associated systems,
 - major electrical equipment.
- Black & Veatch met with plant personnel to discuss:
 - Recent and planned expenditures required to maintain the economic viability, safety, and reliability of each unit,
 - Programs that are being utilized to develop, update and justify the capital projects budget,

- Equipment outage plans and reports,
- Corrective action programs,
- Predictive and preventive maintenance programs,
- Unit operating routines (historical and projected).

Black & Veatch noted that both units were operating very well at high reliability levels. On the day of the visit, Unit 1 had been operating continuously for 235 days since its last outage. Based on the information provided by the plant personnel, Black & Veatch noted that the plant had made change to its coal handling facility to accommodate the higher volume of PRB coal needed in comparison to the Illinois coal. The fly ash is marketed to an adjacent concrete plant and the bottom ash is collected in the ash pond. Black & Veatch did not find any significant issues with any of the systems in the plant. However Black & Veatch made certain observations regarding future expansion of the site:

- The plant site is landlocked with low probability of expanding beyond its existing boundaries.
- The plant site was originally planned for four units; however only two have been built and so the plant has sufficient room to add scrubbers or possibly a third unit.

Black & Veatch reviewed NERC GADS data provided by AmerenUE for 2003-2008 and compared with industry data for units of similar size and equipment. Specifically, equivalent availability factor, forced outage rate, and equivalent forced outage rate were reviewed and compared. The units at Rush Island Facility were better than the industry averages in all three categories.

Based on interviews with plant personnel conducted during a site visit of the Rush Island Facility along with technical information provided by AmerenUE, B& V did not identify any issues that it believes would limit the physical life of the plant, provided the existing operations and maintenance practices as well as capital expenditure programs are continued. Major issues appeared to be fully disclosed and discussed. Most of these issues are typical for assets of this type and age and nearly all have technical solutions. It is also recognized that these are aging units that will experience equipment and systems failures over the years unless significant expenditures are made. Based on information available at the time, the (2001-2013) historical and long term forecast capital expenditure plan developed by AmerenUE and reviewed by Black & Veatch includes cost estimates for addressing these equipment and system issues.

Black & Veatch personnel did not find evidence that would indicate that these units cannot continue to operate in a manner similar to recent experience based on the following assumptions:

- The units will continue to be operated in a mode consistent with industry practice for units of this type and age.
- Information provided by AmerenUE personnel regarding the generating station is complete and accurate.
- Application of operations and maintenance programs consistent with industry practices for units of the type and age will continue.
- Application of corrective action, and predictive and preventive maintenance programs that will enable AmerenUE to minimize exposure to catastrophic failures.
- Application of programs on the plant as well as corporate level to assure that personnel are competent to operate and maintain the facilities in a manner consistent with prudent industry practices.
- The capital expenditure estimates in the long term capital plan developed by AmerenUE will be periodically reviewed and adjusted in a timely manner to accomodate changing regulations, or as differing conditions are are encountered. AmerenUE will implement the long term capital plan in a timely manner.

Based on the foregoing, Black & Veatch does not foresee any technical reasons that would cause the currently operating generation assets at the Rush Island Facility to be retired prematurely. Black & Veatch can not

opine as to whether there will be economic, operational, or environmental issues which might adversely affect the viability of the generating assets in the future.

Plant staff appeared knowledgeable and conducted themselves professionally. Operating practices at the plant appear prudent and consistent with generally accepted utility practices.

APPENDIX C ACTUARIAL ANALYSIS RESULTS

AmerenUE - Electric				
PROGRAM OPTIONS IN EFFECT:				
MAXIMUM DATA FILE EXPERIENCE BAND	1913-2008			
TRAN CODES INCLUDED AS RETIREMENTS	0,0,0,7			

AmerenUE - Electric

ACCOUNT 311 STRUCTURES & IMPROVEMENTS

INPUT CONTROL TOTALS THROUGH 2008

TRAN CODE	T O T A L AGED	I N P U T UNAGED	D A T A TOTAL
0 3 7 9	15,551,130.77- 5,010,932.15- 26,988,405.06- 244,246,701.53		15,551,130.77- 5,010,932.15- 26,988,405.06- 244,246,701.53
TOTAL DATA	196,696,233.55		196,696,233.55
8	196,696,232.35		196,696,232.35
TOTAL DATA LESS CD 8	1.20		1.20

AmerenUE - Electric

ACCOUNT 311 STRUCTURES & IMPROVEMENTS

ORIGINAL LIFE TABLE

AVG AGE RI PLACEMENT	ET 41.6 BAND 1910-2008	1			ANALYSIS 1923-2008
AGE AT BEGIN OF INTERVAL	EXPOSURES AT BEGINNING OF AGE INTERVAL	RETIREMENI DURING AGE INTERVAL		SURV RATIO	PCT SURV BEGIN OF INTERVAL
0.0 0.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5 8.5	243,657,711 232,071,333 230,324,346 227,861,082 223,858,468 219,925,794 215,293,576 207,600,762 196,379,434 193,995,379	114,534 335,602 881,502 348,877 425,748 182,710 672,931 235,040 442,088 419,663	0.0005 0.0014 0.0038 0.0015 0.0019 0.0008 0.0031 0.0011 0.0023 0.0022	0.9995 0.9986 0.9982 0.9985 0.9981 0.9992 0.9969 0.9989 0.9977 0.9978	100.00 99.95 99.81 99.28 99.09 99.01 98.70 98.59 98.36
9.5 10.5 11.5 12.5 13.5 14.5 15.5 16.5 17.5 18.5	191,495,864 190,564,399 187,910,242 182,151,747 179,672,727 174,924,650 172,064,172 168,643,762 164,440,486 157,806,071	413,212 530,721 113,755 345,694 292,634 244,948 264,070 474,912 393,385 130,954	0.0022 0.0028 0.0006 0.0019 0.0016 0.0014 0.0015 0.0028 0.0024 0.0008	0.9978 0.9972 0.9994 0.9981 0.9984 0.9986 0.9985 0.9972 0.9976 0.9992	98.14 97.92 97.65 97.59 97.40 97.24 97.10 96.95 96.68 96.45
19.5 20.5 21.5 22.5 23.5 24.5 25.5 26.5 27.5 28.5	155,591,828 153,348,509 151,570,704 149,276,305 147,813,527 146,604,297 137,989,039 136,361,422 134,786,968 131,262,186	606,268 490,047 1,137,358 426,339 230,243 222,003 805,269 428,652 632,342 1,072,388	0.0039 0.0032 0.0075 0.0029 0.0016 0.0015 0.0058 0.0031 0.0047 0.0082	0.9961 0.9968 0.9925 0.9971 0.9984 0.9985 0.9942 0.9969 0.9953 0.9918	96.37 95.99 95.68 94.96 94.68 94.53 94.39 93.84 93.55 93.11
29.5 30.5 31.5 32.5 33.5 34.5 35.5 36.5 37.5 38.5	129,539,159 129,144,807 119,951,459 88,954,084 88,306,288 87,556,318 81,341,120 74,396,080 68,904,014 58,505,178	84,611 376,945 399,919 141,130 198,163 380,745 184,068 242,158 416,994 223,423	0.0007 0.0029 0.0033 0.0016 0.0022 0.0043 0.0023 0.0033 0.0061 0.0038	0.9993 0.9971 0.9967 0.9984 0.9978 0.9957 0.9957 0.9977 0.9967 0.9939 0.9962	92.35 92.29 92.02 91.72 91.57 91.37 90.98 90.77 90.47 89.92

AmerenUE - Electric

ACCOUNT 311 STRUCTURES & IMPROVEMENTS

ORIGINAL LIFE TABLE, CONT.

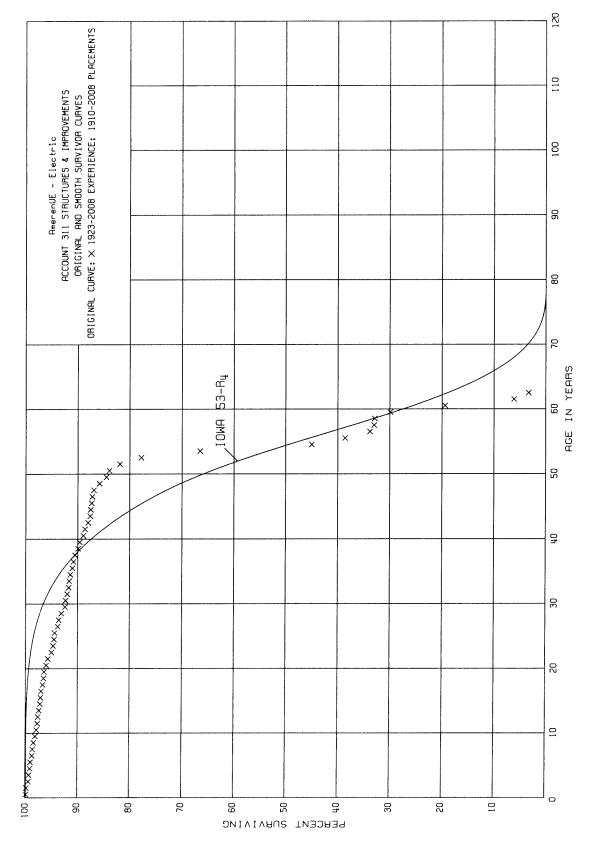
AVG AGE R PLACEMENT		1			ANALYSIS 1923-2008
AGE AT BEGIN OF INTERVAL	EXPOSURES AT BEGINNING OF AGE INTERVAL	RETIREMENT DURING AGE INTERVAL		SURV RATIO	PCT SURV BEGIN OF INTERVAL
39.5 40.5 41.5 42.5 43.5 44.5 45.5 46.5 47.5 48.5	58,243,273 53,624,314 47,617,438 47,266,864 46,980,914 46,835,957 46,742,666 46,624,590 41,996,393 41,437,336	436,324 173,839 343,731 209,254 68,082 82,897 78,137 160,709 532,002 639,274	0.0075 0.0032 0.0072 0.0044 0.0014 0.0018 0.0017 0.0034 0.0127 0.0154	0.9925 0.9968 0.9928 0.9956 0.9986 0.9982 0.9983 0.9966 0.9873 0.9846	89.58 88.91 88.63 87.99 87.60 87.48 87.32 87.17 86.87 85.77
49.5 50.5 51.5 52.5 53.5 54.5 55.5 56.5 57.5 58.5	35,573,981 35,234,478 34,085,824 31,472,832 17,867,638 11,498,515 9,827,997 8,536,830 8,221,240 8,150,341	245,668 842,884 1,707,952 4,581,053 5,779,777 1,618,110 1,237,914 200,371 6,195 743,973	0.0069 0.0239 0.0501 0.1456 0.3235 0.1407 0.1260 0.0235 0.0008 0.0913	0.9931 0.9761 0.9499 0.8544 0.6765 0.8593 0.8740 0.9765 0.9992 0.9087	84.45 83.87 81.87 77.77 66.45 44.95 38.63 33.76 32.97 32.94
59.5 60.5 61.5 62.5 63.5 64.5 65.5 66.5 67.5 68.5	7,391,430 4,491,639 1,333,196 719,488 610,173 610,173 610,173 610,173 610,173 610,173	2,592,585 3,072,968 613,343	$\begin{array}{c} 0.3508\\ 0.6842\\ 0.4601\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ \end{array}$	0.6492 0.3158 0.5399 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000	29.93 19.43 6.14 3.31 3.31 3.31 3.31 3.31 3.31 3.31 3
69.5 70.5 71.5 72.5 73.5 74.5 75.5 76.5 77.5	610,173 610,173 610,173 610,173 610,173	610 , 173	0.0000 0.0000 0.0000 0.0000 1.0000	1.0000 1.0000 1.0000 1.0000 0.0000	3.31 3.31 3.31 3.31 3.31 0.00
78.5	276	276	1.0000		

AmerenUE - Electric

AMERENUE POWER PLANT LIFE EXPECTANCY

ACCOUNT 311 STRUCTURES & IMPROVEMENTS

ORIGINAL LIFE TABLE, CONT.


AVG AGE RET 41.6 1 EXPERIENCE ANALYSIS PLACEMENT BAND 1910-2008 EXPERIENCE BAND 1923-2008

AGE AT	EXPOSURES AT	RETIREMENTS			PCT SURV
BEGIN OF	BEGINNING OF	DURING AGE	RETMT	SURV	BEGIN OF
INTERVAL	AGE INTERVAL	INTERVAL	RATIO	RATIO	INTERVAL

79.5

TOTAL 7,030,332,650 42,539,536

Black & Veatch

AmerenUE - Electric

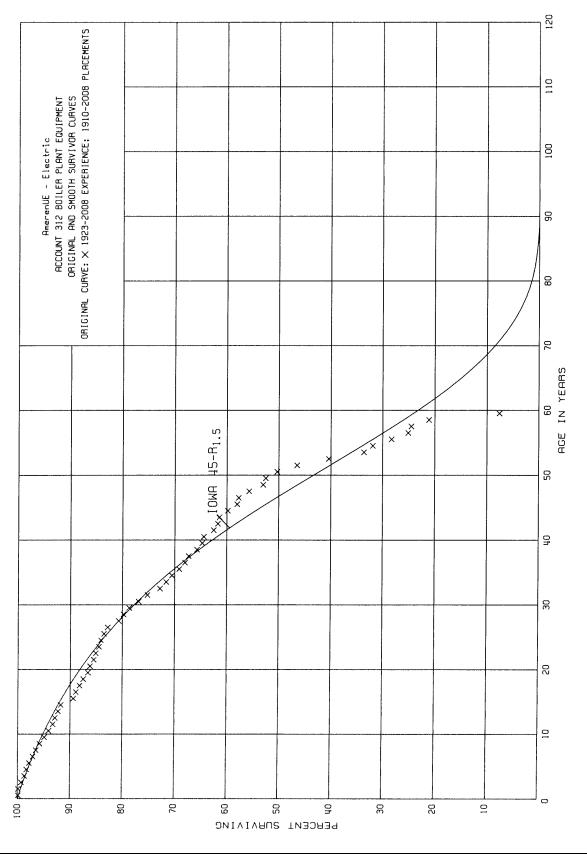
ACCOUNT 312 BOILER PLANT EQUIPMENT

TRAN CODE		T O T A L AGED	I N P U T UNAGED	D A T A TOTAL
0 3 7 9	32,613	,491.60- ,510.43- ,836.68- ,908.93		315,947,491.60- 32,613,510.43- 42,942,836.68- 2,216,727,908.93
TOTAL	DATA1,825,224	,070.22		1,825,224,070.22
8	1,825,224	,069.44		1,825,224,069.44
TOTAL LESS		0.78		0.78

AmerenUE - Electric

ACCOUNT 312 BOILER PLANT EQUIPMENT

AVG AGE RE PLACEMENT	ET 21.6 BAND 1910-2008	1			ANALYSIS 1923-2008
AGE AT BEGIN OF INTERVAL	EXPOSURES AT BEGINNING OF AGE INTERVAL	RETIREMENI DURING AGE INTERVAL		SURV RATIO	PCT SURV BEGIN OF INTERVAL
0.5 2, 1.5 2, 2.5 1, 3.5 1, 4.5 1, 5.5 1, 6.5 1, 7.5 1,	216,467,344 163,240,798 063,311,227 990,338,784 931,998,558 803,836,400 716,810,022 562,163,327 417,074,670 373,874,735	215,633 1,240,296 12,416,083 12,737,737 8,018,114 8,740,020 12,210,969 9,301,882 11,203,030 12,267,040	0.0001 0.0006 0.0064 0.0042 0.0048 0.0071 0.0060 0.0079 0.0089	0.9999 0.9994 0.9940 0.9936 0.9958 0.9952 0.9929 0.9940 0.9921 0.9911	100.00 99.99 99.33 99.33 98.69 98.28 97.81 97.12 96.54 95.78
10.5 1, 11.5 1, 12.5 1,	320,524,451 298,207,121 243,701,441 114,426,650 046,481,964 981,559,368 904,096,412 862,823,272 850,294,418 829,507,874	11,464,287 11,030,104 5,318,661 6,736,718 6,477,772 25,048,654 5,635,560 6,987,008 6,087,687 9,248,482	0.0087 0.0085 0.0043 0.0060 0.0062 0.0255 0.0062 0.0081 0.0072 0.0111	0.9913 0.9915 0.9957 0.9940 0.9938 0.9745 0.9938 0.9919 0.9928 0.9889	94.93 94.10 93.30 92.90 92.34 91.77 89.43 88.88 88.16 87.53
19.5 20.5 21.5 22.5 23.5 24.5 25.5 26.5 27.5 28.5	817,085,966 813,179,527 804,067,507 784,622,809 776,413,649 770,880,025 715,186,383 688,502,718 623,909,145 611,927,917	3,397,322 6,142,331 4,306,511 5,574,540 3,373,288 5,558,587 6,383,439 17,409,623 6,467,962 8,762,962	0.0042 0.0076 0.0054 0.0071 0.0043 0.0072 0.0089 0.0253 0.0104 0.0143	0.9958 0.9924 0.9946 0.9929 0.9957 0.9928 0.9911 0.9747 0.9896 0.9857	86.56 86.20 85.54 85.08 84.48 84.12 83.51 82.77 80.68 79.84
29.5 30.5 31.5 32.5 33.5 34.5 35.5 36.5 37.5 38.5	601,287,404 586,590,255 488,616,647 369,963,712 362,918,132 357,273,013 288,563,255 223,207,660 176,412,164 122,508,869	13,639,815 12,760,973 15,697,048 6,410,500 5,215,469 7,385,359 4,404,279 2,392,406 4,063,591 1,867,211	0.0227 0.0218 0.0321 0.0173 0.0144 0.0207 0.0153 0.0107 0.0230 0.0152	0.9773 0.9782 0.9679 0.9827 0.9856 0.9793 0.9847 0.9893 0.9770 0.9848	78.70 76.91 75.23 72.82 71.56 70.53 69.07 68.01 67.28 65.73


AmerenUE - Electric

ACCOUNT 312 BOILER PLANT EQUIPMENT

ORIGINAL LIFE TABLE, CONT.

AVG AGE RI PLACEMENT	ET 21.6 BAND 1910-2008	1		-	ANALYSIS 1923-2008
AGE AT BEGIN OF INTERVAL	EXPOSURES AT BEGINNING OF AGE INTERVAL	RETIREMENI DURING AGE INTERVAL	-	SURV RATIO	PCT SURV BEGIN OF INTERVAL
39.5 40.5 41.5 42.5 43.5 44.5 45.5 46.5 46.5 46.5 48.5 49.5 50.5 51.5 52.5 53.5	119,884,646 101,082,698 76,829,332 75,639,101 73,962,199 71,150,589 69,177,691 68,626,425 49,859,713 47,393,220 33,629,839 32,096,390 29,636,321 25,744,814 20,689,006	556,795 2,989,639 1,020,637 306,245 1,991,520 2,119,509 390,975 2,354,432 2,410,870 444,560 1,432,163 2,404,897 3,891,502 4,340,681 1,058,156	0.0046 0.0296 0.0133 0.0040 0.0269 0.0298 0.0057 0.0343 0.0484 0.0094 0.0426 0.0749 0.1313 0.1686 0.0511	0.9954 0.9704 0.9867 0.9960 0.9731 0.9702 0.9943 0.9657 0.9516 0.9906 0.9574 0.9251 0.8687 0.8314 0.9489	64.73 64.43 62.52 61.69 61.44 59.79 58.01 57.68 55.70 53.00 52.50 50.26 46.50 40.39 33.58
54.5 55.5 56.5 57.5 58.5	14,213,500 5,987,457 5,308,513 5,164,153 4,454,930	1,579,029 672,314 144,528 709,223 2,841,608	0.1111 0.1123 0.0272 0.1373 0.6379	0.8889 0.8877 0.9728 0.8627 0.3621	31.86 28.32 25.14 24.46 21.10
59.5 60.5 61.5 62.5 63.5 64.5 65.5	1,625,606 159,589 16,837 14,293	1,472,502 142,752 2,544 14,293	0.9058 0.8945 0.1511 1.0000	0.0942 0.1055 0.8489 0.0000	7.64 0.72 0.08 0.07 0.00

TOTAL 40,606,202,455 358,890,327

AmerenUE - Electric

ACCOUNT 314 TURBOGENERATOR UNITS

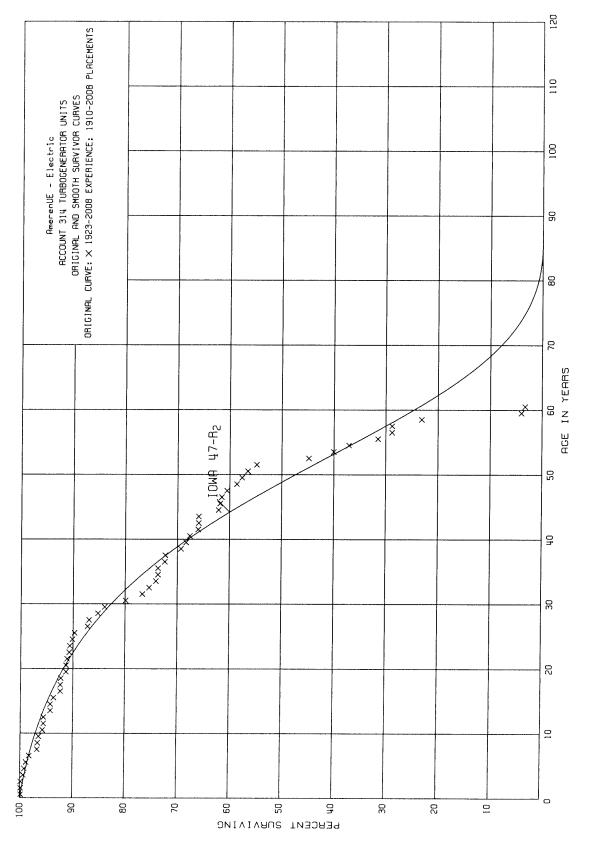
TRAN CODE	T O T A L AGED	I N P U T UNAGED	D A T A TOTAL
0 3 7 9	92,606,815.79- 9,143,452.22 28,342,230.61- 639,941,566.65		92,606,815.79- 9,143,452.22 28,342,230.61- 639,941,566.65
TOTAL DATA	528,135,972.47		528,135,972.47
8	528,135,972.70		528,135,972.70
TOTAL DATA LESS CD 8	0.23-		0.23-

AmerenUE - Electric

ACCOUNT 314 TURBOGENERATOR UNITS

AVG AGE R PLACEMENT	ET 30.0 BAND 1910-2008	1			ANALYSIS 1923-2008
AGE AT BEGIN OF INTERVAL	EXPOSURES AT BEGINNING OF AGE INTERVAL	RETIREMENT DURING AGE INTERVAL		SURV RATIO	PCT SURV BEGIN OF INTERVAL
$\begin{array}{c} 0.0\\ 0.5\\ 1.5\\ 2.5\\ 3.5\\ 4.5\\ 5.5\\ 6.5\\ 7.5\\ 8.5 \end{array}$	639,901,478 604,167,385 617,582,703 580,220,455 540,536,269 517,164,995 454,987,632 408,849,148 373,775,740 362,669,290	208,770 49,089 561,741 2,571,127 1,248,691 1,748,581 2,589,512 6,389,418 304,049 565,369	$\begin{array}{c} 0.0003\\ 0.0001\\ 0.0009\\ 0.0044\\ 0.0023\\ 0.0034\\ 0.0057\\ 0.0156\\ 0.0008\\ 0.0016\end{array}$	0.9997 0.9999 0.9991 0.9956 0.9977 0.9966 0.9943 0.9844 0.9992 0.9984	100.00 99.97 99.96 99.87 99.43 99.20 98.86 98.30 96.77 96.69
$\begin{array}{c} 9.5\\ 10.5\\ 11.5\\ 12.5\\ 13.5\\ 14.5\\ 15.5\\ 16.5\\ 17.5\\ 18.5\end{array}$	331,607,760 327,025,741 322,055,521 320,136,888 309,397,047 301,523,106 299,221,090 294,170,941 291,564,230 289,081,973	2,717,527 477,272 171,847 4,332,210 73,444 1,734,493 4,173,014 20,804 262,040 3,050,905	0.0082 0.0015 0.0005 0.0135 0.0002 0.0058 0.0139 0.0001 0.0009 0.0106	0.9918 0.9985 0.9995 0.9865 0.9998 0.9942 0.9861 0.9999 0.9991 0.9894	96.54 95.75 95.61 94.27 94.25 93.70 92.40 92.39 92.31
19.5 20.5 21.5 22.5 23.5 24.5 25.5 26.5 27.5 28.5	285,683,382 285,095,460 283,892,591 282,453,056 282,028,917 269,967,853 268,372,951 260,579,846 259,214,377 244,076,167	106,050 584,800 1,301,726 185,329 1,651,993 1,100,307 7,472,680 939,049 5,255,907 3,709,980	0.0004 0.0021 0.0046 0.0007 0.0059 0.0041 0.0278 0.0036 0.0203 0.0152	0.9996 0.9979 0.9954 0.9993 0.9941 0.9959 0.9722 0.9964 0.9797 0.9848	91.33 91.29 91.10 90.68 90.62 90.09 89.72 87.23 86.92 85.16
29.5 30.5 31.5 32.5 33.5 34.5 35.5 36.5 37.5 38.5	237,988,195 226,800,420 196,187,779 154,628,674 151,990,890 151,083,872 137,003,254 116,370,219 103,165,694 82,787,381	11,148,016 9,350,945 3,266,053 2,634,429 907,017 31,041 2,256,380 250,410 4,247,375 1,244,148	0.0468 0.0412 0.0166 0.0170 0.0060 0.0002 0.0165 0.0022 0.0412 0.0150	0.9532 0.9588 0.9834 0.9830 0.9940 0.9998 0.9835 0.9978 0.9588 0.9850	83.87 79.94 76.65 75.38 74.10 73.66 73.65 72.43 72.27 69.29

AmerenUE - Electric


ACCOUNT 314 TURBOGENERATOR UNITS

ORIGINAL LIFE TABLE, CONT.

AVG AGE RI PLACEMENT	ET 30.0 BAND 1910-2008	1			ANALYSIS 1923-2008
AGE AT BEGIN OF INTERVAL	EXPOSURES AT BEGINNING OF AGE INTERVAL	RETIREMENT DURING AGE INTERVAL		SURV RATIO	PCT SURV BEGIN OF INTERVAL
39.5 40.5 41.5 42.5 43.5 44.5 45.5 46.5 47.5 48.5	81,501,283 70,049,999 59,054,234 58,972,051 58,907,204 55,486,194 55,251,059 55,007,243 42,095,088 31,423,538	778,102 1,686,874 35,182 48,789 3,421,010 233,595 242,669 912,280 1,361,641 501,081	0.0095 0.0241 0.0006 0.0008 0.0581 0.0042 0.0044 0.0166 0.0323 0.0159	0.9905 0.9759 0.9994 0.9992 0.9419 0.9958 0.9956 0.9834 0.9677 0.9841	68.25 67.60 65.97 65.93 65.88 62.05 61.79 61.52 60.50 58.55
49.5 50.5 51.5 52.5 53.5 54.5 55.5 56.5 57.5 58.5	30,316,379 29,817,178 29,150,202 24,605,130 22,390,003 15,769,185 5,856,448 5,282,529 5,395,037 4,519,127	571,258 943,599 5,318,697 2,642,264 1,608,153 2,363,952 510,889 888 1,065,582 3,729,309	0.0188 0.0316 0.1825 0.1074 0.0718 0.1499 0.0872 0.0002 0.1975 0.8252	0.9812 0.9684 0.8175 0.8926 0.9282 0.8501 0.9128 0.9998 0.8025 0.1748	57.62 56.54 54.75 44.76 39.95 37.08 31.52 28.77 28.76 23.08
59.5 60.5 61.5 62.5 63.5 64.5 65.5 66.5 67.5 68.5	1,698,431 1,769,809 298,826 298,826 295,550 295,550 295,550 295,550 295,550 295,550 295,550	309,992 1,470,878 3,276	0.1825 0.8311 0.0000 0.0110 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	$\begin{array}{c} 0.8175 \\ 0.1689 \\ 1.0000 \\ 0.9890 \\ 1.0000 \\ 1.0000 \\ 1.0000 \\ 1.0000 \\ 1.0000 \\ 1.0000 \\ 1.0000 \\ 1.0000 \end{array}$	$\begin{array}{c} 4.03 \\ 3.29 \\ 0.56 \\ 0.55 \\ 0.55 \\ 0.55 \\ 0.55 \\ 0.55 \\ 0.55 \\ 0.55 \\ 0.55 \\ 0.55 \\ 0.55 \end{array}$
69.5 70.5 71.5	295,550 295,550	295 , 550	0.0000 1.0000	1.0000 0.0000	0.55 0.55 0.00

TOTAL 13,212,289,773 120,949,048

AmerenUE - Electric

ACCOUNT 315 ACCESSORY ELECTRICAL EQUIPMENT

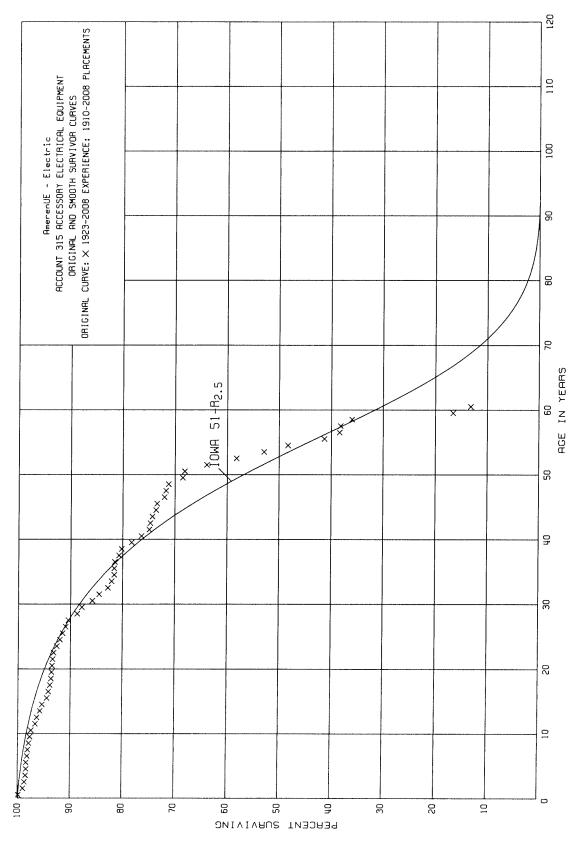
TRAN CODE	T O T A L AGED	I N P U T UNAGED	D A T A TOTAL
0 3 7 9	19,718,157.33- 47,573,347.94 16,319,497.99- 188,300,326.90		19,718,157.33- 47,573,347.94 16,319,497.99- 188,300,326.90
TOTAL DATA	199,836,019.52		199,836,019.52
8	199,836,018.79		199,836,018.79
TOTAL DATA LESS CD 8	0.73		0.73

AmerenUE - Electric

ACCOUNT 315 ACCESSORY ELECTRICAL EQUIPMENT

AVG AGE R PLACEMENT	ET 34.1 BAND 1910-2008	1			ANALYSIS 1923-2008
AGE AT BEGIN OF INTERVAL	EXPOSURES AT BEGINNING OF AGE INTERVAL	RETIREMENT DURING AGE INTERVAL	S RETMT RATIO	SURV RATIO	PCT SURV BEGIN OF INTERVAL
$\begin{array}{c} 0.0\\ 0.5\\ 1.5\\ 2.5\\ 3.5\\ 4.5\\ 5.5\\ 6.5\\ 7.5\\ 8.5 \end{array}$	188,294,250 179,947,913 178,634,490 175,801,734 169,628,663 152,256,516 147,921,953 136,157,050 128,271,676 128,872,061	143,083 1,618,118 569,518 388,435 90,371 60,732 276,033 175,756 215,786 262,927	0.0008 0.0090 0.0032 0.0022 0.0005 0.0004 0.0019 0.0013 0.0017 0.0020	0.9992 0.9910 0.9968 0.9978 0.9995 0.9996 0.9981 0.9987 0.9983 0.9980	100.00 99.92 98.02 98.70 98.48 98.43 98.39 98.39 98.20 98.07 97.90
$\begin{array}{c} 9.5\\ 10.5\\ 11.5\\ 12.5\\ 13.5\\ 14.5\\ 15.5\\ 16.5\\ 17.5\\ 18.5\end{array}$	123,775,850 124,528,069 123,182,178 116,176,247 113,602,361 109,130,562 103,381,963 102,457,526 101,412,774 100,308,558	$291,071 \\ 1,047,534 \\ 365,143 \\ 734,779 \\ 442,499 \\ 990,443 \\ 375,301 \\ 261,342 \\ 249,810 \\ 67,477 \\ \end{cases}$	0.0024 0.0084 0.0030 0.0063 0.0039 0.0039 0.0036 0.0026 0.0025 0.0007	0.9976 0.9916 0.9970 0.9937 0.9961 0.9909 0.9964 0.9974 0.9975 0.9993	97.70 97.47 96.65 96.36 95.75 95.38 94.51 94.17 93.93 93.70
19.5 20.5 21.5 22.5 23.5 24.5 25.5 26.5 27.5 28.5	97,157,833 94,252,575 93,995,926 92,938,963 91,903,216 91,399,978 89,101,200 88,396,642 86,877,146 85,188,812	164,851 106,381 128,497 662,648 564,242 533,495 619,183 443,241 1,658,674 868,615	0.0017 0.0011 0.0014 0.0071 0.0061 0.0058 0.0059 0.0050 0.0191 0.0102	0.9983 0.9989 0.9986 0.9929 0.9939 0.9942 0.9931 0.9950 0.9809 0.9898	93.63 93.47 93.37 93.24 92.58 92.02 91.49 90.86 90.41 88.68
29.5 30.5 31.5 32.5 33.5 34.5 35.5 36.5 37.5 38.5	85,501,856 83,616,739 77,603,439 64,477,305 64,247,805 64,795,585 58,563,834 49,591,730 43,908,876 33,592,387	1,895,180 1,318,372 1,544,922 565,816 339,984 55,501 82,784 446,552 311,034 787,218	0.0222 0.0158 0.0199 0.0088 0.0053 0.0009 0.0014 0.0090 0.0071 0.0234	0.9778 0.9842 0.9801 0.9912 0.9947 0.9991 0.9986 0.9910 0.9929 0.9766	87.78 85.83 84.47 82.79 82.06 81.63 81.56 81.45 80.72 80.15

AmerenUE - Electric


ACCOUNT 315 ACCESSORY ELECTRICAL EQUIPMENT

ORIGINAL LIFE TABLE, CONT.

AVG AGE RI PLACEMENT	ET 34.1 BAND 1910-2008	1		-	ANALYSIS 1923-2008
AGE AT BEGIN OF INTERVAL	EXPOSURES AT BEGINNING OF AGE INTERVAL	RETIREMENI DURING AGE INTERVAL	-	SURV RATIO	PCT SURV BEGIN OF INTERVAL
39.5 40.5 41.5 42.5 43.5 44.5 45.5 46.5 46.5 48.5	32,722,637 28,629,035 23,914,429 23,859,253 23,737,791 23,867,990 23,775,891 23,284,075 19,162,423 19,363,341	770,463 590,873 54,741 116,395 226,847 81,915 445,689 95,072 134,024 721,765	0.0235 0.0206 0.0023 0.0049 0.0096 0.0034 0.0187 0.0041 0.0070 0.0373	0.9765 0.9794 0.9977 0.9951 0.9904 0.9966 0.9813 0.9959 0.9930 0.9627	78.27 76.43 74.86 74.69 74.32 73.61 73.36 71.99 71.69 71.19
49.5 50.5 51.5 52.5 53.5 54.5 55.5 56.5 57.5 58.5	16,154,078 16,768,155 15,692,011 14,247,310 12,836,553 9,689,424 4,925,861 4,578,172 4,488,943 4,107,573	100,574 1,048,815 1,396,066 1,283,836 1,117,044 1,404,807 347,688 28,898 256,191 2,213,445	0.0062 0.0890 0.0901 0.0870 0.1450 0.0706 0.0063 0.0571 0.5389	0.9938 0.9375 0.9110 0.9099 0.9130 0.8550 0.9294 0.9937 0.9429 0.4611	68.53 68.11 63.85 58.17 52.93 48.33 41.32 38.40 38.16 35.98
59.5 60.5 61.5 62.5 63.5	1,879,159 1,496,657 5,452 5,452	382,502 1,491,205 5,452	0.2035 0.9964 0.0000 1.0000	0.7965 0.0036 1.0000 0.0000	16.59 13.21 0.05 0.05 0.00

TOTAT	1 500	045 000	20	0 2 7	CEE
TOTAL	4,090	,045,906	30	,037,	,000

AmerenUE - Electric

ACCOUNT 316 MISCELLANEOUS POWER PLANT EQUIPMENT

TRAN	T O T A L	I N P U T	D A T A
CODE	AGED	UNAGED	TOTAL
0	9,889,861.43-		9,889,861.43-
3	531,829.74-		531,829.74-
7	1,360,455.23-		1,360,455.23-
9	71,930,869.97		71,930,869.97
TOTAL DATA	60,148,723.57		60,148,723.57
8	60,148,723.57		60,148,723.57

AmerenUE - Electric

ACCOUNT 316 MISCELLANEOUS POWER PLANT EQUIPMENT

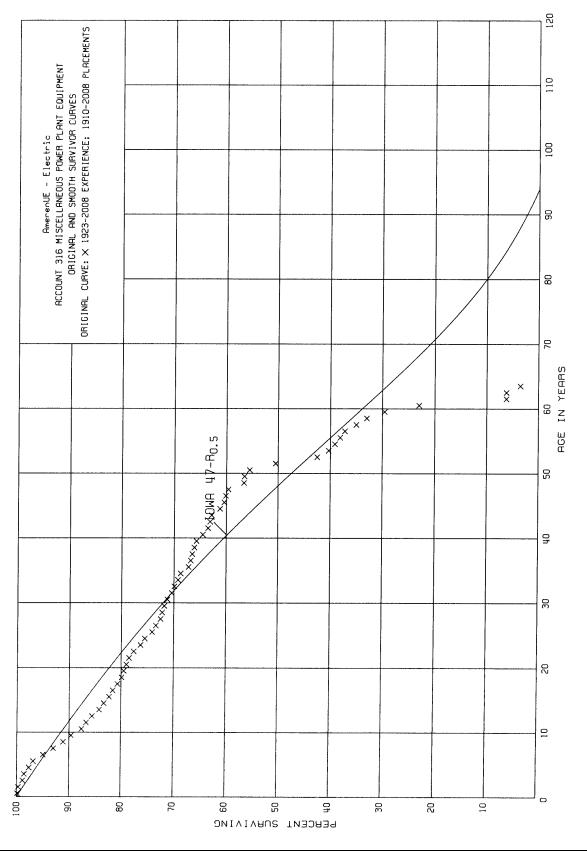
AVG AGE RI PLACEMENT	ET 14.1 BAND 1910-2008	1			ANALYSIS 1923-2008
AGE AT BEGIN OF INTERVAL	EXPOSURES AT BEGINNING OF AGE INTERVAL	RETIREMENI DURING AGE INTERVAL		SURV RATIO	PCT SURV BEGIN OF INTERVAL
$\begin{array}{c} 0.0\\ 0.5\\ 1.5\\ 2.5\\ 3.5\\ 4.5\\ 5.5\\ 6.5\\ 7.5\\ 8.5 \end{array}$	71,919,576	15,346	0.0002	0.9998	100.00
	64,962,634	167,548	0.0026	0.9974	99.98
	61,577,615	517,821	0.0084	0.9916	99.72
	58,456,010	144,963	0.0025	0.9975	98.88
	55,821,039	530,144	0.0095	0.9905	98.63
	52,613,015	442,705	0.0084	0.9916	97.69
	49,757,533	942,108	0.0189	0.9811	96.87
	45,605,543	970,148	0.0213	0.9787	95.04
	42,147,514	885,173	0.0210	0.9790	93.02
	38,855,434	619,972	0.0160	0.9840	91.07
$\begin{array}{c} 9.5 \\ 10.5 \\ 11.5 \\ 12.5 \\ 13.5 \\ 14.5 \\ 15.5 \\ 16.5 \\ 17.5 \\ 18.5 \end{array}$	36,862,856	838,859	0.0228	0.9772	89.61
	35,059,581	355,798	0.0101	0.9899	87.57
	33,175,386	415,108	0.0125	0.9875	86.69
	30,978,160	524,740	0.0169	0.9831	85.61
	28,309,316	302,389	0.0107	0.9893	84.16
	25,310,303	296,599	0.0117	0.9883	83.26
	22,617,332	190,182	0.0084	0.9916	82.29
	20,800,820	237,663	0.00114	0.9886	81.60
	19,616,781	191,275	0.0098	0.9902	80.67
	18,454,064	79,198	0.0043	0.9957	79.88
19.5	17,601,706	116,684	0.0066	0.9934	79.54
20.5	16,976,258	119,675	0.0070	0.9930	79.02
21.5	16,314,018	186,653	0.0114	0.9886	78.47
22.5	15,532,075	249,308	0.0161	0.9839	77.58
23.5	14,417,915	155,350	0.0108	0.9892	76.33
24.5	13,777,985	258,752	0.0188	0.9812	75.51
25.5	12,917,037	119,557	0.0093	0.9907	74.09
26.5	11,699,025	143,035	0.0122	0.9878	73.40
27.5	11,005,002	42,850	0.0039	0.9961	72.50
28.5	10,348,427	58,795	0.0057	0.9943	72.22
29.5	9,863,152	85,996	0.0087	0.9913	71.81
30.5	9,345,330	98,752	0.0106	0.9894	71.19
31.5	8,537,837	63,913	0.0075	0.9925	70.44
32.5	6,399,162	63,436	0.0099	0.9901	69.91
33.5	6,219,967	48,953	0.0079	0.9921	69.22
34.5	6,001,763	126,979	0.0212	0.9788	68.67
35.5	5,236,055	30,370	0.0058	0.9942	67.21
36.5	4,152,469	21,067	0.0051	0.9949	66.82
37.5	3,574,893	20,256	0.0057	0.9943	66.48
38.5	2,325,241	15,616	0.0067	0.9933	66.10

AmerenUE - Electric

ACCOUNT 316 MISCELLANEOUS POWER PLANT EQUIPMENT

ORIGINAL LIFE TABLE, CONT.

AVG AGE RET 14.1		1 EXPERIENCE ANALYSIS			
PLACEMENT BAND 1910-2008		EXPERIENCE BAND 1923-2008			
AGE AT BEGIN OF INTERVAL	EXPOSURES AT BEGINNING OF AGE INTERVAL	RETIREMENI DURING AGE INTERVAL		SURV RATIO	PCT SURV BEGIN OF INTERVAL
39.5	2,237,551	38,410	0.0172	0.9828	65.66
40.5	2,032,682	31,489	0.0155	0.9845	64.53
41.5	1,457,093	10,671	0.0073	0.9927	63.53
42.5	1,397,070	6,318	0.0045	0.9955	63.07
43.5	1,315,770	33,114	0.0252	0.9748	62.79
44.5	1,187,291	15,029	0.0127	0.9873	61.21
45.5	1,110,635	7,020	0.0063	0.9937	60.43
46.5	986,244	6,765	0.0069	0.9931	60.05
47.5	1,010,254	51,142	0.0506	0.9494	59.64
48.5	856,127	1,419	0.0017	0.9983	56.62
49.5	767,494	14,019	0.0183	0.9817	56.52
50.5	726,976	64,957	0.0894	0.9106	55.49
51.5	634,097	101,023	0.1593	0.8407	50.53
52.5	499,882	25,132	0.0503	0.9497	42.48
53.5	464,803	13,937	0.0300	0.9700	40.34
54.5	412,278	10,417	0.0253	0.9747	39.13
55.5	274,324	7,051	0.0257	0.9743	38.14
56.5	149,430	8,661	0.0580	0.9420	37.16
57.5	134,529	7,706	0.0573	0.9427	35.00
58.5	126,779	13,191	0.1040	0.8960	32.99
59.5 60.5 61.5 62.5 63.5 64.5 65.5 66.5 67.5 68.5	111,472 77,615 16,195 16,936 16,732 16,732 8,947 1,091 975 902	24,767 56,811 4 7,426	0.2222 0.7320 0.0002 0.4385 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.7778 0.2680 0.9998 0.5615 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000	29.56 22.99 6.16 6.16 3.46 3.46 3.46 3.46 3.46 3.46 3.46 3.4
69.5 70.5 71.5 72.5 73.5 74.5 75.5 76.5 77.5 78.5	902 902 849 755 755 733 431 405 405 405		0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000	3.46 3.46 3.46 3.46 3.46 3.46 3.46 3.46


AmerenUE - Electric

ACCOUNT 316 MISCELLANEOUS POWER PLANT EQUIPMENT

ORIGINAL LIFE TABLE, CONT.

AVG AGE RI PLACEMENT	ET 14.1 BAND 1910-2008	1 EXPERIENCE ANALYSIS EXPERIENCE BAND 1923-2008			
AGE AT BEGIN OF INTERVAL	EXPOSURES AT BEGINNING OF AGE INTERVAL	RETIREMENTS DURING AGE INTERVAL	S RETMT RATIO	SURV RATIO	PCT SURV BEGIN OF INTERVAL
79.5 80.5 81.5 82.5 83.5	129 101 101 101	101	0.0000 0.0000 0.0000 1.0000	1.0000 1.0000 1.0000 0.0000	3.46 3.46 3.46 3.46 0.00

TOTAL 1,033,201,709 11,250,316

