KANSAS CITY POWER & LIGHT COMPANY (KCP&L) INTEGRATED RESOURCE PLAN 2013 ANNUAL UPDATE

JUNE, 2013

TABLE OF CONTENTS

SECTION 1	: EXECUTIVE SUMMARY	1
	ILITY INTRODUCTION	
1.2 Cł	IANGES FROM THE 2012 TRIENNIAL IRP SUBMITTAL	6
1.2.1	2012 KCP&L IRP PREFERRED PLAN	6
1.2.2	2013 KCP&L ANNUAL UPDATE PREFERRED PLAN	9
SECTION 2	: LOAD ANALYSIS AND LOAD FORECASTING UPDATE	13
2.1 CH	IANGES FROM THE 2012 IRP SUBMITTAL	13
2.2 LC	AD ANALYSIS AND LOAD FORECASTING: AGREED	
	PON REMEDIES TO ALLEDGED DEFICIENCIES AND	15
2.2.1	ONCERNS STAFF'S CONCERN A	10 15
2.2.1	MDNR'S DEFICIENCY 1	
2.2.2	MDNR'S DEFICIENCY 2	
2.2.3	MDNR'S DEFICIENCY 3	
2.2.5	GDS' (MDNR) DEFICIENCY 1	
2.2.6	GDS' (MDNR) CONCERN 1	
2.2.7	GDS' (MDNR) CONCERN 2	
	: SUPPLY-SIDE RESOURCE ANALYSIS UPDATE	
	IANGES FROM 2012 IRP SUBMISSION	
3.1.1	FUEL FORECASTS	
3.1.2	EMISSIONS FORECASTS	
3.1.3	SUPPLY SIDE TECHNOLOGY CANDIDATE RESOURCE	
	OPTIONS	
3.1.4	LIFE ASSESSMENT & MANAGEMENT PROGRAM	26
	IPPLY-SIDE RESOURCE ANALYSIS: AGREED UPON	
	MEDIES TO ALLEGED DEFICIENCIES AND CONCERNS	
3.2.1	STAFF'S DEFICIENCY 1	
3.2.2	MDNR'S DEFICIENCY 4	
3.2.3	MDNR'S CONCERN 2	
3.2.4	MDNR'S CONCERN 3	
3.2.5	GDS' (MDNR) DEFICIENCY 2	
3.2.6	GDS' (MDNR) DEFICIENCY 3	
3.2.7	GDS' (MDNR) DEFICIENCY 4 GDS' (MDNR) CONCERN 3	
3.2.8 3.2.9	GDS' (MDNR) CONCERN 3	
	GDS' (MDNR) CONCERN 5	
	: TRANSMISSION AND DISTRIBUTION UPDATE	
4.1 CH	IANGES FROM 2012 IRP SUBMISSION	

4.1	.1 SMARTGRID DEMONSTRATION PROJECT - 2012 MID- PROJECT TECHNOLOGY PERFORMANCE REPORT (TPR)	43
4.2	TRANSMISSION AND DISTRIBUTION: AGREED UPON REMEDIES TO ALLEGED DEFICIENCIES AND	
4.2		
4.2		
4.2		
4.2		
	IN 5: DEMAND-SIDE RESOURCE ANALYSIS UPDATE	
5.1	DEMAND-SIDE MANAGEMENT LEVEL UPDATE	47
5.2	MODIFICATIONS MADE TO THE DSM LEVELS FROM THE POTENTIAL STUDY	47
5.3	THE MEEIA/RAP ALTERNATIVE	
5.4	DEMAND-SIDE RESOURE ANALYSIS: AGREED UPON	
	REMEDIES ALLEGED DEFICIENCIES AND CONCERNS	
5.4		
5.4		
5.4		
5.4.		
5.4.		
5.4.		
5.4.		
5.4.		
5.4.		53
SECTIO	N 6: INTEGRATED RESOURCE PLAN AND RISK ANALYSIS UPDATE	54
6.1	CHANGES FROM 2012 IRP SUBMITTAL	
6.2	CRITICAL UNCERTAIN FACTORS	
6.3	ALTERNATIVE RESOURCE PLAN DEVELOPMENT	
6.4	REVENUE REQUIREMENT AND PROBABLE	
	ENVIRONMENTAL COSTS	63
6.5	PERFORMANCE MEASURES	66
6.5.	1 CUMULATIVE PROBABILITIES FOR PERFORMANCE MEASURES	67
6.6	UNSERVED ENERGY	
6.7	COMBINED KCP&L/GMO RESOURCE PLANS	
6.8	COMBINED COMPANY ECONOMIC IMPACT	
6.9	COMBINED-COMPANY ANNUAL GENERATION	
6.10	COMBINED-COMPANY ANNUAL GENERATION	
6.11	REQUIREMENTS FOR JOINT PLANNING	
0.11		

6.12	AC	TEGRATED RESOURCE PLAN AND RISK ANALYSIS: GREED UPON REMEDIES TO ALLEGED DEFICIENCIES ID CONCERNS	
6.1		STAFF'S DEFICIENCY 7	
		STAFF'S CONCERN E	
		MDNR'S DEFICIENCY 9	
		MDNR'S DEFICIENCY 10	
6.1	2.5	MDNR'S DEFICIENCY 11	84
6.1	2.6	MDNR'S DEFICIENCY 12	
6.1	2.7	GDS' (MDNR) DEFICIENCY 5	
SECTIC)N 7	RESOURCE ACQUISITION STRATEGY	85
7.1	CC	DRPORATE APPROVAL AND STATEMENT OF	
7.2		13 KCP&L ANNUAL UPDATE PREFERRED PLAN	
7.2		PREFERRED PLAN COMPOSITION	
7.2	••	PREFERRED PLAN ECONOMIC IMPACT	
7.2		PREFERRED PLAN ANNUAL GENERATION	
7.2	-	PREFERRED PLAN ANNUAL EMISSIONS	
7.2		PREFERRED PLAN DISCUSSION	
7.3	CF	RITICAL UNCERTAIN FACTORS	93
7.3.	.1	CRITICAL UNCERTAIN FACTOR - HIGH LOAD GROWTH	95
7.3.	2	CRITICAL UNCERTAIN FACTOR - LOW LOAD GROWTH	96
7.3.	3	CRITICAL UNCERTAIN FACTOR – HIGH NATURAL GAS PRICES	97
7.3.	4	CRITICAL UNCERTAIN FACTOR – LOW NATURAL GAS	
		PRICES	
7.3.	5	CRITICAL UNCERTAIN FACTOR - HIGH CO ₂	
7.3.	6	CRITICAL UNCERTAIN FACTOR – LOW CO ₂	
7.3.	7	CRITICAL UNCERTAIN FACTORS – SUMMARY AND EVALUATION	101
7.3.	8	ADDITIONAL UNCERTAIN FACTOR	
7.4		TTER INFORMATION	
7.5	CC	NTINGENCY RESOURCE PLANS	
7.6	IM	PLEMENTATION PLAN	
7.6.	1	ENVIRONMENTAL RETROFITS	
7.6.	2	GENERATION ADDITION	
7.6.	-	DEMAND-SIDE MANAGEMENT SCHEDULE	112
7.7		SOURCE ACQUISITION STRATEGY: AGREED UPON MEDIES TO ALLEGED DEFICIENCIES AND CONCERNS	
7.7.	1	STAFF'S DEFICIENCY 9	
7.7.	2	MDNR'S CONCERN 5	
7.7.	3	MDNR'S DEFICIENCY 13	

	7.7.	4 MDNR'S DEFICIENCY 14	
	7.7.	5 MDNR'S CONCERN 6	114
S	SECTIO	N 8: SPECIAL CONTEMPORARY ISSUES	
	8.1	AGGREGATORS OF RETAIL CUSTOMERS	116
	8.2	AGGRESSIVE RENEWABLE ENERGY STANDARD	
	8.3	VERY AGGRESSIVE ENERGY EFFICIENCY RESOURCE	
		STANDARD	117
	8.4	LOSS OF SIGNIFICANT LOAD	
	8.5	AGGRESSIVE ENVIRONMENTAL REGULATIONS	
	8.6	RANKING OF EXISTING COAL GENERATION	120
	8.7	DISTRIBUTED GENERATION, DSM PROGRAMS, AND COMBINED HEAT AND POWER PROJECTS	
	8.8	ENERGY EFFICIENCY IN THE AGRICULTURAL SECTOR	
	8. 9	CUSTOMER INFORMATION/BEHAVIOR MODIFICATION PROGRAM OPTIONS	
	8.10	POTENTIAL CHANGES IN ENVIRONMENTAL AND/OR RENEWABLE ENERGY STANDARDS	
	8.11	COST OF ENERGY COMPARISON	
	8.12	FUEL SOURCE SUBSIDIES	
	8.13	SMALL MODULAR REACTOR ANALYSIS	
	8.14	RECALIBRATE LOAD FORECAST	
	8.15	MARKET STATUS OF DISTRIBUTIVE TECHNOLOGIES	
	8.16	COMBINED COMPANY IRP PLANNING	
	8.17	COMBINED COMPANY IRP PLAN DEVELOPMENT	
	8.18	DEFICIENCIES FROM FILE NO. EO-2012-0041	
	8.19	NATURAL GAS PRICE OUTLOOK	
	8.20	EXISTING, PENDING, OR POTENTIAL ENVIRONMENTAL STANDARDS WITH RESPECT TO CAPITAL AND	
		OPERATING COSTS	
		ANALYSIS OF DSM	
		ACHIEVABLE COMBINED HEAT AND POWER	130
		SPECIAL CONTEMPORARY ISSUES: AGREED UPON RESOLUTIONS TO ALLEGED DEFICIENCIES AND CONCERNS	121
		1 SIERRA CLUB	
		2 STAFF'S DEFICIENCY 11	
		3 STAFF'S CONCERN F	
		4 MDNR'S DEFICIENCY 17	
		5 MDNR'S DEFICIENCY 18	
		6 MDNR'S CONCERN 7	
		7 MDNR'S DEFICIENCY 19	
		8 MDNR'S DEFICIENCY 20	

8.23.9	MDNR'S DEFICIENCY 21	135
8.24 U	NRESOLVED DEFICIENCIES AND CONCERNS	136
	SIERRA CLUB – NATURAL GAS PRICES	
	SIERRA CLUB – AGING COAL UNITS	
8.24.3	SIERRA CLUB - NON-ENVIRONMENTAL CAPITAL COSTS	137
8.24.4	SIERRA CLUB – DSM EVALUATION	137
	STAFF'S DEFICIENCY 8	
8.24.6	NRDC – RENEWABLE ENERGY	139
	SIERRA CLUB – DSM DELAY	
	SIERRA CLUB – RESOURCE PLAN MODELING	
8.24.9	SIERRA CLUB – CRITICAL UNCERTAIN FACTORS	140
8.24.1	0 STAFF'S DEFICIENCY 10	141
	1 NRDC – PLAN NPVRR AND DSM	
	2 SIERRA CLUB – LOWEST RESOURCE PLAN NPVRR	
	3 SIERRA CLUB – DSM D	
	4 SIERRA CLUB – OFF-SYSTEM SALES	
	5 SIERRA CLUB – CO ₂ COSTS	
	6 MDNR'S DEFICIENCY 16	
	7 MDNR'S CONCERN 1	
	8 OPC'S DEFICIENCY 1	
	9 OPC'S DEFICIENCY 2	
÷	0 OPC'S DEFICIENCY 3	
	1 NRDC – DSM INFORMATION	
÷	2 NRDC – DSM PROGRAM DESIGN	
	3 NRDC – DEMAND SIDE RATES	147
8.24.2	4 NRDC – ENERGY EFFICIENCY VS. SUPPLY SIDE	
	RESOURCES	
8.24.2	5 MDNR'S DEFICIENCY 15	148

TABLE OF TABLES

Table 1: KCP&L Customers, NSI and Peak Demand	3
Table 2: KCP&L Capacity and Energy By Resource Type	4
Table 3: 2012 KCP&L IRP Preferred Plan	8
Table 4: 2013 Annual Update KCP&L Preferred Plan	9
Table 5: GPE Residential Elasticities	13
Table 6: KCP&L Base Annual NSI and Peak Forecast	14
Table 7: Coal Forecasts - 2012 Vs. 2013 ** Highly Confidential **	18
Table 8: Natural Gas Forecasts - 2012 Vs. 2013 ** Highly Confidential **	19
Table 9: Fuel Oil Forecasts - 2012 Vs. 2013 ** Highly Confidential **	20
Table 10: SO ₂ Forecasts - 2012 Vs. 2013 ** Highly Confidential **	21
Table 11: NO _x Annual Forecasts - 2012 Vs. 2013 ** Highly Confidential **	22
Table 12: NO _x Seasonal Forecasts - 2012 Vs. 2013 ** Highly Confidential **	23
Table 13: CO ₂ Forecasts - 2012 Vs. 2013 ** Highly Confidential **	24
Table 14: Fuel and Emission Forecast Sources	24
Table 15: Supply Side Technology Options ** Highly Confidential **	25
Table 16: Montrose Unit 1 LAMP Capital Plan Years 2018 - 2025 (\$000's) **Highly Confidential**	27
Table 17: Montrose Unit 1 LAMP Capital Plan Years 2026 - 2032 (\$000's) **Highly Confidential**	28
Table 18: Montrose Unit 2 LAMP Capital Plan Years 2018 - 2025 (\$000's) **Highly Confidential**	29
Table 19: Montrose Unit 2 LAMP Capital Plan Years 2026 - 2032 (\$000's)	30
Table 20: Montrose Unit 3 LAMP Capital Plan Years 2018 - 2025 (\$000's)	31
Table 21: Montrose Unit 3 LAMP Capital Plan Years 2026 - 2032 (\$000's)	32
Table 22: Montrose Station Common LAMP Capital Plan Years 2018 - 2032 (\$000's) **Highly Confidential**	33
Table 23: KCP&L Share of LaCygne Unit 1 LAMP Capital Plan Years 2018 - 2025 (\$000's) **Highly Confidential**	34
Table 24: KCP&L Share of LaCygne Unit 1 LAMP Capital Plan Years 2026 - 2032 (\$000's) **Highly Confidential**	
Table 25: KCP&L Share of LaCygne Unit 2 LAMP Capital Plan Years 2018 -2025 (\$000's) **Highly Confidential**	36
Table 26: KCP&L Share of LaCygne Unit 2 LAMP Capital Plan Years 2026 - 2032 (\$000's) **Highly Confidential**	37

	KCP&L Share of LaCygne Common LAMP Capital Plan Years 2018 (\$000's)**Highly Confidential**	
	Alternative Resource Plan Naming Convention	
	Overview of Alternative Resource Plans	
	Overview of Alternative Resource Plans (continued)	
	Overview of Alternative Resource Plans (continued)	
	Overview of Alternative Resource Plans (continued)	
	Overview of Alternative Resource Plans (continued)	
	Total Revenue Requirement	
Table 35:	Probable Environmental Cost	65
Table 36:	Expected Value of Performance Measures ** Highly Confidential **	66
	Cumulative Probability - NPVRR	
	Cumulative Probability - Probable Environmental Costs	
Table 39:	Cumulative Probability - Annual Average Rates	69
Table 40:	Cumulative Probability – Maximum Rate Increase	70
Table 41:	Expected Value of Unserved Energy	71
Table 42:	Combined Company Alternative Resource Plan Naming Convention	73
Table 43:	Overview of Combined Company Resource Plans	74
Table 44:	Combined-Company Total Revenue Requirement	75
Table 45:	Combined-Company Probable Environmental Cost	75
	Combined-Company Expected Value of Performance Measures **	75
	Combined-Company Expected Value of Unserved Energy	
	Combined-Company Alternative Resource Plan FIECA	
Econo	omic Impact ** Highly Confidential **	78
	Combined-Company Alternative Resource Plan FIECA	
	al Generation	79
	Combined-Company Alternative Resource Plan FIECA	00
	al Emissions KCP&L Annual Update Preferred Plan	
	Preferred Plan Capacity Composition	
	Preferred Plan Economic Impact	
	Preferred Plan Annual Emissions	
	Critical Uncertain Factor Tree	
	Alternative Resource Plan NPVRRs	
	Endpoint/Lowest NPVRR Alternative Resource Plan	
	Conditional Probabilities of Lowest NPVRR Plans	
	Contingency Resource Plans	
Lavie UV.	COntingency resource Flans	00

KCP&L Environmental Retrofit Schedule	. 109
Wind Resource Addition Schedule	. 111
DSM Program Schedule	. 112
Potential Environmental Regulations	. 119
Ranking of Coal Plants in Order of Dispatch Cost **Highly	
dential**	. 120
Coal Unit Commercial Operation Dates	. 121
Coal Unit Minimum Operating Life	. 121
Retrofit Capital Cost Estimates ** Highly Confidential **	. 129
Retrofit Fixed O&M Estimates ** Highly Confidential **	. 129
Retrofit Variable O&M Estimates ** Highly Confidential **	. 130
	Wind Resource Addition Schedule DSM Program Schedule Potential Environmental Regulations Ranking of Coal Plants in Order of Dispatch Cost **Highly dential** Coal Unit Commercial Operation Dates Coal Unit Minimum Operating Life Retrofit Capital Cost Estimates ** Highly Confidential ** Retrofit Fixed O&M Estimates ** Highly Confidential **

TABLE OF FIGURES

Figure 1:	KCP&L Service Territory	2
Figure 2:	KCP&L Capacity By Resource Type	4
Figure 3:	KCP&L Energy By Resource Type	5
Figure 4:	2012 KCP&L Preferred Plan - Years 2012 through 2023	7
Figure 5:	2013 KCP&L Preferred Plan FDHKA - Years 2013 through 2023 1	0
Figure 6:	Decision Tree With Conditional Probabilities	5
Figure 7:	Combined-Company Alternative Resource Plan FIECA - 2013 through	1
2023.	7	7

-

TABLE OF APPENDICES

Appendix A: 2012 KCPL and GMO Transmission Expansion Plan Study HC

- Appendix B: Capacity Balance Spreadsheets HC
- Appendix C: KCPL Preliminary IHD and TOU Evaluation Rev Oct 24 2012 HC
- Appendix D: 2012 OnPeak Hours HC
- Appendix E: Generation and Emissions for Each Alternative Resource Plan
- Appendix F: Additional Alternative Resource Plan Results
- Appendix G: Economic Impact for Each Alternative Resource Plan HC

SECTION 1: EXECUTIVE SUMMARY

1.1 UTILITY INTRODUCTION

KCP&L is an integrated, mid-sized electric utility serving the metropolitan region surrounding the Kansas City, Missouri metropolitan area including customers in Kansas and Missouri. A map of the KCP&L service territory is provided in Figure 1 below: م دي الده

x 50

Figure 1: KCP&L Service Territory

KCP&L is significantly impacted by seasonality with approximately one-third of its retail revenues recorded in the third guarter. Table 1 provides a snapshot of the number of customers served, estimated retail sales and peak demand.

State		and the second secon	Projected Net Peak Demand (MW)
	Customers	Input (MWh)	
Missouri Kansas	270,783 242,139	9,075,501 6,847,731	1,968 1,727
Total	511,100	15,923,232	3,695

Table 1. KCD&I Customers NSI and Peak Demand

KCP&L owns and operates a diverse generating portfolio and Power Purchase Agreements (PPA) to meet customer energy requirements. In 2011, KCP&L signed two wind energy PPAs that obtained commercial operation in June and September, 2012. The first PPA is with Duke Renewable Generation Services for the output of a 131.1 MW wind facility named Cimarron II, located in Gray County, Kansas. The second PPA is with EDF Renewables for the output of a 100.8 MW wind facility named Spearville 3. This facility is adjacent to the KCP&L owned Spearville 1 & 2 Wind Energy Facilities. These facilities will be used to fulfill a portion of KCP&L's Missouri and Kansas Renewable Energy requirements. Table 2, Figure 2, and Figure 3 below reflect current KCP&L generation assets including all current PPAs in place to serve KCP&L's capacity requirements.

Resource Type	Capacity (MW)	% of Total Capacity	Estimated Energy (MWh)	% of Annual Energy
Coal	2,715	56%	15,067,800	74%
Nuclear	547	11%	4,169,030	20%
Gas	375	17%	146,270	0.7%
Oil	805	8%	706	0.003%
Wind	380*	8%	1,035,300	5%
Solar	0.107	0.002%	149	0.001%
Total	4,442	100%	20,419,255	100%
* Nameplate Capa	acity			

Table 2: KCP&L Capacity and Energy By Resource Type

Figure 3: KCP&L Energy By Resource Type

1.2 CHANGES FROM THE 2012 TRIENNIAL IRP SUBMITTAL

Since the April 2012 filing of the KCP&L Triennial IRP, several changing conditions have contributed to the Preferred Plan identified in 2012 filing as being obsolete. The changing conditions, or major drivers, that have contributed to KCP&L's need to develop new Alternative Resource Plans and therefore selection of a new Preferred Plan include:

- Proposed and Potential Environmental Regulations
- Load Forecast Projections
- Environmental Retrofit Cost Estimates
- Demand-Side Management Program levels

1.2.1 2012 KCP&L IRP PREFERRED PLAN

The 2012 KCP&L IRP resulted in the Preferred Plan for KCP&L being comprised of the following components for years 2012 – 2023 shown in Figure 4 below. Additionally, there was a 150 MW combined cycle addition in year 2028. Also, the Demand-Side Management programs comprised 433 MW of capacity reduction by the year 2031.

2013 Annual Update

The 2012 KCP&L IRP Preferred for the 20-year planning period is shown in Table 3 below:

Year	CC's (MW)	Solar (MW)	Wind (MW)	DSM A (MW)	Retire (MW)	Existing Capacity (MW)
2012				63		4,492
2013	-			89		4,553
2014			we do al service a	169		4,609
2015	•			185		4,602
2016			100	195	170	4,397
2017	•			213	[4,397
2018		11		201		4,397
2019				223		4,397
2020	<u> </u>		200	242		4,397
2021	• •	6		215		4,397
2022	• • • • •			279		4,397
2023	<u> </u>	3	100	295		4,397
2024				312		4.341
2025				328		4,341
2026	-			346		4,341
2027	<u> </u>		T	363	Т	4,341
2028	150			380		4,341
2029	· ·			397		4,341
2030	•			415		4,341
2031				433		4,341

Table 3: 2012 KCP&L IRP Preferred Plan

1.2.2 2013 KCP&L ANNUAL UPDATE PREFERRED PLAN

The 2013 Annual Update Preferred Plan for the entire 20-year period is shown in Table 4 below:

Year	CT's (MW)	Solar (MW)	Wind (MW)	DSM (MW)	Retire (MW)	Existing Capacity (MW)
2013	-			128		4,393
2014				186		4,514
2015	-			193		4,503
2016	-		50	207	170	4,298
2017	-			239		4,343
2018	-	11		280		4,343
2019	-			320		4,343
2020			150	359		4,343
2021	-	6		391	340	4,003
2022				418		4,003
2023	-			441		4,018
2024			200	458		3,962
2025	-			463		3,962
2026	193			466		3,962
2027	-			466		3,962
2028	-			465		3,962
2029	-			463		3,962
2030	-			460		3,962
2031	193			458		3,962
2032				455		3,963
2033				453		3,963

Table 4: 2013 Annual Update KCP&L Preferred Plan

The 2013 KCP&L Annual Update IRP resulted in the Preferred Plan for KCP&L being comprised of the following components for years 2013 – 2023 shown Figure 5 below. In the years 2024 through 2031, there is a 200 MW wind addition in year 2024, a 193 MW combustion turbine included in year 2026, and again in year 2031. Also, the Demand-Side Management programs comprised 453 MW of capacity reduction by the year 2033.

2013 Annual Update

Based upon current Missouri and Kansas RPS rule requirements, the Preferred Plan includes 17 MW of solar additions and 400 MW of wind additions over the twenty-year planning period. It should be noted that Missouri solar and wind additions could be obtained from power purchase agreements (PPA), purchasing of renewable energy credits (RECs), or utility ownership. Combustion turbine (CT) resource additions are included in 2026 and 2031.

The potential retirements of Montrose Unit 1 in 2016 and Montrose Units 2 and 3 in 2021 is partially attributed to current or proposed environmental regulations including Mercury and Air Toxics Standards Rule, Ozone National Ambient Air Quality Standards (NAAQS), PM NAAQS, SO₂ NAAQS Clean Water Act Section 316(a) and (b), Effluent Guidelines, and Coal Combustion Residuals Rule. These rules will be continually monitored by KCP&L prior to the projected retirement years to determine if any adjustment to this plan is needed.

The Preferred Plan was not the lowest cost plan from a Net Present Value of Revenue Requirement (NPVRR) perspective as a higher amount of DSM would reduce the NPVRR. KCP&L's Preferred Plan includes a modified RAP level of DSM for 2014, 2015 and 2016, followed by the RAP level starting in 2017. DSM for the Preferred Plan consists of a suite of fifteen Energy Efficiency programs, three Demand Response programs and two alternative rate plans that are based upon Navigant's DSM Potential Study results for realistically achievable potential (RAP) DSM. The modification in years 2014, 2015, and 2016 was based on the measure list from the Potential Study but at a reduced level to reflect a lower level of DSM spending. The modified DSM plan is named MEEIA/RAP. This plan assumes that the same list of programs and the program plans from the potential study RAP level of DSM would be used, but the amount of capacity and energy savings would be reduced proportionately to reflect the reduced amount of savings that could be achieved with the lower level of spending. The DSM savings levels for this scenario are based on the cost per kWh from the RAP level of DSM in the Potential Study results.

KCP&L developed the MEEIA/RAP alternative to reduce the short-term rate impacts that would result from the full RAP DSM levels. Assuming KCP&L was approved for the same DSM cost recovery treatment as GMO was under its MEEIA settlement agreement, implementing the full RAP DSM plan in 2014 would increase retail rates by a projected 8.3% in 2016 (the first year new rates would be in effect under a 2013 KCP&L MEEIA filing). This increase does not reflect any other potential non-DSM related costs that would also go into effect in 2016. The MEEIA/RAP alternative reduces the rate impact to 6.3%. At this time, the Company anticipates a 2013 MEEIA filing that would further define the DSM program offerings.

2013 Annual Update

SECTION 2: LOAD ANALYSIS AND LOAD FORECASTING UPDATE

2.1 CHANGES FROM THE 2012 IRP SUBMITTAL

- The economic forecasts for the KC metro area were updated. In the 2012 IRP filing, KCP&L used forecasts produced by Moody's Analytics in June 2011. In this Annual Update filing the forecasts were produced in September 2012.
- Billing statistics were updated through August 2012 for this filing. In the 2012 IRP filing, the statistics were current through June 2011. These statistics include the number of customers, kWh sales and dollars per kWh.
- Forecasts of saturations and appliance use are updated annually by the US DOE. In this filing, KCP&L used the results from DOE's 2012 models. In the 2012 IRP filing, KCP&L used results from the 2011 models.
- The Company also updated the price elasticities used in the residential and commercial models and the income elasticity used in the residential model. The elasticities were estimated by sector, residential and commercial, and not by Class Cost of Service (CCOS) because rate switching adds too much noise to kWh sales. The data was pooled across GMO and KCP&L jurisdictions to add cross sectional variation. The residential results are shown in table below. In commercial models, the estimated elasticities were adjusted to increase the R² in the forecasting models because CCOS models were different than revenue class models used to estimate elasticities. The results for the residential sector are provided in Table 5 below:

GPE Residential Elasticities					
Load	Coefficient	t-Stat			
Base	-0.36	-4.1			
Heating	-0.58	-5.3			
Cooling	-0.20	-3.3			
Income	0.20	7.0			

Table	5: GPE	Residential	Elasticities
£			

The load forecast is shown in Table 6 below.

NSI (N	lWh)					Peak (MW)							
Date	Gross NSI		DSM	Net NSI		Gross Peak		DSM	DVC	Net Peak		Gross LF	Net LF
2002	14,810,168			14,810,168		3,229				3,229		0.5236	0.523
2003	15,100,010	2.0%		15,100,010	2.0%	3,307	2.4%			3,307	2.4%	0.5212	0.52
2004	15,434,710	2.2%		15,434,710	2.2%	3,600	8.9%			3,600	8.9%	0.4894	0.489
2005	15,735,417	1.9%		15,735,417	1.9%	3,496	-2.9%			3,496	-2.9%	0.5138	0.51
2006	15,960,834	1.4%		15,960,834	1.4%	3,416	-2.3%			3,416	-2.3%	0.5334	0.53
2007	16,286,867	2.0%		16,286,867	2.0%	3,718	8.8%			3,718	8.8%	0.5001	0.50
2008	16,306,299	0.1%		16,306,299	0.1%	3,703	-0.4%			3,703	-0.4%	0.5027	0,502
2009	16,024,573	-1.7%		16,024,573	-1.7%	3,642	-1.6%			3,642	-1.6%	0.5023	0.502
2010	16,057,247	0.2%		16,057,247	0.2%	3,605	-1.0%			3,605	-1.0%	0.5084	0.508
2011	15,918,871	-0.9%		15,918,871	-0.9%	3,581	-0.7%			3,581	-0.7%	0.5075	0.50
2012	15,642,354	-1.7%		15,642,354	-1.7%	3,426	-4.3%			3,426	-4.3%	0.5212	0.52
2013	15,895,155	1.6%	(219,863)	15,675,292	0.2%	3,510	2.4%	(128)	(50)	3,332	-2.8%	0.5170	0.53
2014	15,973,354	0.5%	(232,817)	15,740,537	0.4%	3,523	0.4%	(115)	(50)	3,358	0.8%	0.5177	0.53
2015	16,093,806	0.8%	(232,819)	15,860,987	0.8%	3,539	0.5%	(109)	(50)	3,380	0.7%	0.5192	0.53
2016	16,280,534	1.2%	(232,820)	16,047,714	1.2%	3,559	0.6%	(109)	(50)	3,400	0.6%	0.5222	0.53
2017	16,352,968	0.4%	(232,821)	16,120,147	0.5%	3,568	0.3%	(106)	(50)	3,412	0.3%	0.5232	0.539
2018	16,450,555	0.6%	(232,821)	16,217,734	0.6%	3,578	0.3%	(106)	(50)	3,422	0.3%	0.5248	0.54
2019	16,566,687	0.7%	(232,821)	16,333,866	0.7%	3,593	0.4%	(106)	(50)	3,437	0.4%	0.5263	0.54
2020	16,724,078	1.0%	(232,821)	16,491,258	1.0%	3,610	0.5%	(106)	(50)	3,453	0.5%	0.5289	0.54
2021	16,825,710	0.6%	(232,821)	16,592,889	0.6%	3,632	0.6%	(106)	(50)	3,476	0.7%	0.5288	0.54
2022	16,966,466	0.8%	(232,821)	16,733,645	0.8%	3,655	0.6%	(106)	(50)	3,499	0.7%	0.5299	0.546
2023	17,113,483	0.9%	(232,821)	16,880,662	0.9%	3,679	0.7%	(106)	(50)	3,523	0.7%	0.5310	0.54)
2024	17,302,889	1.1%	(232,821)	17,070,068	1.1%	3,704	0.7%	(106)	(50)	3,548	0.7%	0.5332	0.549
2025	17,427,131	0.7%	(232,821)	17,194,310	0.7%	3,732	0.7%	(106)	(50)	3,575	0.8%	0.5331	0.549
2026	17,594,977	1.0%	(232,821)	17,362,156	1.0%	3,761	0.8%	(106)	(50)	3,605	0.8%	0.5340	0.549
2027	17,771,206	1.0%	(232,821)	17,538,385	1.0%	3,795	0.9%	(106)	(50)	3,638	0.9%	0.5346	0.550
2028	17,988,591	1.2%	(232,821)	17,755,770	1.2%	3,826	0.8%	(106)	(50)	3,670	0.9%	0.5367	0.552
2029	18,133,671	0.8%	(232,821)	17,900,850	0.8%	3,859	0.9%	(106)	(50)	3,703	0.9%	0.5364	0.551
2030	18,325,533	1.1%	(232,821)	18,092,712	1.1%	3,894	0.9%	(106)	(50)	3,737	0.9%	0.5373	0.552
2031	18,522,978	1.1%	(232,821)	18,290,157	1.1%	3,930	0.9%	(106)	(50)	3,774	1.0%	0.5381	0.553
2032	18,762,142	1.3%	(232,821)	18,529,322	1.3%	3,967	0.9%	(106)	(50)	3,811	1.0%	0.5399	0.555
2033	18,919,294	0.8%	(232,821)	18,686,473	0.8%	4,003	0.9%	(106)	(50)	3,847	0.9%	0.5395	0.554
2034	19,119,547	1.1%	(232,821)	18,886,726	1.1%	4,039	0.9%	(106)	(50)	3,882	0.9%	0.5404	0.555
2035	19,319,805	1.0%	(232,821)	19,086,985	1.1%	4,075	0.9%	(106)	(50)	3,919	0.9%	0.5412	0.556
	Historical Nun	nbers are	Weather N	ormalized with	n Curtailm	ent							

Table 6: KCP&L Base Annual NSI and Peak Forecast

2013 Annual Update

2.2 LOAD ANALYSIS AND LOAD FORECASTING: AGREED UPON REMEDIES TO ALLEDGED DEFICIENCIES AND CONCERNS

The following section addresses the Alleged Deficiencies and Concerns from the 2012 KCP&L IRP, Case No. EO-2012-0323. The Resolutions are either verbatim or a shortened version of the agreed-to resolution from the Joint Filing filed in that case.

2.2.1 Staff's Concern A

KCP&L submitted energy and peak growth rates that are arithmetic averages. KCP&L should use compound annual growth rates in all future Chapter 22 filings when expressing the rate of growth in its annual energy and demand levels in its load forecasts.

Resolution: This issue has been addressed. KCP&L provided additional documentation to answer questions that included the information needed.

2.2.2 MDNR's Deficiency 1

Inadequate model specification in load analysis and load forecasting. In estimating the effect of weather on electric loads, the functional form of the models was not specified and neither were the goodness of fit measures reported for statistical models.

Resolution: In the 2013 Annual Update, KCP&L will create a Word document labeled as KCPL Model Statistics.docx for the models used to weather normalize sales and copy the goodness of fit statistics, residuals plots before correction for outliers, and residual plots after correction for outliers. This will make it easier for those stakeholders who do not have a license for MetrixND.

Comment:

The Word document is supplied in the workpapers for this filing labeled as KCPL Model Statistics.docx.

2.2.3 MDNR'S Deficiency 2

Overly optimistic forecast of household growth. Moody's forecast of economic activity may overestimate the growth in the number of households in the Kansas City metropolitan area.

Resolution: This issue has been addressed. KCP&L has conducted a discussion of its forecast of household growth with MDNR and its consultant.

2.2.4 MDNR'S Deficiency 3

Improper model specification of the weather normalization regression models. The weather normalization regression models used are not properly specified. No rationale provided for the choice of autoregressive models or the inclusion of specific month dummy variables.

Resolution: This issue has been addressed. KCP&L has conducted a discussion of these weather normalization models with MDNR and its consultant.

2.2.5 GDS' (MDNR) Deficiency 1

KCP&L failed to fully describe adjustments made to the historical data used in developing the energy sales forecasting models. KCP&L failed to fully describe how the historical energy consumption data series for each class were adjusted to reflect existing DSM programs.

Resolution: This issue has been addressed. KCP&L has conducted a discussion of this topic with MDNR and its consultant.

2.2.6 GDS' (MDNR) Concern 1

KCP&L's assumed forecast bandwidths for population and number of households appear to be too narrow. As a result, the high and low growth case load forecasts also do not reflect a reasonable bandwidth when compared to historical growth. **Resolution**: This issue has been addressed. KCP&L has conducted a discussion of this topic with MDNR and its consultant.

2.2.7 GDS' (MDNR) Concern 2

KCP&L's use of certain independent variables in the models used to weather normalize energy sales is questionable. Most of the models developed by KCP&L to weather normalize historical class energy sales include one or more variables that are not statistically significant at a 95% confidence level. KCP&L fails to report the Rsquares and goodness of fit measures for their models.

Resolution: In the 2013 Annual Update, KCP&L will create a Word document for the models used to weather normalize sales and copy the goodness of fit statistics, residuals plots before correction for outliers, and residual plots after correction for outliers. This will make it easier for those stakeholders who do not have a license for MetrixND labeled as KCPL Model Statistics.docx.

Comment: The Word document is supplied in the workpapers for this filing labeled as KCPL Model Statistics.docx.

SECTION 3: SUPPLY-SIDE RESOURCE ANALYSIS UPDATE

3.1 CHANGES FROM 2012 IRP SUBMISSION

The forecasts for coal, natural gas, fuel oil, SO_2 , NO_x , NO_x Seasonal, and CO_2 have been updated for the 2013 Annual Update filing. Note that the methodology used in determining the forecast range has not changed from the 2012 IRP filing.

3.1.1 FUEL FORECASTS

The following tables provide the fuel forecasts that were utilized in the 2012 KCP&L IRP submittal and the fuel forecasts incorporated in the 2013 Annual Update. The various composite forecasts were updated to incorporate updated individual forecasts. For example, the 2012 forecast incorporated Annual Energy Outlook 2012 while the 2013 forecast incorporates Annual Energy Outlook 2013.

Table 7: Coal Forecasts - 2012 Vs. 2013 ** Highly Confidential **

2013 Annual Update

Table 8: Natural Gas Forecasts - 2012 Vs. 2013 ** Highly Confidential **

Table 9: Fuel Oil Forecasts - 2012 Vs. 2013 ** Highly Confidential **

3.1.2 EMISSIONS FORECASTS

The following tables provide the emission forecasts that were utilized in the 2012 KCP&L IRP submittal and the emissions forecasts incorporated in the 2013 Annual Update. It should be noted that the 2012 SO₂ emissions data is based upon an average of the Cross-States Air Pollution Rule (CSAPR) Group 1 and Group 2 SO₂ forecasts. CSAPR has since been vacated by the U.S. Court of Appeals for the District of Columbia. During the revision period of CSAPR, the court ruled to keep in place the Clean Air Interstate Rule (CAIR).

Table 10: SO₂ Forecasts - 2012 Vs. 2013 ** Highly Confidential **

Table 11: NO_x Annual Forecasts - 2012 Vs. 2013 ** Highly Confidential **

Table 12: NO_x Seasonal Forecasts - 2012 Vs. 2013 ** Highly Confidential **

The following table indicates the vendors that provided the fuel and emission forecasts reflected in the above charts.

Table 14: Fuel and Emission Forecast Sources								
Forecast Source	Coal	Natural Gas	Fuel Oil	Nuclear	so,	NO,	coa	
CERA/Global Insight		x	x		×		x	
EIA	×	x	x					
PIRA		x	×		х	х	X	
Energy Ventures Analysis	x	x	x		x	x	X	
Wood Mac					State and the		x	
JD Energy	x				x	x	x	
Synapse						engense de la	X	
SNL Financial	x							
anou Energy Consulting	х							
Global Energy				x				

Table 14: Fuel and Emission Forecast Sources

2013 Annual Update

3.1.3 SUPPLY SIDE TECHNOLOGY CANDIDATE RESOURCE OPTIONS

This section provides the updated supply-side technology candidates included in the integrated resource analysis in the 2013 Annual Update submittal. All of the technologies included in the 2012 KCP&L IRP submittal were also included in the 2013 Annual Update. The cost and operating data for these technologies was updated using the most recent available market sources or the Electric Power Research Institute Technical Assessment Guide (EPRI-TAG®). In addition, small modular nuclear reactors (SMRs) were added as a potential resource alternative to meet future capacity requirements. The combination of potential resource options includes a diverse range of natural gas, coal, nuclear and renewable powered alternatives. The following table compares the all-in cost of the supply side options on a dollar per MWh basis, including the components of capital cost, fixed O&M, variable O&M, fuel, and emissions.

3.1.4 LIFE ASSESSMENT & MANAGEMENT PROGRAM

This section provides the updated long-term plant equipment needs utilized in the 2013 Annual Update. These needs were developed using the Life Assessment and Management Program (LAMP) that was developed in the late 1980's for the purpose of identifying, evaluating, and recommending improvements and special maintenance requirements necessary for continued reliable operation of KCP&L coal-fired and Hawthorn 6/9 natural gas generating units.

Current schedules of identified LAMP projects and costs for Montrose Units 1, 2, 3, and LaCygne (KCP&L Share) are shown below in Table 16 through Table 27.

2013 Annual Update

Table 16: Montrose Unit 1 LAMP Capital Plan Years 2018 - 2025 (\$000's) **Highly Confidential**

MI Replace Low Pressure Heater 14 MI Indude Warer Wai Replacement MI Replace Heater 15 MI Replace Refreat 5 Superheat coviet headers in 2025 MI Control Result Replacement MI Untrine Blading MI Untrine Replacement MI Untrine Replacement MI Untrine Replacement MI Untrine Replacement	Project Mame	2018 2019	2020	2021	2027	2023	2024 2025
ter Vualt Replacement er Walt Replacement uv Pressure Heater 15 uv Pressure Heater 15 uv Pressure Heater 15 uv Pressure Heater 15 voll Propressure Heater 15 Keunid ut Superheat Replacement eat Bendant Replacement eater Replacement ef Replacement ef Prump Replacement ef Prump Replacement ef Prump Replacement ef Prump Replacement ef Prump Replacement	M1 Replace Low Pressure Heater 14						
er Wall Replacement wy Pressure Heater 16 hiast 8. Superheat outlet headers in 2023 finast 8. Superheat soutlet headers in 2023 finast 8. Superheat Replacement saft Bendant Replacement saft Bendant Replacement saft Bendant Replacement saft Replacement ef Replacement ef Punp, Replacement ef Punp, Replacement ef Punp, Replacement field Replacement placement placement placement	M1 Middle Water Wall Replacement						
w Pressure Iteater 16 Inar & Superheat outlet freaders in 2015 Reund and and and and and and and and replacement Contol System Replacement Contol System Replacement Contol System Replacement Contol System Replacement and Replacement er Replacement ef Beplacement ef Burp Replacement ef Burp Replacement ef Burp Replacement field Replacement field Replacement field Replacement field Replacement field Replacement field Replacement field Replacement field Replacement	er Wall Replacement						
Iteat S Superheat outlet headers in 2025 Rewind Rewind Rewind Berlant Replacement ast Perheat Replacement Contol System Replacement System Replacement System Replacement Bater Replacement <th>ow Pressure Heater 16</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>	ow Pressure Heater 16						
Rewind bing at Pendant Replacement control System Replacement Control System Replacement Superheat Replacement ade Replacement er Replacement er Replacement er Pump Replacement ef Pump Replacement fil Replacement fil Replacement fil Replacement fil Replacement fil Replacement fil Replacement	theat & Superheat outlet headers in 2025						
ding ast Pendant Replacement Control System Replacement Superheat Replacement Leater Replacement de Replacement er Replacement er Replacement er Replacement er Replacement er Replacement er Replacement er Replacement er Replacement er Sochower form Replacement	Rewind						
at Pendant Replacement Control System Replacement Supenteat Replacement eater Replacement de Replacement eer Replacement eer Pump Replacement eer Pump Replacement eet Pump Replacement eet Dump Replacement eet Dump Replacement eet Dump Replacement eet Dump Replacement	ading						
Control System Replacement Superheat Replacement Eater Replacement de Replacement eplacement er Replacement ef Replacement ef Pump Replacement Sootblower sootblower Piping Replacement	at Pendant Replacement						
Superheat Replacement leater Replacement de Replacement eplacement r Replacement el Replacement el Pump Replacement al Pump Replacement Sootblower Replacement Piping Replacement	Control System Replacement						
eater Replacement de Replacement eplacement r Replacement eiel Replacement de Pump Replacement ei Pump Replacement Sootblower Replacement Piping Replacement	Superheat Replacement						
de Replacement placement r Replacement ieid Replacement d Pump Replacement d Pump Replacement Southlower Southlower Feplacement Piping Replacement	eater Replacement						
placement r Replacement ietd Replacement d Pump Replacement d Pump Replacement l Replacement Sootblower Sootblower Replacement	de Replacement						
r Replacement ieid Replacement d Pump Replacement d Pump Replacement olacement Sootblower Replacement Piping Replacement	splacement						
ield Replacement d Pump Replacement d Pump Replacement d Pump Replacement l Replacement Sootblower Replacement Piping Replacement	er Replacement						
d Pump Replacement d Pump Replacement placement I Replacement Sootblower Replacement Piping Replacement	field Replacement						
d Pump Replacement blacement I Replacement Sootblower Replacement	d Pump Replacement						
placement I Revlacement Sootblower Replacement Piping Replacement	al Pump Replacement						
I Replacement Sootblower r Replacement Piping Replacement	placement						
Sootblower r Replacement Piping Replacement	ll Replacement						
Preplacement Pripring Replacement	• Sootblower						
Piping Replacement	r Replacement						
	Piping Replacement						

2013 Annual Update

Displayablers	2026 2023 2028 2029 2030 2031 2031 2032 Pean Total
M1 Replace Low Pressure Heater 14	
M1 Middle Water Wall Replacement	
M1 Upper Water Wall Replacement	
MI Replace Low Pressure Heater 16	
M1 Replace reheat & superheat outlet headers in 2025	
M1 Generator Rewind	
M1 Turbine Blading	
M1 Outer Reheat Pendant Replacement	
M1 Distributed Control System Replacement	
M1 Seconadry Superheat Replacement	
M1 6th Stage Heater Replacement	
M1 Turbine Blade Replacement	
M1 Windbox Replacement	
M1 Transformer Replacement	
M1 Generator Field Replacement	
M1 A Boiler Feed Pump Replacement	
M1 B Boiler Feed Pump Replacement	
M1 Ash Silo Replacement	
M1 Curtain Wall Replacement	
M1 Waterlance Sootblower	
M1 Economizer Replacement	
M1 Hot Reheat Piping Replacement	

Table 18: Montrose Unit 2 LAMP Capital Plan Years 2018 - 2025 (\$000's) **Highly Confidential**

Project Name	2026 2027
M2 Transformer Replacement	
M2 Replace Main Steam Line	
M2 Replace Mud Drums	
M2 Repair and Paint	
M2 Replacement of Primary Superheat Outlet Header	
M2 Lower Water Wall Replacement	
M2 Middle Water Wall Replacement	
M2 Upper Water Wall Replacement	
M2 Replacement of Refeef Tubes	
M2 Generator Field Replacement	
M2 Replace reheat & superheat outlet headers in 2029	
M2 Turbine Blading	
M2 Distributed Control System Replacement	
M2 Seconadry SupeReheateat Relacement	
M2 6th Stage Heater Replacement	
M2 9th Stage Heater Replacement	
M2 Turbine Blade Replacement	
M2 Windbox Replacement	
M2 A Boiler Feed Pump Replacement	
M2 B Boiler Feed Pump Replacement	
M2 Ash Silo Replacement	
M2 Curtain Wall Replacement	
M2 Waterlance Sootblower	
M2 Economizer Honners	

2013 Annual Update

30

Table 20: Montrose Unit 3 LAMP Capital Plan Years 2018 - 2025 (\$000's) **Highly Confidential**

Project Name	K 2000 1200 0000 0000 0100 0100	1.3 2024 2025	
M3 Reheater Replacement			
M3 Replace Main Steam Line			2902 3 -099
M3 Replace Mud Drums			
M3 DC Rotating Exciter - Convection to Static Exciter			an rolen at
M3 High Pressure/Intermediate Pressure Blading			
M3 Repair and Paint			
M3 Replacement of Primary Superheat Outlet Header			
M3 Middle Water Wall Replacement			
M3 Upper Water Wall Replacement			
M3 Replacement of Relief Tubes			
M3 Replacement of Supply Tubes			
M3 300# Oil Control System Upgrade Controls to Distributed Control System			
M3 Replacer Low Pressure Heaters 26 & 27			
M3 Distributed Control System Replacement	いたい たいたい たいたい ステレジ 一般の 一般の 一般の かいたい たいかい たいかい かいかい ひん いちょう アイト ひん 日本 いたい ひん しん		
M3 Seconadry Superheat Relacement			
M3 Main Transformer Replacement			
M3 10th Stage Heater Replacement			
M3 15th Stage Heater Replacement			
M3 Turbine Blade Replacement			
M3 Windbox Replacement			
M3 A Boiler Feed Pump Replacement			
M3 B Boiler Feed Pump Replacement			
M3 Ash Silo Replacement			
M2 Curtain Wall Replacement			
M3 Waterlance Sootblower			
M3 Economizer Hoppers			
		an un vers and an	

2013 Annual Update

31

 Table 21: Montrose Unit 3 LAMP Capital Plan Years 2026 - 2032 (\$000's) **Highly Confidential**

 Project Name
 2026
 2026 - 2032 (\$000's) **Highly Confidential**

- Here's a field of the	4046 4 2022 2026
M3 Reheater Replacement	
M3 Replace Main Steam Line	
M3 Reptace Mud Drums	
M3 DC Rotating Exciter - Convection to Static Exciter	
M3 High Pressure/Intermediate Pressure Blading	
M3 Repair and Paint	
M3 Replacement of Primary Superheat Outlet Header	
M3 Middle Water Wall Replacement	
<u>M3 Upper Water Wall Replacement</u>	
M3 Replacement of Relief Tubes	
M3 Replacement of Supply Tubes	
M3 300# Oil Control System Upgrade Controls to Distributed Control System	
M3 Replacer Low Pressure Heaters 26 & 27	
M3 Distributed Control System Replacement	
M3 Seconadry SupeReheateat Relacement	
M3 Main Transformer Replacement	
M3 10th Stage Heater Replacement	
M3 15th Stage Heater Replacement	
M3 Turbine Blade Replacement	
M3 Windbox Replacement	
M3 A Boiler Feed Pump Replacement	
M3 B Boller Feed Pump Replacement	
M3 Ash Silo Replacement	
M2 Curtain Wall Replacement	
M3 Waterlance Sootblower	
M3 Economizer Hoppers	

32

2013 Annual Update

lable 22: Montrose Station Common LAMP Capital Plan Years 2018 - 2032 (\$000's) **Highly Confidential**	3
ProjectName 2019 2020 2021 2022 2023 2023 2023 2023 2023	
MS Underground Pipting Replacement	
MS 41 Conveyor Replacement	01363520000
MS 42 Conveyor Replacement	
MS 43 Conveyor Replacement	en (debby)
MS Additional Spends	
MS Yearly	onterestante de la constante d La constante de la constante de
Project Manie 2015 - 20	in the second second
MS Underground Piping Replacement	
MS 41 Conveyor Replacement	and the second second
WS 42 Conveyor Replacement	Weberstein Aberst
MS 43 Conveyor Replacement	1997/09999/
MS Additional Spends	*****
MS Yearly	SVn vellaviv

Fidontial** C 2032 (\$000's) **Hinhlv - 2018 -5 ō 2 ¢ ۵ < ¢ ů Tahla 22. M.

2025 「あかろう 学生の 20,41 2020 20102 E.F.E.S.Yag Lac #1 - Replacement Low Pressure Heaters 17 A&B Lac #1 - Replacement SupeReheatt. Outlet Headers Lac #1 - Replacement Sec. SupeReheatt inlet Pend. Lac #1 - Replace Low Pressure Heater - Deaerator Lac #1 - Fuel Handling Conveyor Modernization .ac #1 - Replacement SupeReheateat Inlet Bank Lac #1 - Replacement High Pressure Heater 1A .ac #1 - Replacement High Pressure Heater 18 Lac #1 • Replacement Front Wall Mix Panels Lac #1 - Replacement Side Wall Mix Panels ac #1 - Replace High Pressure Heater 2A Lac #1 - Replace Reheat Outlet Headers Lac #1 - Replacement Vertical Reheater Lac #1 - Air Heater Basket Replacement Lac #1 - Replacement Main Steam Line Lac #1 - Replace Convection Pass Floor Lac #1 - Replacement Furnace Floor Lac #1 - Condenser Replacement Project Name

Table 23: KCP&L Share of LaCygne Unit 1 LAMP Capital Plan Years 2018 - 2025 (\$000's) **Highly Confidential**

2013 Annual Update

errent Manualis Contraction and Contraction and

PriogecsMame	20702	2012	1010 F	AUGO 6023 6030		
lac #1 - Condenser Replacement						
Lac #1 - Replace High Pressure Heater 2A						
Lac #1 + Replace Low Pressure Heater + Deaerator						
Lac #1 - Replace Reheat Outlet Headers						
Lac #1 - Replacement Reheat Outlet Headers						
Lac #1 - Replacement Main Steam Line						
Lac #1 - Replacement Secondary Superheat Inlet Pendant						
Lac #1 - Air Heater Basket Replacement						
Lac #1 - Replacement Low Pressure Heaters 17 A&B						
Lac #1 - Replacement High Pressure Heater 1A						
Lac #1 - Replacement High Pressure Heater 18						
Lac #1 - Replace Convection Pass Floor						
Lac #1 • Replacement Front Wall Mix Panels						
Lac #1 - Replacement Side Wall Mix Panels						
Lac #1 - Replacement Superheat Inlet Bank						
Lac #1 - Replacement Furnace Floor						
Lac #1 • Replacement Vertical Reheater						
Lac #1 - Fuel Handling Convevor Modernization						

2013 Annual Update

35

Carlos de Carlos

n Years 2018 - 2025 (\$000's) **Highly Confidential 0 1 2021 2022 (\$000's) **Highly Confidential																			
i able 23: NOF&L Share of LaCygne Unit Z LAIMP Capital Plan Years 2018 - 2025 (\$000's) **Highly Confidential** Project Name 2018 2018 2018 2018 2018 2018 2018 2025 (\$000's) **Highly Confidential** Lac #2 - Hot Reheat Plae Under Turbine 2018 2018 2018 2019 2025	Lac #2 - Air Heater Basket Replacement	Lac #2 - Replace High Pressure Heater 22	Lac #2- Replace Deaerator	Lac #2- Replace Reheat Outlet Headers	Lac #2 - Replace/Upgrade Low Pressure Rotor	Lac #2- Replace/Upgrade Low Pressure Rotor	Lac #2 - High Pressure Dense Pack Upgrade	Lac #2 • High Pressure Turbine Uprate	Lac #2 - Replace Economizer Casing	Lac #2 - Secondary Superheat Inlet Replacement	Lac #2 - Replace High Pressure Heater 21	Lac #2 - Replace Low Pressure Heaters 27 A&B	Lac #2 - Condenser Retube	Lac #2 - Replace 25% of Water Walls	Lac #2 • Replace Economizer Inlet Hdr	Lac #2 - Replace 25% of Water Walls	Lac #2 - Replace Vertical Reheater	Lac #2 - Replace Lower Slope	Lac #2 - Fuel Handling Conveyor Modernization

2013 Annual Update

36

Table 26: KCP&L Share of LaCygne Unit 2 LAMP Capital Plan Years 2026 - 2032 (\$000's) **Highly Confidential**

Project Name	2026 2026	2028	7879	20:40	211-22	2 610 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Lac #2 - Hot Reheat Pipe Under Turbine						
Lac #2 - Air Heater Basket Replacement						
Lac #2 - Replace High Pressure Heater 22						
Lac #2- Replace Deaerator						
Lac #2- Replace Reheat Outlet Headers						
Lac #2 - Replace/Upgrade Low Pressure Rotor						
Lac #2- Replace/Upgrade Low Pressure Rotor						erigila (149
Lac #2 - High Pressure Dense Pack Upgrade						
Lac #2 - High Pressure Turbine Uprate						
Lac #2 - Replace Economizer Casing						
Lac #2 - Ssh Inlet Replacement						
Lac #2 - Replace High Pressure Heater 21						
Lac #2 - Replace Low Pressure Heaters 27 A&B						
Lac #2 - Condenser Retube						
Lac #2 - Replace 25% of Water Walls						
Lac #2 - Replace Econ Inlet Hdr						
Lac #2 - Replace 25% of Water Walls						
Lac #2 - Replace Vertical Reheater						
Lac #2 - Replace Lower Slope						
l ac #2 - Firel Handling Convevor Modernization						

2013 Annual Update

37

Table 27: KCP&L Share of LaCygne Common LAMP Capital Plan Years 2018 - 2032 (\$000's)**Highly Confidential** 2025 2024 2023 2018 2019 2020 2021 2022 Lac Sta - Secondary Crusher Bldg Replacement Lac Sta - Fuel Yard Conveyor Modernization C to ac Mane Lac Sta - Neural Network

Lac Sta - Fuel Yard Conveyor Modernization Lac Sta - Upgrade Car Dumper/150 Car Train Lac Sta - Upgrade Car Dumper/150 Car Train Lac Sta - Sec Crusher Bidg Replacement Lac Sta - 2A Silo Structural Upgrades Lac Sta - 2A Silo Structural Upgrades Project Name Lac Sta - Additional Spends Lac Sta - Additional Spends Lac Sta - Neural Network Lac Sta - Yearly Projects

Lac Sta - Yearly Projects

2013 Annual Update

3.2 <u>SUPPLY-SIDE RESOURCE ANALYSIS: AGREED UPON REMEDIES TO</u> <u>ALLEGED DEFICIENCIES AND CONCERNS</u>

The following section addresses the Alleged Deficiencies and Concerns from the 2012 KCP&L IRP, Case No. EO-2012-0323. The Resolutions are either verbatim or a shortened version of the agreed-to resolution from the Joint Filing filed in that case.

3.2.1 Staff's Deficiency 1

KCP&L did not include the nuclear powered small modular reactor (SMR) as a potential supply-side resource option and did not provide its assessments of the SMR technology. Although KCP&L evaluated three nuclear technologies, KCP&L did not include SMR as a potential supply-side resource in its April 9, 2012 filing. KCP&L should provide its assessment of the SMR technology in its 2013 Annual Update.

Resolution: This issue has been addressed as KCP&L included SMR as a supplyside option in the 2013 Annual Update filing.

Comment: KCP&L included SMR technology as a resource option in the 2013 Annual Update. See Table 15 above.

3.2.2 MDNR's Deficiency 4

Estimates of natural gas prices were used in the fuel price forecasts are consistently high. The natural gas prices used for this analysis were consistently higher than the base case forecast for natural gas prices published in the United States Department of Energy's Annual Energy Outlook for 2011(AEO2011).

Resolution: KCP&L will update its natural gas forecast in the 2013 Annual Update filing.

Comment: KCP&L updated the natural gas forecast for the 2013 Annual Update. See Table 8 above.

3.2.3 MDNR's Concern 2

Compliance with alternative Missouri renewable energy standard. KCP&L addressed its attempts to comply with the current Missouri Renewable Energy Standard (RES) or Proposition C. However, the IRP does not discuss the compliance with the potentially modified or newly proposed renewable energy standard.

Resolution: KCP&L will develop an alternative resource plan in the 2013 Annual Update utilizing an aggressive level of renewable resource additions.

Comment: Plan FDHKW addressed this resolution, as this Alternative Resource Plan includes more than double the wind resources required by the current Missouri RES.

3.2.4 MDNR's Concern 3

Inadequate exploration of distributed generation ("DG") technologies in screening supply-side resources. KCP&L inadequately analyzes the role of distributed generation technologies, in particular combined heat and power (CHP), in its screening analysis of potential supply-side resources.

Resolution: The Company will include distributed generation as a supply-side option in its integrated resource analysis in the 2013 Annual Update filing.

Comment: KCP&L includes CHP in all of the Alternative Resource Plan evaluations in the 2013 Annual Update.

3.2.5 GDS' (MDNR) Deficiency 2

KCP&L has not considered ultra-low sulfur coal in its IRP ignoring its potential as a practical contingency option and its ability to address environmental compliance requirements.

Resolution: This has been resolved as the forecast used in the April 2012 IRP Filing covers this issue.

3.2.6 GDS' (MDNR) Deficiency 3

KCP&L did not provide adequate documentation to support the reasonableness of wind resource cost assumptions. By using the same inflation rate for capital and fixed O&M costs and maintaining a constant capacity factor, costs for wind energy are held constant relative to other supply side resources, providing the appearance of higher costs than may be reasonably expected over the next 20 years. The IRP is deficient in its failure to "fairly" analyze and compare costs of wind against other resources.

Resolution: The Company will analyze improving wind capacity factors and lower relative inflation rates before the 2013 Annual Update.

Comment: KCP&L developed alternative resource plans (ARPs) in the 2013 Annual Update filing that reflected zero inflation (FDHKF), and normal inflation rates for the wind capital and O&M costs (FHDKW). The wind capacity factors were analyzed and not increased because they are comparable with KCP&L's existing wind facilities, and capacity factors provided by developers for new future wind sites have been relatively stable and in the same range as existing facilities. Results indicate that if wind costs do not inflate over time that on an expected value basis, wind could become economic.

3.2.7 GDS' (MDNR) Deficiency 4

KCP&L did not provide adequate documentation to support the transmission interconnection costs for wind resources. The small sample size and wide range of costs gives rise to a question of whether the sample used to generate the interconnection costs is representative of past or future interconnection costs.

Resolution: The Company will identify a greater number of wind project transmission interconnection costs for inclusion into the 2013 Annual Update.

Comment: In the 2013 Annual Update, KCP&L included wind Interconnection costs updated based on 10 recent SPP wind interconnection studies.

3.2.8 GDS' (MDNR) Concern 3

KCP&L has not considered a broad enough range of potential coal prices in its IRP. A broader range in coal fuel prices should have been used in the development of KCP&L's preferred or alternative resource plans.

Resolution: This issue has been resolved.

3.2.9 GDS' (MDNR) Concern 4

KCP&L's assumed coal plant capacity factors are not representative of recent actual operating experience and the impact of these assumed higher capacity factors on wind options has been overlooked. This issue affects the ability of existing supply resources to meet expected demand and limits the potential role of new renewable resources such as wind in the preferred plan.

Resolution: This issue has been resolved.

3.2.10 GDS' (MDNR) Concern 5

KCP&L did not address the impact of natural disasters, such as the flood at the latan coal plant, in its contingency plans.

Resolution: This issue has been resolved.

SECTION 4: TRANSMISSION AND DISTRIBUTION UPDATE

4.1 CHANGES FROM 2012 IRP SUBMISSION

4.1.1 <u>SMARTGRID DEMONSTRATION PROJECT - 2012 MID-PROJECT</u> <u>TECHNOLOGY PERFORMANCE REPORT (TPR)</u>

As a DOE Smart Grid Demonstration Project requirement, KCP&L produced its first Interim Technology Performance Report (TPR) on December 31, 2012. That document summarized all achievements on the project through that date. Key topics include summaries of the project design, implementation, analysis, and some lessons learned thus far. Due to the voluminous size of this report, it has not been included in the Annual Update, but can be viewed at the following DOE website; <u>http://www.smartgrid.gov/sites/default/files/KCPL_OE0000221_Interim%20TPR%201</u>

20130328.pdf.

A second Interim Technology Performance Report will be produced at the end of 2013. This document will revisit preliminary assessments from the 2012 documentation, but will go into greater detail regarding the incremental implementation activities, operational tests, and initial results from analysis performed as of that date. A final Technology Performance Report will be produced in early 2015 following the conclusion of the project and will synthesize all learning's from the entirety of project.

4.2 TRANSMISSION AND DISTRIBUTION: AGREED UPON REMEDIES TO ALLEGED DEFICIENCIES AND DEFICIENCIES

The following section addresses the Alleged Deficiencies and Concerns from the 2012 KCP&L IRP, Case No. EO-2012-0323. The Resolutions are either verbatim or a shortened version of the agreed-to resolution from the Joint Filing filed in that case.

4.2.1 Staff's Deficiency 2

KCP&L did not provide its assessments of the RTO expansion plans as required by Rule 4 CSR 240-22.045(3)(C). These documents are necessary to determine if KCP&L satisfied the conditions required in Rule 4 CSR 240-22.045(3)(B) which permits the Company to use the RTO transmission expansion plans for its resource planning. KCP&L should provide its assessments of the RTO expansion plans in its Annual Update.

Resolution: The Company will provide its assessments of the RTO expansion plans in its 2013 Annual Update.

Comment: KCP&L assessment of RTO expansion plans is an ongoing process that occurs throughout the various regional planning processes conducted by SPP. These assessments include review and approval of plan scope documents, review and approval of plan input assumptions, review of plan study analysis and results with feedback from KCP&L staff, and review and approval of final plan reports. All transmission projects for the KCP&L service territory that are identified in SPP Regional Plans are included in KCP&L's annual Transmission Expansion Plan which performs an assessment of those projects for meeting the requirements of the NERC Reliability Standards. By meeting the performance standards established for transmission planning in the NERC Reliability Standards the assessment ensures that adequate transmission service requirements included in the SPP Regional Plan for KCP&L. This document is attached as Appendix A 2012 KCPL and GMO Transmission Expansion Plan Study.pdf.

4.2.2 Staff's Deficiency 3

KCP&L did not assess the RTO expansion plans as required by Rule 4 CSR 240-22.045(3)(B). Since KCP&L does not believe it is possible to conduct separate analysis for its Missouri customers, KCP&L should request a variance for Rule 4 CSR 240-22.045(3)(B)2 and Rule 4 CSR 240-22.045(3)(B)3.

Resolution: The Company will request a variance for Rule 4 CSR 240-22.045(3)(B)2 and Rule 4 CSR 240-22.045(3)(B)3 prior to the 2013 Annual Update.

Comment: KCP&L requested variances for these rules and they were granted.

4.2.3 Staff's Deficiency 4

KCP&L did not identify and describe all affiliates as required by Rule 4 CSR 240-22.045(5). KCP&L should identify and describe the relationship between the two companies (KCP&L and GMO) and conduct separate analysis of the RTO expansion plans for each company.

Resolution: KCP&L will identify and describe the relationship between KCP&L, Transource and GMO in its 2013 Annual Update.

Comment: For the purpose of this response, any Great Plains Energy ("GXP") affiliate is defined as those entities within the direct line of ownership of GXP.

While KCP&L Greater Missouri Operations Company ("GMO") is not a "transmission planning, designing, engineering, building, and/or construction management company," KCP&L identifies GMO in the interest of providing a response to this requirement. KCP&L and GMO are electric utilities wholly owned by Great Plains Energy Incorporated. While GMO has no employees, KCP&L employees perform transmission planning, designing, engineering, building, and construction management for both entities pursuant to the terms of the utilities' joint operation agreement and cost allocation manual. Transactions between KCP&L and GMO, however, are not subject to the Affiliate Transactions Rule found in 4 CSR 240-20.015, pursuant to a variance the Commission granted in Case No. EM-2007-0374.

2013 Annual Update

On April 4, 2012 GXP, the holding company for both KCP&L and GMO, and American Electric Power ("AEP") announced the formation of a company to build and invest in transmission infrastructure. The new company, Transource Energy LLC ("Transource"), will pursue competitive transmission projects in the SPP region, the MISO and PJM regions, and potentially other regions in the future. GXP owns 13.5 percent of Transource through its newly-formed subsidiary, GPE Transmission Holding Company, LLC ("GPETHCO"). AEP owns the other 86.5 percent of Transource through its subsidiary, AEP Transmission Holding Company, LLC ("AEPTHCO"). Transource Missouri, LLC is the only current subsidiary of Transource Energy, LLC and has applied to FERC in Docket No. ER12-2554-000 for authority to implement certain incentive rate treatments for the Iatan-Nashua regional transmission project and the Sibley-Nebraska City regional transmission project pursuant to Section 219 of the Federal Power Act and FERC Order No. 679.

4.2.4 Staff's Concern B

The Filing does not describe and document the analysis performed by the utility to determine whether such affiliate-built transmission is in the interest of the utility's Missouri customers. [KCP&L is affiliated with GMO.] Some of the analysis in volume 4.5 is based on a combination of KCP&L and GMO rather than KCP&L as a standalone company. KCP&L should provide its analysis of affiliate-built transmission in its 2013 Annual Update.

Resolution: The SPP RTO expansion plans included in the 2012 IRP filing provided separate analysis for KCP&L and GMO. GMO is identified as "MIPU" in some of the SPP RTO expansion plans. Therefore, this issue is resolved.

SECTION 5: DEMAND-SIDE RESOURCE ANALYSIS UPDATE

5.1 DEMAND-SIDE MANAGEMENT LEVEL UPDATE

The 2013 Annual Update utilized the results of the Navigant Demand-Side Management Potential Study. Six DSM alternatives were created for KCP&L. The six alternatives were based on the Realistic Achievable Potential (RAP) and The Maximum Achievable Potential (MAP), which were identified in the study. The five DSM alternatives are RAP, MAP, RAP plus 1/3 of the difference between RAP and MAP, RAP plus 2/3 the difference between RAP and MAP, and approximately half-RAP. One additional alternative was created for KCP&L, which is described later in this section. The draft version of the Navigant DSM Potential Study used in the analysis was available in March of 2013. A finalized version will be available after the date of this filing.*

*Note: At the time of the filing of this Annual Update, the Navigant DSM Potential Study was not yet finalized due to changes requested by stakeholders. As such, GMO utilized a draft version of the report that was available as of March 2013.

5.2 MODIFICATIONS MADE TO THE DSM LEVELS FROM THE POTENTIAL STUDY

The Navigant DSM Potential Study data, that was used for this update, included all C&I customers. GMO received Opt-Out requests from some of the large Commercial and Industrial (C&I) customers that were eligible to do so. The customers requesting to Opt-Out of DSM amounted to 18% of GMO's large C&I load, which amounts to 15% of GMO's total C&I load. In order to account for the resulting reduction in potential C&I DSM due to those customers who Opted-Out, the company reduced the DSM from C&I customers by 15%.

Unlike GMO, KCP&L has not made a MEEIA filing. Therefore, KCP&L does not have a list of customers who have, or will, Opt-Out. For purposes of this update, the company assumed that the same percentage of C&I load would Opt-Out that did in GMO. So the company reduced the total amount of DSM from C&I customers, in KCP&L, by 15%.

5.3 THE MEEIA/RAP ALTERNATIVE

KCP&L developed a modified RAP level of DSM for 2014, 2015 and 2016, followed by the RAP level starting in 2017. The modification was based on the measure list from the Potential Study but at a reduced level to reflect a lower level of DSM spending. The modified DSM plan is named MEEIA/RAP. This plan assumes that the same list of programs and the program plans from the potential study RAP level of DSM would be used, but the amount of capacity and energy savings would be reduced proportionately to reflect the reduced amount of savings that could be achieved with the lower level of spending. The DSM savings levels for this scenario are based on the cost per kWh from the RAP level of DSM in the Potential Study results.

KCP&L developed the MEEIA/RAP alternative to reduce the short-term rate impacts that would result from the full RAP DSM levels. Assuming KCP&L was approved for the same DSM cost recovery treatment as GMO was under its MEEIA settlement agreement, implementing the full RAP DSM plan in 2014 would increase retail rates by a projected 8.3% in 2016 (the first year new rates would be in effect under a 2013 KCP&L MEEIA filing). This increase does not reflect any other potential non-DSM related costs that would also go into effect in 2016. The MEEIA/RAP alternative reduces the rate impact to 6.3%.

KCP&L anticipates that it will file a MEEIA case during 2013.

5.4 DEMAND-SIDE RESOURE ANALYSIS: AGREED UPON REMEDIES ALLEGED DEFICIENCIES AND CONCERNS

The following section addresses the Alleged Deficiencies and Concerns from the 2012 KCP&L IRP, Case No. EO-2012-0323. The Resolutions are either verbatim or a shortened version of the agreed-to resolution from the Joint Filing filed in that case.

5.4.1 Staff's Deficiency 5

The Company has no current market research study that identifies the maximum achievable potential ("MAP"), technical potential and realistic achievable potential ("RAP") of potential demand-side resource options. The Company should utilize the results of the Navigant Demand-Side Management Potential as input in the preparation of its 2013 Annual Update.

Resolution: The Company will utilize the results of the Navigant Demand-Side Management Potential Study in its 2013 Annual Update.

Comment: This issue has been addressed as KCP&L utilized the results of the Navigant DSM Potential Study in the 2013 Annual Update.

5.4.2 Staff's Deficiency 6

The Company has not provided all information required by Rule 4 CSR 240-22.050. Specifically, the Company has repeatedly referenced the future results of: a) the Navigant Demand-Side Management Potential study, not available until January 15, 2013, in response to satisfying specific requirements of Rule 4 CSR 240-22.050 (1)(A)3, 1(D), 1(E), (2), (3)(G)3, (3)(G)5, (3)(I), (4)(D), 4(E), 4(G) and 6(C); b) the Smart Grid Residential TOU Pilot Tariff that will not be available until after the summer of 2012 in response to satisfying the specific requirements of Rule 4 CSR 240-22.050(4)(D)1 and (4)(D)4. The Company should utilize the results of the Navigant Demand-Side Management Potential study and the Smart Grid Residential TOU Pilot Tariff when performing analyses for its 2013 Annual Update. **Resolution:** The Company will utilize the results of the Navigant Demand-Side Management Potential Study in its 2013 Annual Update and the Smart Grid Residential TOU Pilot Tariff.

Comment: This issue has been addressed as KCP&L utilized the results of the Navigant DSM Potential Study and has provided the results of the Smart Grid Residential TOU Pilot Tariff in the 2013 Annual Update. These are included in the appendices "Appendix C KCPL Preliminary IHD and TOU Evaluation Rev Oct 24 2012.pdf" and "Appendix D 2012 OnPeak Hours.xls ".

5.4.3 Staff's Concern C

KCP&L is constraining both the Energy Optimizer and MPower programs. KCP&L has indicated that it is not promoting either the Energy Optimizer or MPower program, and for the MPower program, the Company is not currently accepting and/or processing new program applications. The Company should utilize the results of the Navigant Demand-Side Management Potential study meeting the requirements of Rule 4 CSR 240-22.050(2) and Rule 4 CSR 240-3.164(2) (A), and should use the same as input in the preparation of its 2013 Annual Update.

Resolution: The Company will utilize the results of the Navigant Demand-Side Management Potential Study in its 2013 Annual Update.

Comment: This issue has been addressed as KCP&L utilized the results of the Navigant DSM Potential Study in the 2013 Annual Update.

5.4.4 Staff's Concern D

The Total Resource Cost ("TRC") value of 0.43 for the Energy Star New Homes program indicates that this program is not cost effective. The Company should carefully review all TRC values for all DSM programs for consideration in the preparation of its 2013 Annual Update. If the results of this review indicate some programs are indeed not cost effective and do not meet the requirements of 4 CSR

240-20.094 (3)(B) and (C), they should not be included in the Company's 2013 Annual Update.

Resolution: The Company will utilize the results of the Navigant Demand-Side Management Potential Study in its 2013 Annual Update. The Company will carefully review all TRC values for all DSM programs. If any programs are not cost effective and do not meet the requirements of 4 CSR 240-20.094(3)(B) and (C), they will not be included in the Company's Annual Update.

Comment: This issue has been addressed. KCP&L utilized the results of the Navigant DSM Potential Study to review all TRC values for all DSM programs and excluded measures that had a TRC value below 1.

5.4.5 MDNR's Deficiency 5

No clear analysis of interactive factors in assessing DSM program cost-effectiveness. Analysis of the interactive effects of efficiency measures was not performed in the estimation of program cost-effectiveness.

Resolution: The Company will utilize the results of the Navigant Demand-Side Management Potential Study in its 2013 Annual Update. Interactive effects will be included in the assessment of future programs. The program-level-cost-effectiveness will be recalculated after the completion of the potential study.

Comment: This issue has been addressed. In the 2013 Annual Update, KCP&L utilized the results of the Navigant DSM Potential Study to include interactive effects in the assessment of future programs. Also, the program-level-cost-effectiveness was recalculated based on the potential study.

5.4.6 MDNR's Deficiency 6

No identification of DSM portfolios that address "maximum achievable potential" and "realistic achievable potential." KCP&L has deferred all estimation and analysis of "maximum achievable potential" and "realistic achievable potential" to the completion of its market potential study.

Resolution: The Company will utilize the results of the Navigant Demand-Side Management Potential Study in its 2013 Annual Update. DSM portfolios that meet the definition of "maximum achievable potential" and "realistic achievable potential" will be included in the 2013 Annual Update.

Comment: This issue has been addressed. KCP&L utilized the results of the Navigant DSM Potential Study to include DSM portfolios that meet the definition of "maximum achievable potential" and "realistic achievable potential" in the 2013 Annual Update.

5.4.7 MDNR's Concern 4

The 1% DSM portfolio agreed upon in Stipulation to EE-2008-0034 is not identified. The required DSM portfolio from the Stipulation and Agreement to File No. EE-2008-0034, KCP&L's 2008 IRP, has not been identified among the three DSM portfolios presented by the Company, citing Stipulation and Agreement, Case No. EE-2008-0034, DNR Deficiency #2.

Resolution: This issue was resolved over the phone in conversations with Adam Bickford, MDNR. The 1% portfolio was DSM plan D, however, the 1% only applied to KCP&L Missouri.

5.4.8 MDNR'S Deficiency 7

The Key metrics for the "aggressive" and "very aggressive" DSM portfolios are not provided. Required data on number of participants, incentive payments and administrative costs are not provided for the "aggressive" and "very aggressive" DSM portfolios.

Resolution: The Company will include in the 2013 Annual Update, program metrics as described in 4 CSR 240-22.050(4)(G) for each of its DSM portfolios.

Comment: This issue has been addressed. KCP&L utilized the results of the Navigant DSM Potential Study to include program metrics for each the DSM portfolios in the 2013 Annual Update.

2013 Annual Update

5.4.9 MDNR'S Deficiency 8

Savings estimates for "Aggressive" (DSM D) and "Very Aggressive" (DSM E) DSM portfolios are simple extrapolations from a common base case. KCP&L should reconsider its program design when estimating its aggressive DSM planning cases rather than relying on "technologies not known or defined."

Resolution: The Company will utilize the results of the Navigant Demand-Side Management Potential Study in its 2013 Annual Update.

Comment: This issue has been addressed. KCP&L utilized the results of the Navigant DSM Potential Study for the DSM Portfolios in the 2013 Annual Update.

SECTION 6: INTEGRATED RESOURCE PLAN AND RISK ANALYSIS UPDATE

6.1 CHANGES FROM 2012 IRP SUBMITTAL

The changing conditions, or major drivers, that have contributed to KCP&L's need to develop new Alternative Resource Plans and therefore selection of a new Preferred Plan include:

- Proposed and Potential Environmental Regulations
- Load Forecast Projections
- Environmental Retrofit Cost Estimates
- Demand-Side Management Program levels

6.2 CRITICAL UNCERTAIN FACTORS

The Critical Uncertain Factors for the 2013 Annual Update were same as those in the 2012 IRP filing. The Critical Uncertain Factors identified were incorporated into a decision tree representation of the risks that will impact the performance of the alternative resource plans. A graphical representation of the decision tree risks is provided in Figure 6 below:

Endpoint	Load Growth	Natural Gas	CO2	Endpoint Probability
1	High	High	High	1.6%
2	High	High	Mid	3.1%
3	High	High	Low	1.6%
4	High	Mid	High	3.1%
5	High	Mid	Mid	6.3%
6	High	Mid	Low	3.1%
7	High	Low	Hìgh	1.6%
8	High	Low	Mid	3.1%
9	High	Low	Low	1.6%
10	Mid	High	High	3.1%
11	Mid	High	Mid	6.3%
12	Mid	High	Low	3.1%
13	Mid	Mid	High	6.3%
14	Mid	Mid	Mid	12.5%
15	Mid	Mid	Low	6.3%
16	Mid	Low	High	3.1%
17	Mid	Low	Mid	6.3%
18	Mid	Low	Low	3.1%
19	Low	High	High	1.6%
20	Low	High	Mid	3.1%
21	Low	High	Low	1.6%
22	Low	Mid	High	3.1%
23	Low	Mid	Mid	6.3%
24	Low	Mid	Low	3.1%
25	Low	Low	High	1.6%
26	Low	Low	Mid	3.1%
27	Low	Low	Low	1.6%

Figure 6: Decision Tree With Conditional Probabilities

6.3 ALTERNATIVE RESOURCE PLAN DEVELOPMENT

Alternative resource plans were developed using a combination of supply-side resources, demand-side resources, various resource addition timings, as well as generation retirement options and timings. The plan-naming convention utilized for the alternative resource plans developed is shown in Table 28 below:

Alternative Resource Plans were developed using a combination of various supplyside resources and demand-side resources. An overview of the Alternative Resource Plans is shown in Table 29 to Table 33 below.

,

Plan Name	DSM Level	Retirement Assumption	Retirement Year	Renewab	Renewable Additions	Generation Addition (if needed)
ААКА	RAP	No Retirements	n/a	Solar: 2018 - 11 MW 2021 - 6 MW	Wind: 2016 - 50 MW 2020- 150 MW 2024 - 200 MW	u/u
ABBKA	RAP	Montrose-1	2016	Solar: 2018 - 11 MW 2021 - 6 MW	Wind: 2016 - 50 MW 2020- 150 MW 2024 - 200 MW	u/u
ACBKA	RAP	Montrose-1 Montrose-2	2016	Solar: 2018 - 11 MW 2021 - 6 MW	Wind: 2016 - 50 MW 2020- 150 MW 2024 - 200 MW	193 MW CT in 2032
AEBKA	RAP	LaCygne-1	2015	Solar: 2018 - 11 MW 2021 - 6 MW	Wind: 2016 - 50 MW 2020- 150 MW 2024 - 200 MW	193 MW CT in 2031
AFBKA	RAP	LaCygne-2	2015	Solar: 2018 - 11 MW 2021 - 6 MW	Wind: 2016 - 50 MW 2020- 150 MW 2024 - 200 MW	193 MW CT in 2031
Vote: MEEIA/	Note: MEEIA/RAP for KCP&L filing, then transitions to RAP.	contains a level	of DSM in 20	14-2016 that serv	Note: MEEIA/RAP for KCP&L contains a level of DSM in 2014-2016 that serves as a placeholder for a future MEEIA filing, then transitions to RAP.	for a future MEEIA

Table 29: Overview of Alternative Resource Plans

2013 Annual Update

	Tat	Table 30: Overvie	<u>v</u> of Alternat	Overview of Alternative Resource Plans (continued)	ans (continued)	
Plan Name	DSM Level	Retirement Assumption	Retirement Year	Renewabl	Renewable Additions	Generation Addition (If needed)
АНВКА	RAP	Convert to NG: Montrose-1 Montrose-2 Montrose-3	2016*	Solar: 2018 - 11 MW 2021 - 6 MW	Wind: 2016 - 50 MW 2020- 150 MW 2024 - 200 MW	u/u
BDFKA	МАР	Montrose-1 Montrose-2 Montrose-3	2019 2021 2021	Solar: 2018 - 11 MW 2021 - 6 MW	Wind: 2016 - 50 MW 2020- 150 MW 2024 - 200 MW	u/u
CDBKA	RAP + 1/3(MAP- RAP)	Montrose-1 Montrose-2 Montrose-3	2016 2016 2016	Solar: 2018 - 11 MW 2021 - 6 MW	Wind: 2016 - 50 MW 2020- 150 MW 2024 - 200 MW	193 MW CT in 2033
DDBKA	RAP + 2/3(MAP RAP)	Montrose-1 Montrose-2 Montrose-3	2016 2016 2016	Solar: 2018 - 11 MW 2021 - 6 MW	Wind: 2016 - 50 MW 2020- 150 MW 2024 - 200 MW	u/u
FDBKA	MEEIA / RAP	Montrose-1 Montrose-2 Montrose-3	2016 2016 2016	Solar: 2018 - 11 MW 2021 - 6 MW	Wind: 2016 - 50 MW 2020- 150 MW 2024 - 200 MW	193 MW CT in 2026 193 MW CT in 2031

2013 Annual Update

.

59

		INIA OVERVIE	W OF AILEFINAL	able 31. Uverview of Alternative Resource Plans (continued)	ans (continued)	
Plan Name	DSM Level	Retirement Assumption	Retirement Year	Renewabl	Renewable Additions	Generation Addition (if needed)
FDDKA	MEEIA / RAP	Montrose-1 Montrose-2 Montrose-3	2016 2023 2023	Solar: 2018 - 11 MW 2021 - 6 MW	Wind: 2016 - 50 MW 2020- 150 MW 2024 - 200 MW	193 MW CT in 2026 193 MW CT in 2031
FDEKA	MEEIA / RAP	Montrose-1 Montrose-2 Montrose-3	2019 2023 2023	Solar: 2018 - 11 MW 2021 - 6 MW	Wind: 2016 - 50 MW 2020- 150 MW 2024 - 200 MW	193 MW CT in 2026 193 MW CT in 2031
FDFKA	MEEIA / RAP	Montrose-1 Montrose-2 Montrose-3	2019 2021 2021	Solar: 2018 - 11 MW 2021 - 6 MW	Wind: 2016 - 50 MW 2020- 150 MW 2024 - 200 MW	193 MW CT in 2026 193 MW CT in 2031
FDHKA	MEEIA / RAP	Montrose-1 Montrose-2 Montrose-3	2016 2021 2021	Solar: 2018 - 11 MW 2021 - 6 MW	Wind: 2016 - 50 MW 2020- 150 MW 2024 - 200 MW	193 MW CT in 2026 193 MW CT in 2031
FDHKB	MEEIA / RAP	Montrose-1 Montrose-2 Montrose-3	2016 2021 2021	Solar: 2018 - 11 MW 2021 - 6 MW	Wind: 2016 - 50 MW 2020- 150 MW 2024 - 200 MW	200 MW CC in 2026 200 MW CC in 2031

Table 31: Overview of Alternative Resource Plans (continued)

2013 Annual Update

	Generation Addition (if needed)	200 MW SMR in 2026 200 MW SMR in 2031	193 MW CT in 2027 193 MW CT in 2032	579 MW CT in 2016 193 MW CT in 2031	386 MW CT in 2021 193 MW CT in 2027 193 MW CT in 2031	193 MW CT in 2022 193 MW CT in 2028 193 MW CT in 2032
ans (continuea)	Renewable Additions	Wind: 2016 - 50 MW 2020- 150 MW 2024 - 200 MW	Wind: 2016 - 100 MW 2020- 300 MW 2024 - 400 MW	Wind: 2016 - 50 MW 2020- 150 MW 2024 - 200 MW	Wind: 2016 - 50 MW 2020- 150 MW 2024 - 200 MW	Wind: 2016 - 50 MW 2020- 150 MW 2024 - 200 MW
I able 32. Uverview of Alternative Resource Plans (continued)	Renewabl	Solar: 2018 - 11 MW 2021 - 6 MW	Solar: 2018 - 22 MW 2021 - 12 MW	Solar: 2018 - 11 MW 2021 - 6 MW	Solar: 2018 - 11 MW 2021 - 6 MW	Solar: 2018 - 11 MW 2021 - 6 MW
v ol Allellia	Retirement Year	2016 2021 2021	2016 2021 2021	2015 2016 2016 2016	2015 2019 2021 2021	2016 2016 2016
Jan Jan Overvier	Retirement Assumption	Montrose-1 Montrose-2 Montrose-3	Montrose-1 Montrose-2 Montrose-3	LaCygne-1 Montrose-1 Montrose-2 Montrose-3	LaCygne-1 Montrose-1 Montrose-2 Montrose-3	Montrose-1 Montrose-2 Montrose-3
- 91	DSM Level	MEEIA / RAP	MEEIA / RAP	MEEIA / RAP	MEEIA / RAP	MEEIA / 1/2 RAP
	Plan Name	FDHKE	FDHKW	FIBKA	FIGKA	GDBKA

Table 32: Overview of Alternative Resource Plans (continued)

2013 Annual Update
- 	-
~	-
7	
- X	
	-
/0	Į
Ë	ł
1	Ì
÷	
٥.	
- Ah	l
ŏ	I
- 	
- 3	-
0	-
ŝ	-
0	l
£	İ
	Į
۳,	1
	1000
1	ł
ë	l
E	l
O	R
-	and and a
<	1022
-	
Ö	
~	No.
5	
<u>e</u>	122000
>	
<u> </u>	
Ψ.	100
2	
O	No.
	1.2
~	
8	
	Contraction of the
le 33: Overview of Alternative Resource Plans (continue	

Plan Name	DSM Level	Retirement Assumption	Retirement Year	ement Retirement Renewable Additions	Renewable Additions	Generation Addition (if needed)
GDHKA	MEEIA / 1/2 RAP	Montrose-1 Montrose-2 Montrose-3	2016 2021 2021	Solar: 2018 - 11 MW 2021 - 6 MW	Wind: 2016 - 50 MW 2020- 150 MW 2024 - 200 MW	193 MW CT in 2022 193 MW CT in 2028 193 MW CT in 2032
GDHKB	MEEIA / 1/2 RAP	Montrose-1 Montrose-2 Montrose-3	2016 2021 2021	Solar: 2018 - 11 MW 2021 - 6 MW	Wind: 2016 - 50 MW 2020- 150 MW 2024 - 200 MW	20 MW CC in 2022 200 MW CC in 2028 200 MW CC in 2032
XDFKA	Persistence Only	Montrose-1 Montrose-2 Montrose-3	2019 2021 2021	Solar: 2018 - 11 MW 2021 - 6 MW	Wind: 2016 - 50 MW 2020- 150 MW 2024 - 200 MW	386 MW CT in 2021 193 MW CT in 2026 193 MW CT in 2031
* Convert to Natural Gas	tural Gas					

2013 Annual Update

See Appendix B for tables which provide the KCP&L forecast of capacity balance for the next 20 years for each of the Alternative Resource Plans outlined above. These capacity forecasts include renewable and generation additions. The capacity for wind facilities is based on SPP's criteria for calculating wind net capability using actual generation or wind data. Solar capacity is based on SPP criteria indicating that absent a net capability calculation, 10% for solar facilities of the facility's nameplate rating be used. Additionally, the 56 MW hydro facility is currently allocated 100% to KCP&L's Kansas jurisdiction for the purpose of state RES compliance.

6.4 REVENUE REQUIREMENT AND PROBABLE ENVIRONMENTAL COSTS

For each of the Alternative Resource Plans developed, integrated analysis yielded an expected value of the Net Present Value of Revenue Requirement shown in Table 34 below. For each of the Alternative Resource Plans, the Probable Environmental Costs are shown in Table 35 below.

Rank (L-H)	Plan	NPVRR (\$mm)	Delta
1	FDHKA	\$20,797	\$0.0
2	FDBKA	\$20,799	\$1.8
3	FDFKA	\$20,806	\$9.0
4	FDDKA	\$20,832	\$34.8
5	FDHKB	\$20,833	\$35.5
6	FDEKA	\$20,843	\$45.2
7	FIGKA	\$20,844	\$46.8
8	ACBKA	\$20,907	\$109.2
9	CDBKA	\$20,908	\$110.1
10	GDHKA	\$20,918	\$120.3
11	GDBKA	\$20,923	\$125.3
12	FDHKW	\$20,945	\$147.2
13	GDHKB	\$20,958	\$160.3
14	AEBKA	\$21,033	\$235.5
15	AFBKA	\$21,039	\$241.8
16	FDHKE	\$21,063	\$265.8
17	ABBKA	\$21,071	\$273.8
18	DDBKA	\$21,144	\$346.5
19	FIBKA	\$21,175	\$377.8
20	XDFKA	\$21,239	\$441,7
21	AAAKA	\$21,356	\$558.7
22	AHBKA	\$21,383	\$585.2
23	BDFKA	\$21,503	\$705.9

 Table 34: Total Revenue Requirement

Plan	PEC NPVRR (\$mm)
AAAKA	\$1,815
ABBKA	\$1,594
АСВКА	\$1,414
AEBKA	\$1,486
AFBKA	\$1,333
АНВКА	\$1,208
BDFKA	\$1,254
CDBKA	\$1,207
DDBKA	\$1,207
FDBKA	\$1,208
FDDKA	\$1,262
FDEKA	\$1,275
FDFKA	\$1,254
FDHKA	\$1,241
FDHKB	\$1,244
FDHKE	\$1,240
FDHKW	\$1,237
FIBKA	\$862
FIGKA	\$909
GDBKA	\$1,208
GDHKA	\$1,241
GDHKB	\$1,246
XDFKA	\$1,255

Table 35: Probable Environmental Cost

.

6.5 PERFORMANCE MEASURES

A summary tabulation of the expected value of all performance measures is provided in Table 36 below. Plan detail results behind this summary tabulation are attached in Appendix G.

Plan		NPVRR	Envir	obable onmental is (SMM)	Đ	SM Costs (SMM)	Levelized Annual Rates (\$/kw-hr)	Maximum Rate Increase	Times Interest Earned	Total Debt to Capital	Cop Ex t FFO
FDHKA	\$	20,797	\$	1,241	\$	336.8					
FDBKA	\$	20,799	\$	1,208	\$	336.8					
FDFKA	\$	20,806	\$	1,254	\$	336.8					
FDDKA	\$	20,832	\$	1,262	\$	336.8					
FDHKB	\$	20,833	\$	1,244	\$	336.8					
FDEKA	\$	20,843	\$	1,275	\$	336.8					
FIGKA	\$	20,844	\$	909	\$	336.8					
АСВКА	\$	20,907	\$	1,414	\$	386.8					
CDBKA	\$	20,908	\$	1,207	\$	758.1					
GDHKA	\$	20,918	\$	1,241	\$	204.6					
GDBKA	\$	20,923	\$	1,208	\$	204.6					
FDHKW	\$	20,945	\$	1,237	\$	336.8					
GDHKB	\$	20,958	\$	1,246	\$	204.6					
AEBKA	\$	21,033	\$	1,486	\$	386.8					
ағвка	\$	21,039	\$	1,333	\$	386.8					
FDHKE	\$	21,063	\$	1,240	\$	336.8					
ABBKA	s	21,071	\$	1,594	\$	386.8					
DDBKA	Ş	21,144	\$	1,207	\$	1,095.7					
FIBKA	Ś	21,175	\$	862	\$	336.8					
XDFKA	\$	21,239	\$	1,255	\$						
AAAKA	\$	21,356	\$	1,815	\$	386.8					
АНВКА	\$	21,383	\$	1,208	\$	386.8					
BDFKA	\$	21,503	Ś	1,254	5	1.433.4					

Table 36:	Expected Valu	e of Performance	Measures	** Highly Confidential **
-----------	---------------	------------------	----------	---------------------------

6.5.1 CUMULATIVE PROBABILITIES FOR PERFORMANCE MEASURES

2013 Annual Update

68

2013 Annual Update

2013 Annual Update

6.6 UNSERVED ENERGY

The expected value of unserved energy for all Alternative Resource Plans is provided in Table 41 below:

6.7 COMBINED KCP&L/GMO RESOURCE PLANS

KCP&L/GMO are both held by Great Plains Energy, additional alternative resource plans were developed to determine if the KCP&L and/or GMO stand-alone resource plans should be modified to reflect potential combined company operations. This additional analysis is intended to minimize the risk that either stand-alone utility would implement an alternative resource plan that would not be in the best interests of Missouri retail customers under combined-company operations. For example, KCP&L has more base load resources available for service to its retail customers than does GMO. While the planning results indicate that KCP&L's Montrose station should be retired over the next several years, a combined KCP&L/GMO asset analysis could indicate that it is in the best interests of Missouri retail customers to keep Montrose in service for a longer period of time under a combined company scenario.

The combined company alternative resource plans were generally based on the results of the stand-alone company analysis. In general, they reflect combinations of several of the lowest NPVRR plans on a stand-alone company basis. For example, combined company plan FRECA is the combination of KCP&L alternative resource plan FDHKA (retire Montrose 1 in 2016 and Montrose 2&3 in 2021) and GMO alternative resource plan AEFGA (retire Lake Road 4/6 in 2016 and Sibley 1&2 in 2019) with slight changes to the timing of future resource additions.

The NPVRR for each combined company alternative resource plan was determined under the same 27 scenarios analyzed for the stand alone companies. For example, electricity market prices, natural gas prices, CO₂ allowance prices, etc. were unchanged from the stand-alone company scenarios.

The plan-naming convention utilized for the combined company Alternative Resource Plans developed is shown in Table 42 below.

2013 Annual Update

Alternative Resource Plans were developed using various capacities of supply-side resources and demand-side resources. In total, five combined company Alternative Resource Plans were developed for the integrated resource analysis for this 2013 Annual Update. An overview of the Alternative Resource Plans is shown in Table 43 below.

Plan Name	DSM Level	Retirement Assumption	Retirement Year		Renewable Additio	15	Generation Additio (if needed)
		Convert to NG-FO: Lake Road 4/6	2016	n kendaran giladini an akalangi an	Wind:	a fan de linne en staar geha	
FIECA	MEEIA/RAP (KCP&L), RAP	Retire: Montrose-1	2016	Solar: 2018 - 21 MW	2016 - 50 MW 2019 - 150 MW	Hydro*:	193 MW CT in 202
HECA	(GMO)	Montrose-2 Montrose-3	2021	2021 - 12 MW 2023 - 3 MW	2020 - 150 MW 2021- 100 MW 2024 - 200 MW	2014 - 56 MW	193 MW CT in 203 193 MW CT in 203
		Sibley-1 Sibley-2	2019		2025 - 100 MW		
		Convert to NG-FO: Lake Road 4/6	2016		Wind: 2016 - 50 MW		
FIFCA	MEEIA/RAP (KCP&L), RAP (GMO)	Retire: Montrose-1 Montrose-2 Montrose-3	2016	Solar: 2018 - 21 MW 2021 - 12 MW 2023 - 3 MW	2019 - 150 MW 2020 - 150 MW 2021- 100 MW	Hydro*: 2014 - 56 MW	193 MW CT in 201 193 MW CT in 203 193 MW CT in 203
		Sibley-1 Sibley-2	2019		2024 - 200 MW 2025 - 100 MW		
		Convert to NG-FO: Lake Road 4/6	2016		Wind: 2016 - 50 MW		193 MW CT in 2023 193 MW CT in 2030 193 MW CT in 2033
FIHCA	MEEIA/RAP (KCP&L), RAP (GMO)	Retire: Montrose-1 Sibley-1 Sibley-2	2019	Solar: 2018 - 21 MW 2021 - 12 MW 2023 - 3 MW	2019 - 150 MW 2020 - 150 MW 2021- 100 MW	Hydro*: 2014 - 56 MW	
		Montrose-2 Montrose-3	2021		2024 - 200 MW 2025 - 100 MW		
		Convert to NG-FO: Lake Road 4/6	2016		Wind:		
FIICA	MEEIA/RAP (KCP&L), RAP	Retire: Montrose-1	2016	Solar: 2018 - 21 MW 2021 - 12 MW 2023 - 3 MW	2016 - 50 MW 2019 - 150 MW 2020 - 150 MW	Hydro*: 2014 - 56 MW	193 MW CT in 2027 193 MW CT in 2030 193 MW CT in 2032
FIICA	(GMO)	Sibley-1 Sibley-2	2019		2020 - 150 MW 2021- 100 MW 2024 - 200 MW		
		Montrose-2 Montrose-3	2023		2025 - 100 MW		
		Lake Road 4/6 Montrose-1	2016	Solar:	Wind: 2016 - 50 MW		
FRECA	MEEIA/RAP (KCP&L), RAP	Montrose-2 Montrose-3	2021	2018 - 21 MW 2021 - 12 MW	2019 - 150 MW 2020 - 150 MW 2021 - 100 MW	Hydro*: 2014 - 56 MW	193 MW CT in 202 193 MW CT in 202
	(GMO)	Sibley-1 Sibley-2	2019	2023 - 3 MW	2021- 100 MW 2024 - 200 MW 2025 - 100 MW	2014 - 30 MIAA	193 MW CT in 2031

Table 43: Overview of Combined Company Resource Plans

* The 56 MW hydro facility is currently allocated 100% to KCP&L's Kansas jurisdiction for state Renewable Energy Standard compliance purposes

Note: MEEIA/RAP for KCP&L contains a level of DSM in 2014-2016 that serves as a placeholder for a future MEEIA filing, then transitions to RAP.

2013 Annual Update

Revenue requirement results for each of the combined company Alternative Resource Plans are shown in Table 44 below. For each of the Alternative Resource Plans, the Probable Environmental Costs are shown in Table 45 below.

Rank		NPVRR	-
(L-H) 1	Plan	(Smm) \$32,500	Delta \$0
2	FIECA	\$32,513	, \$13
3	FIHCA	\$32,516	\$16
4	FIICA	\$32,564	\$64
5.0	FIFCA	\$32,676	\$176

Table 44: Combined-Company Total Revenue Requirement

Table 45:	Combined-Comp	oany Probable	Environmental Cost

Plan	PEC NPVRR (Smm)
FRECA	\$1,581
FIECA	\$1,591
FIHCA	\$1,602
FIICA	\$1,610
FIFCA	\$1,581

In general, the plan rankings are consistent with the stand-alone company plan results. As such, there was no need to adjust the KCP&L or GMO stand-alone Preferred Plans to accommodate future potential combined operations.

A summary tabulation of the expected value of all performance measures is provided in Table 46 below. Detailed results behind this summary tabulation are attached in Appendix G.

 Table 46: Combined-Company Expected Value of Performance Measures **

 Highly Confidential **

Pian	N	IPVRR	Envi	robable ronmental ts (SMM)	M Costs SMM)	Levelized Annual Rates (\$/kw-hr)	Aaximum Rate Increase	Interest	Total Debt to Capital	
FRECA	\$	32,500	\$	1,580.8	\$ 444,9					
FIECA	\$	32,513	\$	1,590.7	\$ 444.9					
FIHCA	\$	32,516	\$	1,602.3	\$ 444.9					
FIICA	\$	32,564	\$	1,610.3	\$ 444.9					
FIFCA	\$	32,676	\$	1,581.4	\$ 444.9					

The expected value of unserved energy for all Combined-Company Alternative Resource Plans is provided in Table 47 below:

Table 47: Combined-Company Expected Value of Unserved Energy

The Combined-Company Alternative Resource Plan that reflects the combination of the KCP&L Preferred Plan, FDHKA, and GMO's Preferred Plan, AICGA, is Alternative Resource Plan FIECA. This plan is comprised of the following components for years 2013 – 2023 and shown in Figure 7 below. The combined-company additions shown are equivalent to the stand-alone KCP&L and GMO Alternative Resource Plans, FDHKA and AICGA, respectively.

2013 Annual Update

6.8 COMBINED-COMPANY ECONOMIC IMPACT

The economic impact by year of the Combined-Company Alternative Resource Plan FIECA is represented in Table 48 below. The economic impact of all plans can be found in Appendix G.

ality of the second		une mipe	174 I IIŽ	Jiny Con	1100110101	
Year	Require ment	Levelized Annual Rates (\$/kw-hr)	Rate Increase	Times Interest Earned	Debt to Capital	Internal Cash to Construction Expense
2014						
2015	š . · .					i de la la composition de la compositio
2016						
2017	· · ·					
2018						
2019						Bettik Kengelininsi
2020						
2021						
2022						
2023						
2024						
2025						
2026						
2027						
2028						
2029						
2030						
2031						
2032						
2033						

6.9 COMBINED-COMPANY ANNUAL GENERATION

The annual generation of the Combined-Company Alternative Resource Plan FIECA is represented in Table 49 below. The annual generation of all Combined-Company plans can be found in Appendix E.

 Table 49: Combined-Company Alternative Resource Plan FIECA

 Annual Generation

6.10 COMBINED-COMPANY ANNUAL EMISSIONS

The annual emissions of the Combined-Company Alternative Resource Plan FIECA are represented in Table 50 below. The annual emissions of all Combined-Company plans can be found in Appendix E.

Table 50: Combined-Company Alternative Resource Plan FIECA Annual Emissions

2013 Annual Update

6.11 REQUIREMENTS FOR JOINT PLANNING

KCP&L has researched what agreements and/or contracts must be in place to analyze joint company plans and makes the following findings:

The IRP rules (4 CSR 240-22. 080(1)) require that each electric utility selling over 1 million megawatt hours in Missouri must make a triennial compliance filing. The Company will be making separate IRP update filings for each Company that will reference joint planning information in certain sections of the IRP update filing. KCP&L, pursuant to the Joint Operating Agreement, will continue to operate and plan for GMO as a separate control area.

KCP&L and GMO believe this element of planning—planning that includes a joint company view—is an important element of resource planning for both companies.

KCP&L respectfully requests Commission acknowledgement of this element of its planning process, under 4 CSR 22.080(17).

As defined in 4 CSR 240-22.020 (1), Acknowledgement means that the commission finds the preferred resource plan, resource acquisition strategy, or the **specified element** of the resource acquisition strategy to be reasonable at a specific date, typically the date of the filing the utility's Chapter 22 compliance filing or the date the acknowledgment is given. (emphasis added)

At the time of this filing, KCP&L and GMO share the unique status of being Missouri investor owned utilities held by one holding company, Great Plains Energy. The Chapter 22 rules governing resource planning in Missouri are silent as to how planning should be conducted given this unique relationship.

Consequently, KCP&L and GMO are requesting that the <u>specified element</u>—planning that includes a joint company view—consistent with GMO's and KCP&L's business planning processes, is reasonable.

6.12 INTEGRATED RESOURCE PLAN AND RISK ANALYSIS: AGREED UPON REMEDIES TO ALLEGED DEFICIENCIES AND CONCERNS

The following section addresses the Alleged Deficiencies and Concerns from the 2012 KCP&L IRP, Case No. EO-2012-0323. The Resolutions are either verbatim or a shortened version of the agreed-to resolution from the Joint Filing filed in that case.

6.12.1 Staff's Deficiency 7

KCP&L has failed to design alternative resource plans to satisfy at least the objectives and priorities identified in 4 CSR 240-22.060(1) over the entire 20-year planning horizon required by Chapter 22. In particular, candidate resource plans with DSM A demand-side resources do not satisfy the objective and priorities identified in 4 CSR 240-22.060(1) over the entire 20-year planning horizon and are not consistent with the state energy policy in MEEIA of achieving all cost-effective demand-side savings.

Resolution: To resolve this deficiency, the Company will use the results of the DSM Potential Study as primary data when developing demand-side resources for alternative resource plans to meet the requirements of the rule. It is understood that the DSM Potential Study will provide DSM programs' impacts and costs for the RAP, MAP, and economic potential levels for both energy savings and demand savings. The Company will include the following in separate alternative resource plans that satisfy the objective and priorities identified in 4 CSR 240-22.060(1) over the entire 20-year planning horizon and are consistent with the state energy policy in MEEIA of achieving all cost-effective demand-side savings: (1) MAP, (2) RAP, (3) approximately the RAP plus one-third of the difference between RAP and MAP, and (4) approximately the RAP plus two-thirds of the difference between RAP and MAP.

Comment: This issue has been addressed. In the 2013 Annual Update, KCP&L utilized the results of the Navigant DSM Potential Study as primary data when developing demand-side resource alternatives.

2013 Annual Update

6.12.2 Staff's Concern E

All capacity balance sheets filed to comply with Rule 4 CSR 240-22.060(4)(B)9 include solar resources at 100% of name plate capacity, while it is Staff's understanding that SPP policies require that solar capacity credit be 10% of name plate capacity. KCP&L should document the SPP policy for solar capacity credits in its 2013 Annual Update. KCP&L should follow the then-current SPP policy for solar capacity credits when developing capacity balance sheets when required for all future Chapter 22 filings.

Resolution: The Company will document the appropriate amount of accredited capacity solar resources that should be assigned for use in its capacity balance sheets for the 2013 Annual Update.

Comment: KCP&L documented and utilized the appropriate amount of accredited capacity solar resources in its capacity balance sheets for the 2013 Annual Update.

6.12.3 MDNR'S Deficiency 9

Documentation of the screening of critical uncertain factors is inadequate. Quantitative details describing the screening and selection process should be provided in either Volume 6 or in the workpapers.

Resolution: This issue is resolved. The Company provided the workpaper associated with critical uncertain factor documentation in file "CapEx Results (2012KCPL IRP).XLS" as part of the April 2012 filing.

6.12.4 MDNR'S Deficiency 10

The number of "subject matter experts" consulted by KCP&L is inadequate to establish subjective probabilities necessary to assess critical uncertain factor(s).

Resolution: MDNR and the Company have resolved this deficiency.

6.12.5 MDNR'S Deficiency 11

No "aggressive renewable energy resource plan." An alternative resource plan that utilizes only renewable energy resources has not been included in KCP&L's suite of plans.

Resolution: This issue is resolved.

6.12.6 MDNR'S Deficiency 12

Performance measures specified in 4 CSR 240-22.060(2) for the Combined Company Plans are not provided.

Resolution: The Company will provide a more full discussion and document the results and performance measures of all alternative resource plans in the 2013 Annual Update.

Comment: KCP&L documented the performance measures of all alternative resource plans in the 2013 Annual Update.

6.12.7 GDS' (MDNR) Deficiency 5

KCP&L has not clearly shown in the IRP how the allocation of resources from the Combined-Company to each separate Company is determined.

Resolution: This deficiency has been resolved.

2013 Annual Update

SECTION 7: RESOURCE ACQUISITION STRATEGY

7.1 CORPORATE APPROVAL AND STATEMENT OF COMMITMENT

KANSAS CITY POWER & LIGHT COMPANY INTEGRATED RESOURCE PLAN-2013 ANNUAL UPDATE **CORPORATE APPROVAL & STATEMENT OF COMMITMENT FOR RESOURCE ACQUISITION STRATEGY** In accordance with Missouri Public Service Commission rules found in 4 CSR 240-22 and 4 CSR 240-22-080 (3), Kansas City Power & Light Company ("KCP&L") now officially adopts for implementation the resource acquisition strategy contained in this Annual Update filing. With the objective of providing the public with energy services that are safe, reliable, and efficient at just and reasonable rates, KCP&L is committed to the full implementation of the Resource Acquisition Strategy contained herein. **Kevin Noblet** Vice President - Generation Terry D. Bassham President and Chief Operating Officer

2013 Annual Update

7.2 2013 KCP&L ANNUAL UPDATE PREFERRED PLAN

The Preferred Plan, Plan FDHKA, that has been selected for KCP&L is shown in Table 51 below:

Year	CT's (MW)	Solar (MW)	Wind (MW)	DSM (MW)	Retire (MW)	Existing Capacity (MW)
2013	-			128		4,393
2014	-			186		4,514
2015	-			193		4,503
2016	-		50	207	170	4,298
2017	-			239		4,343
2018	-	11		280		4,343
2019	-			320		4,343
2020	-		150	359		4,343
2021	-	6		391	340	4,003
2022				418		4,003
2023	-			441		4,018
2024			200	458		3,962
2025	-			463		3,962
2026	193			466		3,962
2027	-			466		3,962
2028				465		3,962
2029	-			463		3,962
2030	-			460		3,962
2031	193			458		3,962
2032		Surger States		455		3,963
2033	-			453		3,963

Table 51: KCP&L Annual Update Preferred Plan

7.2.1 PREFERRED PLAN COMPOSITION

The capacity composition by supply-side resource and Reserve Margin for the Preferred Resource Plan is provided in Table 52 below:

Based upon current Missouri and Kansas RPS rule requirements, the Preferred Plan includes 17 MW of solar additions and 400 MW of wind additions over the twenty-year planning period. It should be noted that the Missouri RPS-required solar and all wind additions could be obtained from power purchase agreements (PPA), purchasing of renewable energy credits (RECs), or utility ownership. A combustion turbine (CT) resource addition is included in 2026 and in 2031. DSM for the first 3 years of the plan consists of the same programs and program plans from the DSM Potential Study modified to reflect a lower level of spending in an effort to reduce the short-term rate impact that would result from full RAP DSM levels. At this time, the company

anticipates a 2013 MEEIA filing that will further refine the program offerings. DSM for the remaining years of the plan consists of a suite of fifteen Energy Efficiency programs, three Demand Response programs and two alternative rate plans that are based upon Navigant's DSM Potential Study results for realistically achievable potential (RAP) DSM. The potential retirements of Montrose Unit 1 in 2016 and Montrose Units 2 and 3 in 2021 is partially attributed to current or proposed environmental regulations including Mercury and Air Toxics Standards Rule, Ozone National Ambient Air Quality Standards (NAAQS), PM NAAQS, SO₂ NAAQS Clean Water Act Section 316(a) and (b), Effluent Guidelines, and Coal Combustion Residuals Rule. These rules will be monitored by KCP&L prior to the projected retirement years to determine if changes to the Preferred Plan are warranted.

2013 Annual Update

7.2.2 PREFERRED PLAN ECONOMIC IMPACT

The economic impact by year of the selected Preferred Plan is represented in Table 53 below. The economic impact of all plans can be found in Appendix G.

Year	Revenue Require ment (SMM)	Levelized Annual Rates (\$/kw-hr)	Rate Increase	Times Interest Earned	Debt to Capital	Internal Cash to Construct ion Expense
2014				·		
2015						
2016						
2017						
2018						
2019						
2020						
2021						
2022						
2023						Life is a constraint of the second
2024						
2025						
2026						
2027						
2028						
2029						
2030						
2031						
2032						
2033						

Table 53: Preferred Plan Economic Impact ** Highly Confidential **

7.2.3 PREFERRED PLAN ANNUAL GENERATION

Annual generation for the Preferred Plan is shown in Table 54 below. The annual generation for all plans is included in Appendix E.

2013 Annual Update

7.2.4 PREFERRED PLAN ANNUAL EMISSIONS

Annual emissions for the Preferred Plan are shown in Table 55 below. The annual generation for all plans is included in Appendix E.

7.2.5 PREFERRED PLAN DISCUSSION

The Preferred Plan was not the lowest cost plan from a Net Present Value of Revenue Requirement (NPVRR) perspective as a higher amount of DSM would reduce the NPVRR. KCP&L's Preferred Plan includes a modified RAP level of DSM for 2014, 2015 and 2016, followed by the RAP level starting in 2017. The modification was based on the measure list from the Potential Study but at a reduced level to reflect a lower level of DSM spending. The modified DSM plan is named MEEIA/RAP. This plan assumes that the same list of programs and the marketing plan from the potential study RAP level of DSM would be used, but the amount of capacity and energy savings would be reduced proportionately to reflect the reduced amount of savings that could be achieved with the lower level of spending. The DSM savings levels for this scenario are based on the cost per kWh from the RAP level of DSM in the Potential Study results.

KCP&L developed the MEEIA/RAP alternative to reduce the short-term rate impacts that would result from the full RAP DSM levels. Assuming KCP&L was approved for the same DSM cost recovery treatment as GMO was under its MEEIA settlement agreement, implementing the full RAP DSM plan in 2014 would increase retail rates by a projected 8.3% in 2016 (the first year new rates would be in effect under a 2013 KCP&L MEEIA filing). This increase does not reflect any other potential non-DSM related costs that would also go into effect in 2016. The MEEIA/RAP alternative reduces the rate impact to 6.3%.

2013 Annual Update

7.3 CRITICAL UNCERTAIN FACTORS

The integrated analysis performed for the 2013 Annual Update utilized the same critical uncertain factors as the Triennial filing. The critical uncertain factors are load, natural gas prices and CO_2 prices. Assumptions regarding the values and ranges of these inputs are covered in the relevant sections that discuss load, gas and CO_2 prices. Table 56 below represents the three Critical Uncertain Factors and the 27 endpoint scenarios that were developed from them.

Endpoint	Load Growth	Natural Gas	CO2	Endpoint Probability
	High	High	High	1,6%
2	High	High	Mid	3.1%
3	High	High	Low	1.6%
4	High	Mid	High	3.1%
5	High	Mid	Mid	6.3%
e e e e e e e e e e e e e e e e e e e	High	Mid	Low	3.1%
7	High	LOW	High	1.6%
8	High	Low	Mid	3.1%
9	High	Low	Low	1.6%
10	Mid	High	High	3.1%
11	Mid	High	Mid	6.3%
12	Mid	High	Low	3.1%
13	Mid	Mid	High	6.3%
14	Mid	Mid	Mid	12.5%
15	Mid	Mid	Low	6.3%
16	Mid	Low	High	3.1%
17	Mid	Low	Mid	6.3%
18	Mid	Low	Low	3.1%
19	Low	High	High	1.6%
20	Low	High	Mid	3.1%
21	Low	High	Low	1.6%
22	Low	ым	High	3.1%
23	Low	Mid	Mid	6.3%
24	Low	Mid	Low	3.1%
25	Low	Low	High	1.6%
26	Low	Low	Mid	3.1%
27	Low	Low	Low	1.6%

Table 56: Critical Uncertain Factor Tree

The company performed an analysis to address the impact of the critical uncertain factors on Preferred Plan selection. This analysis ranks how plans perform relative to

the representation of the twenty-seven endpoint tree. The results of the analysis are represented in the following tables.

2013 Annual Update

- HIGH LOAD GROWTH	
FOR – HIGH LOAD (
FACTOR	
INCERTAIN FACTOR	
RITICAL UNC	
1 CRITIC	
7.3	

202	anna Anna	20,023	20.029	20.045	20,058	20.084	20.089	20.038	20,100	20,120	20.173	20,192	20,199	20,319	20 321	26,327	20.349	20,388	20,395	20,464	20,484	20,635	20.693	20.856
LOW CO2	PL AN	21,570 FOBKA	FIGKA	PL762 FDHKA	21.777 FDFKA	21.805 FDDKA	21 819 F DHKB	FDEKA	21.835 GDBKA	21 849 GDHKA	21.857 GDHKB	21 866 CDBMA	21,907 ACBKA	21,937 AEBKA	21,958 AFBNA	FIBKA	22,006 XDFKA	22.119 ABBKA	22.123 FDHKW	22.130 DOBKA	22,158 FDHKE	AHBKA	22,492 AAAKA	22,530 BDFKA
MID CO2	1 BAR	21,570	21.724 FIGKA	21,762	21.777	21,805		21.822		21 849	<u> </u>			21,937	21,958	21,985 FIEKA				22,130	·,	22,325	22,492	
Ē	PVER FLAN	FRENA	23,666 FDBKA	23.727 FDHKA	23 734 FDFKA	23.736 FUHKB	23,757 FODKA	G COBRA	23,798 FDEKA	23.799 F.W.KA	23.821 GDHKA	23.824 CDBKA	23.629 GDHKB	22 866 ACBKA	23.881 AEBKA	13 AFBKA	23,910 F DHKW	23,972 F.DHKE	17 DDBKA	24,119 XDFKA	24.212 ABBKA	24.251 AH9KA	24,441 AAAKA	24 457 BDF KA
HIGH CO2	The second	A 23.497				-		KA 23,703		<u>.</u>	.			014(A 23.8)		XA 23.883		-	KA 23,997		-	 ,		
		FRKA	FDBKA	FIEKA	FUHKB	FUHKA	FDFKA	CDBKA	GDBKA	FDDKA	SAS FDENA	N FDHKW	O GDHKB	1 CO	AEBKA	ACEKA	AFEKA	FORME	DDBKA	ABBKA	XDFKA	A-BKA	BDFKA	AAAAA
LOW CO2	AP ARIO	19,428	19,433	19 442	19,448	19,454	19,454	19,481	19.527	19,554	19.557	19.584	19,588	19.054		19,680	19685	19.773	19,803	19.812		20.047	20.047	20.174
	NAMA PLAN	21.260 F.DHKA	21.267 FDFKA	21.269 F.DDKA	21.292 FDEKA	21,294 FDHKB	21,302 FDBKA	19 ACEKA	21.377 GDHKA	21.379 ODIACE	21.390 GDBKA	21,394 ABBKA	21,416 CDBKA	21 443 AF BKA	21.531 FDFAW	A BYA	17 FIGKA	21.567 F.DHKE	19 XDFKA	21.631 AAAKA	A DOBKA	21 853 FBKA	21.856 AHBKA	21,970 BDFKA
HIGHILOAD GROWTH co2 MID co2	1	<u> </u>		-	-			KB 21,309	<u></u>		<u> </u>					318 YX	KA 21,547		KA 21,619		KA 21,691		1	
C LOV	Acres PLAN	23,309 FDFKA	23,532 FDFKA	23.563 (FDBKA	23 577 FIGKA	23 582 F D D K A	23.598 FDEKA	605 FDIRG	23.620 GDFRA	Less COBKA	23.682 GDBKA	23,683 ACEKA	23,706 FDHKW	23.710 GDHKB	23.731 FDHKE	23.743 AE BKA	23,744 AFBKA	3.777 ABBKA	23.825 [DDBKA	23.922 JF IBKA	24.087 XDFKA	24,102 AHBKA	24.221 AAAKA	24,250 BOFKA
HIGH CO2	Nepont LAN NO	KSKA 2:	FDBKA 23	DHKA 2:	FDFKA 2:	DIMW 2	FDHKB 2	CDBKA 2	FDDKA 2.	DEKA 2	SDBKA 28	EKA 2:	ACBKA 2:	GDHKA 2	FDHKE 2:	SDHKB 2	AEBKA 2.	AFBKA 2	DOBKA 2.	ABBRA 2:	XDFKA 24	ALBKA 2	BDFKA 24	AAAKA 20
		<u> </u>							A. 1999	A.L.	SA:	D G	IM											
LOW CO2	4 NAVRA	18 745	18,766	18,769		18.779						18.919		. 18,358		·		19.041		1 19,230	19,322			19,749
	NA.14 SHUR	20.039 ACBKA	20.640 ABBKA	20,650 FDEKA	20,651 FDDKA	20.066 FDFKA	20 675 FDHKA	20.693 FDHKB	20 698 FDBKA	32 [GDFKB	20.774 GDHKA	20.783 AAAKA	20.812 FDHKW	20,813 CDBKA	20.845 AFBKA	20.879 GOBKA	20.898 FDHKE	20.947 AEBKA	20,875 JDDBKA	20,866 [XDFKA	21.142 FIGKA	21 266 AHEKA	21.286 BDFKA	21 349 FBKA
MID CO2	R.				1		*****			CA 20.762	-							-					-	
	1 Ente	23.074 FDFK	23,134 FDHKA	23.140 FDDKA	23 143 FDEKA	23,147 FDHKB	23.178 ACBKA	23.183 F.OHWM	23 186 FDBKA	23 193 ABBKA	23.226 CDBKA	23.247 GDHKA	23,301 GDHKB	23.317 F.D.IKC	23,363 GDBKA	23.373 AF BKA	23 398 AEBKA	23.416 FKKA	23.421 AAAKA	23.484 DDBKA	23.704 XDFKA	23.710 AFBKA	23.715 BDFKA	23,739 FIEKA
HIGH CO2	Endport Endo	DIRKW 23	_							2086A 23	-	ACBKA 23	GDHKA 23	GDBKA 23	-	AEBKA 23			xur		1	-		BDFKA 23
	Endpos	101	FDHKA	FDFKA	FIGKA	FDBKA	FDDKA	E DHKB	FDEKA	area a		H H		-	GDI		DDBKA	AFBKA	ABBKA	FBKA	AHEBKA	AAAKA	XDFKA	Ċ9

2013 Annual Update

7.3.2 CRITICAL UNCERTAIN FACTOR – LOW LOAD GROWTH

	22	27 10 400 1	18,327	19,328	19.353	19.367	19 393	19.400	19 404	19,409	19.427	19,493	161-61	19,508	19.623	9,625	19.626	19.656	19,702	19.712	19,766	19.800	19.941	20.015	20 166
	LOW CO2	Embord PLAN M	-	FIGKA 1	DiftA	FDFKA	FDDKA		!	-	O RA	<u> </u>	COBRA	 	AFBKA 1	AFBKA 1	-	.		<u>.</u>	<u>.</u>	.	-		
	:02	d unit	20.698 FDBKA	20.854 F	20,894	20.910 F	20.936 F	20.951 FDHKB	20.952 GDBKA	20,968 FDEKA	20.076	20,969 GDHKB	20,386	21 037 ACBKA	21.008 A	21.087 A	21115 FR9KA	21,138 XDFKA	21 250 ABEKA	21250 FDHKW	21 264 DDBKA	21 290 FDHKE	21.455 A	21,627 AAAKA	21 063 BDFKA
	MID CO2	Endport PLAN	FIGKA	FDBKA	FDIRA	FDFKA	FDHKB	FDDKA	ODBKA	22,647 FDEKA	FREKA	GDHKA	22,677 CDBKA I	GDHKB	22,715 ACBNA	AEBKA	22,731 AFBKA	22,757 FDHKW	22.825 FUNKE	22 843 DDBKA	22.958 X.DF KA	ABBKA	AHBKA	AAAKA	BDFKA
	HIGH CO2	100 - 25 NF - MER	22.345	22,514	22,575	22,585	22,585	22,607	22.612		22 648 FEKA	22,671	22.672	22,678	22,715	22 728 AEBKA	22 731	22,757	22.826	22,843	22.968	23.062	23,100	23,289 AAAKA	23 317 BDFKA
	HIG	Erden PLMN	f EXCA	FDBKA	FEKA	FDHKB	FDFRA	FDFKA	CDEKA	GDBKA	FDDKA	FDEKA	FORW .	COHKB	GUNKA	AEBKA	ACBKA	AFBKA	FOME	DEBKA	APBKA	XDFKA	AHBKA	BDFKA	AAAKA
		I										593	<i></i>												
	LOW CO2	NPVPRR	18.523	18,530	18,533	18,543	18 548	18,553	10,585	18.621	18,644	18,655	18 681	18,706	18 749	18,761	18.772	18,793	18,888	18,896	18 932	18,957	13121	19,138	19.273
x	FOW	Endowini PLAN	FUHKA	20.207 FDFKA	FDDKA	FDBKA	20.230 FDEKA	20.249 FDHKB	ACBKA	20.320 GDHKA	GOBKA	GDHKB	COBKA	20,369 ABBKA	AFBKA	FICKA	20 482 AE BKA	FDHKW	0.517 FDIME	20,558 XDFKA	DOBKA	20.634 AAAKA	FERA	20.816 AHBKA	20.917 BDFKA
32010	MID CO2	APV-PR	20,203	20,207	20.212	20,226	20,230	20.249	20 255	20,320	20,320	20,327	20,338	20,369	20,390	20,475 FIGKA	20 482	20,485	20.517	20,558	20,563	20.6.14	20792	20.816	20.917
LOW LOAD GROWTH	dim	Endpoint	FONKA	22 232 FDBKA	FDFKA	FIGKA	FODKA	FDEKA	F DHKB	22.324 GDHKA	CDBKA	GUBKA	ACEKA	FDHKW	GUHKB	22 434 AEBKA	22 444 PDHKE	22 445 AFBKA	22,479 ABBKA	22 525 DDBKA	22,626 P.EKA	22.792 XDFKA	ABKA	22 925 AAAKA	22 958 BDFKA
L OW	HIGH CO2	NPWPH	22,097	22 232	22,266	22,281	22 265	22,300	22,306	22,324	22.340	22,380	22,382	22,408	22,413	22 434	22,444	22,445	22,479	22.525	22,626	22 792	22,803	22,925	22.958
	HIGH	Civipolity PLAN	FROKA	FDBKA	FDHKA	FDFKA	FDIXW	FDHKB	COBKA	FDDKA	FDEKA	FIBKA	GOEKA	ACBKA	COLIKA	FDHKE	AEBKA	GDHKB	AF BKA	DDBKA	ABENA	XDFKA	AHEKA	BDFKA	AAAKA
												2Ai	90	IW											
		NPVRIA	17.635	17,648	17.649	17,655	17.655	17,666	17,685	17.722	11,779	17,780	17 828	17 832	17,850	17,863	12,817	17.914	17, 332	18,058	18,093	18 163	18,300	18,340	18 566
	LOW CO2	Endpount	ACBKA	19,369 FDDKA	FDEKA	19.383 FDFKA	19 396 F DHAA	FDHKB	ABBHA	19 442 [FDBKA	19 498 GDHKA	19.508 GDHKB	19513 CDBKA	19 544 F DHKW	19,559 GDBKA	AF BILA	ANAKA	AEBKA	FDHKE	19,717 DDBKA	XDFKA	FIGKA	AHBIKA	BDFKA	FBKA
	C02	20 Endo	19,307 ACBNA	19,369	19.360	19.383	965 61	19.410 FDHKB	19,417 AGBILA	19 442	19,498	19.508	13 513	19.544	19,559	19,562 AF BKA	19 603 AAAKA	19.620 AEBKA	19 653 FDHKE	19,717	19/61	19.866 FIGKA	19.906 AHBKA	20.017 BDFKA	20.054 FBKA
	MID CO2	Endpoint PLAN	FDHKA	FOFKA	FDDAA	FDEKA	FDHKB	ACBKA	FDBKA	FDHKW	CDBKA	GDHKA	ABEKA	GOHKB	FDHKE	GDBKA	AFBKA	AEBKA	FOKA	DDBKA	AAAKA	XDFKA	AFERA	BDFKA	FIBKA
	C02	ev RRM	21 614 FDHKA	21.667 FDFKA	21.668 FDD%A	21675 FDEKA	21 676 FDHKB	21.712	21 717 FDBKA	21.722 FDHKW	21.723 COBKA	21,765 GDFBCA	21,779 ASBKA	21833 GDHKB	21.844 FDHKE	21,898 GDBKA	21,901 AFBKA	21927 AEBKA	21.945 FECKA	21.958 [DDBKA	22,007	22.232 XDFKA	22,248	22.257 BDFKA	22 276 FIBKA
	HIGH CO2	Notest Notes	WXHO.	FDHKA	FIGKA	FDFKA	DBKA	FDDKA	FDHKB	DEKA	CDBKA	FDHKE	CBKA	GDHKA	SDBKA	GDHKB	VEBKA	DDBKA	AFBKA	ABBKA	FIBKA	AHEKA	XDFKA	AAAKA	BDFKA
						•*•	<u></u>	saka ĝ	Refer 1	**** (100.03	10.10	ол ЭIН				<u>ر س</u>		<u></u>		્ય		<u>s</u> 1	122

2013 Annual Update

S	1
В	
AS PRICES	
с С	
N N	
Ļ	
RA	
IU	
'₹	
Ξ	
E HG	
- HIGH NATI	
TOR -	
V FACTOR	
AC	
エフ	
A	
RT	
NCERTAIN	
Ž	
SAL	
20	
RITI	
S	
က	
7.3	

02	21 Purk	17,635	17,648	17.649	17,855	12 665	17,666	17 695	17.722	17.779	17, 780	17,828	17,832	17,850	17,863	17.877	17.914	17,932	18,058	18 099	18 163	18,300	18.340	18,553
LOW CO2	E.	-	PDDKA	9 300 FDEKA	FDFKA	FUHKA	FDHKB	19.417 ABBKA	9,442 FDBKA	COHICO	19,508 GDHKB	9.513 CDBKA	19,544 FDHKW	9.559 GDBKA	AFBKA	AAAKA	AEBKA	D-WE	19,717 DDBKA	19,751 XDFKA	FIGKA	ANGIA	BDFKA	FBKA
MID CO2	NEARR PLAN	19.367 ACBKA	19.369 FDDKA	19,300	19.363 FDFKA	19 193 FUNKA	19,410 FDHKB	115.91	19,442	19,498	19,508	19,513	19,544	19.559	19,582 AFBKA	19.603 AAAKA	19.620 AEBKA	19.653	19,717	10.01	19,866 FIGKA	10,365	20.017 BDFKA	20054 FIBKA
μ	St Moon		21.667 (FDFKA	21.668 PDDKA	21 675 FDEKA	21 676 FDHKB	21.712 ACBKA	21,717 FOBKA	21.722 FDHKW	21.723 CDBKA	21,765 [GDHKA	21, 779 ABBKA	3 GOHKB	4 FUIRE	21 898 GDBKA	1 AFBRA	21.927 ALBKA	5 FREA	9 (DDBKA	2.007 ANANA	22.232 XDFKA	22,248 AHBKA	22.257 BDFKA	22.276 SHA
HIGH CO2	ant Merved	W 21,614	ļ			-	-						KA 21 833	4A 21,844		A 21,901		A 21,945	CA 21,959				-	
		FDRAW	FDHKA	FICHA	FDFKA	FDBKA	FDDKA	FONKE	FDEKA	CDBKA	AC FUERC		0V GDHKA	NHOC 1	GDHKB	AEBKA	DOBKA	AFBKA	ABBKA	FIBKA	ALBKA	XDFKA	AAAVA	BUFWA
S LOW CO2	12 14 12 12 12 12	18,176	18, 197	18:197	18.205	18,206	18,213	18.214	16,278	18,325	18,329	18.364	13 382	18,383	18,406	116.411	18,464	18,464	18,612	18.661	18.733	18.850	18,835	10,1:8
Lov Lov		0 ACBKA	19.990 (FDEKA	20 001 JEDDKA	20,003 FDFKA	0.019 FDIMA	20.028 ABBKA	20 044 SEPARE	20.053 FDBKA	20.123 (GDHKB	20.125 GDHKA	20.131 FDHKW	20.163 CDBKA	20.171 AAAKA	20, 189 GDBKA	20.226 AFBKA	20.244 AEBKA	20.288 F.DP#KE	20,343 [DDBKA	20,347 (XDFKA	20.490 FIGKA	PU.613 AHBKA	20,636 BDFKA	20.659 F BKA
HIGH IVA TURAL GAS PRICES 16H CO2 MID CO2 LO	ent 11	CA 19 500			warm		-		.			ļ					+		-		-			
- NATURA	NO PLAN	2.329 FDHKA	22.386 FDFKA	22 391 FDDKA	22 393 FDEKA	22,397 FDHACB	22.430 ACBKA	22,435 FDBKA	22,439 (FDHKW	22.445 ABBKA	22,480 CDBKA	22,498 GDF86A	22.552 GDHKB	22,566 F DHKE	22 615 CDBKA	22 623 AF BKA	22.648 AEBKA	22.666 FTGKA	22,674 008KA	22 7 31 AAAAA	22,953 XDFKA	22 967 ANDWA	22,967 BDFKA	23 302 F.B.KA
HIGH CO2	Morth No.	DHKW 2	DHKA 22	iloka 22	EDFKA 22	DBKA 22	FDDKA 23	FDHKB 22	FUEKA 22	CDEKA 22	FDHKE 22	CEKA 23	SDHWA 23	OBKA 2	GDHKB 23	EBKA 21	JOBKA 23	FBKA 23	ABBKA 23	IBKA 22	VHBKA 23	DFKA 22	AANA 2:	DFKA Z
E	à à	4	Line of the second s			and a	đ.				. 325	רכ ס		123	Ø	R	0		a a	14.			đ.	
LOW CO2	APART A	18 745	18,766	18,769	18,771	18,779	18,782	18,788	18,859	18,899	18,907	18.019	18,822	18.958	13 986	18,628	19,027	19.041	19,192	19,230	19,322	19,435	19,483	61/61
	PLAN	20,639 ACBKA	20.640 ABBKA	20,650 FDFKA	20.651 [FDDKA	20.668 F.DFKA	20.675 F.DHKA	20,603 FDHKB	20.698 FDBKA	20.762 GDHMB	20.774 GDHKA	20,783 AAAKA	20.812 FDHKW	20,813 CDBKA	20,845 AFBKA	20.879 GDBKA	20.898 FDHKE	20.947 AEBKA	20,975 DDBKA	20,996 XDFKA	21.142 FIGKA	21.266 AV-94A	21.286 BDFKA	21 349 HBKA
MID CO2	Ŧ.			1				1	a a a a a a			-				10-							نتبسا	
		23.074 FDFKA	23,134 FDHKA	23 140 FDDKA	23 143 FDEKA	23.147 (FD) KB	23 178 ACBKA	23,183 FDHKY	23.1 36 FDBKA	23, 193 ABBKA	23,226 (CDBKA	23.247 GDHKA	23.301 GDHKB	23.317 FDHKE	23.363 GDBKA	23.373 AFBKA	23,398 AEBKA	23.416 F K5KA	23,421 AAAKA	23,484 [DDBKA	23 704 XDFKA	23.710 M-BKA	23 715 BDFKA	23,739 FBKA
HIGH CO2	N NPARR		1					-		CDBKA 23		_	GDHKA 23	SDBKA 23	GDHKB 23	-	DDBKA 🛛 23		-					
	A No.	FDHKW	FDHKA	FOFKA	FIGKA	FDBKM	FDDKA	FOHKB	FDEKA		AO FDFACE	ACBNA 1 L	Ulardiv	10.00	GD	AEBKA	DDI	AFBKA	ABBKA	FIBKA	AHBKA	AAAKA	XDFKA	PDFKA

2013 Annual Update
AS PRICES
രി
NATURAL (
LOW N/
FACTOR -
UNCERTAIN
CRITICAL
7.3.4

	02	2	1000	19.327	19.328	19,353	19.367	19 393	19 400	19 404	19,409	19 427	19,493	19,499	19,508	19 623	19 625	19.626	19,656	19,702	19.712	19.768	19,800	19.941	20.015	20.166
	LOW CO2	- Indone	PLAN N	F OBKA	FIGKA	\vdash		.	FDHKB	GDBKA	FDEKA	GDHKA	-	COBKA		-	-	Ļ	.	L.,	21,250 FDHKW	DBKA	FDHKE	ALENA	<u> </u>	-
	MID CO2	2	NOVRA	20.636	20.854	20,894 FDHKA	20.910 FDFKA	20 936 FDDKA	20.951 FDHKB	20,952	20.968	20,978	20,999 GDHKB	20.936	21,037	21 068 AEBKA	21.087 AFBKA	21 115 FEHA	21.138 XDFKA	21250 ABBKA	21,250	21,264	21,290	21,455	21.627 AAAKA	21 663 BDFKA
		noothe a C	WARE PLAN	22.345 FIGKA	22.514 FDBKA	22.575 F.DHKA	22,585 FDFKA	22,565 FDHKB	22.607 FDDKA	P ODBKA	7 FDEKA	2.648 FBKA	22 671 GDHKA	22.672 C.OBKA	22,678 GDHKB	22.715 ACBKA	22.728 AEBKA	22.731 AFBKA	22.757 FDHKW	2.825 FOHKE	22.843 [DDBKA	22.968 XDFKA	23 062 ABBKA	13 100 AHBKA	23.289 AAAKA	23.317 BDFKA
	HIGH CO2		SAPANA .		<u> </u>				-	A 22,012	A 22,647			ļ	ļ			 				Ļ	<u> </u>		<u> </u>	
	Ŧ	Colory	HW I I	FROM	FDBKA	FBKA	[FDHKB	F CHRCA	FDFKA	CDBKA	GDBKA	FODK	POEXA CEXA		S GDHKB	100 I	AEBKA	ACBKA	AFBKA	FONKE	DEBKA	ABBAA	XDFKA	ANBIKA	BDFKA	AAAKA
	C 02	10	MPV9R	19,669	19,672	19.693	19,706	19,732	19,738	19,745	19,747	19.766	19,828	19,840	19,847	19,045	19,967	026 61	19,996	20,038	20,046	20,110	20,135	20,281	20.347	20 504
SEC	LOW CO2	Endoord	WARE PLAN	21,126 FOBKA	21,281 FIGKA	P1.320 P.DHKA	21.335 FDFKA	21,362 FDDKA	21.377 FDHKB	21,379 (CDBKA	21.393 FDEKA	21,404 [COHKA	21,415 GDHKB	21,424 CDBKA	21,464 ACBKA	11,494 AEBKA	21.515 AFBKA	21.543 FRKA	21,564 XDFKA	21.676 ABBKA	21.679 F.DHKW	DDBKA	21,716 FDMKE	21.883 AV66KA	22.052 AAAKA	22 009 BDFWA
LOW NATURAL GAS PRICES	MID COZ	16 A.	Manan	21,126				-				21,404				1	_					21 689	-		22.052	
	Σ	to Endoor	NA PLANA	22.910 FICKA	23 078 FDBKA	3,130 F.DHAA	23 148 F DFKA	23 148 FDMKB	23.170 FDDKA	23 176 GDBKA	23 210 FDEKA	23.211 FERKA	A GDHKA	23,237 COBKA	23.242 GDHKB	23.278 ACBKA	23 293 AEBKA	23 295 AFBEA	23.322 FDHKW	WEDHKE	23.409 DDBKA	23,531 XDFKA	23,624 ABBKA	(3.663 AHBKA	23.855 AAAKA	23.880 BDFKA
N WO		10									anna		(A 23.234			,			_	E 23,388			*****			
		Erapo		FEXA	FDBKA	EBK4	FDHKA	FOHG	FDFKA	COBKA	GDBKA	PODKA	DAI FDEKA		MI GDHKB	CDHKA	AEBKA	ACBKA	AFBKA	FONKE	DDBKA	ABBKA	XDFKA	ANGHA	BDFKA	AAMKA
Ę		Ċ,		20.023	20.029	20.045	20.058	20.084	20.089	20.098	20.100	20,120	20,179	20.192	20,199	20,319	20,321	20.327	20,349	20,388	20,395	20,464	20,484	20 635	20.693	20,856
	P.S.	CINCON	North Allen	21,570 FDBKA	21,724 FIGKA	21 762 FUNKA	21 777 FDFKA	21.805 FDDKA	21.819 FDHKB	21 822 FDEKA		GDHKA	GDHKB	21866 CDBKA	21.907 ACBKA	21.937 AEBKA	21 958 AFBKA	21 985 FIBKA	22 006 XDFKA	22,119 ABBKA	22.123 FDHKW	22,130 (DOBKA	22,158 F.DHKE	AHBKA	22.492 AAAKA	22 530 BDFKA
Min Cor			MP-MP-IN			-				甘		21.840	1 21,857			-										
	M	/ Endbou	1.1.1	23.497 FIGKA	23.666 FDBKA	23,727 FDHKA	23.734 FDFKA	23,736 FDHKB	23,757 FDDKA	ES COBICA	23 798 FDEKA	23 799 F EXA	23.821 GDHKA	23 824 COBKA	23.829 GDHKB	23.666 ACBKA	23.881 AEBKA	81 AFBKA	23,910 FDHKW	23.972 FDHKE	23,997 DDBKA	24 119 XDFKA		51 AHBKA	24,441 AAAKA	24 467 BOFKA
нісн соз		i i i i i i i i i i i i i i i i i i i	ALLA BU	-		_					-	_	4					A 23.683	-		_		4	4 24.251		
	-	E PODO		FICKA	FDBKA		FOHKB	FDFKA	FDFKA	CDBKA	GDBKA	1072 A.B.		101000	BAR DEKB	2004	AEBKA	ACGKA	AFBKA	FDIME	DDBKA	ABBKA	XDFKA	ARKA	BDFKA	AAAKA

2013 Annual Update

S
HIGH CO
NIN FACTOR
UNCERTAIN
CRITICAL I
7.3.5

	15	22	22.345	22,514	22 575	22,585	22,585	22,607	22,612	22,647	22,648	22,671	22,672	22,678	22.715	22 728	22 731	22,757	22,625	22,843	22,068	23.062	3,100	23,269	23.317
	LOW GAS	*		FDBKA 2	FIBKA 2		FDHKA 2		CDBKA 2							.	 	-	ļ		-	-	M-BKA	†	-
	s	NPVRH PLAN	22,037 FIGKA	22 232 FD	22.266 FIE	22 281 FDHKB	22,285 FD	22 300 FDFKA	22.306 CE	22.324 GDBKA	22,340 F D D KA	22,380 FDEKA	22,382 FDHKV	22,408 GDHKB	22,413 GDHKA	22,434 AEBKA	22 444 ACBKA	22 445 AFBKA	22.479 FDHKE	22.525 DDBKA	22.626 ABBKA	22,732 XDFKA	22,803 444	22 925 BDFKA	22 355 AAAKA
	MID GAS	##	-	FDBKA 2	FDHKA 2		FDHOW 2		COBKA 2	FDDKA 2:	FOEKA 2		GOBKA 2		COHKA 2	-	ļ	ļ	A'BKA 2		ABBKA 2		AHBKA 2		
	S	APVER PLAN	21614 FRICA	21.667 FDI	21 668 FDI	21.675 FDFKA	21.676 FD	21,712 FDHKB	21.717 00	21,722 FDI	21723 / D	21,785 FIBKA	21 779 60	21,833 ACBKA	21.844 (GD	21,836 FDHKE	21 901 AF DICA	21,927 GDHKB	21 945 M	21 959 DDBKA	22 007 AB	22 232 XDFKA	22 248 AH	22 257 BDFKA	22 276 AM
	HIGH GAS	Mont I	PDRAW 21	FDHKA 21	CIGKA 21	FDFKA 21	DOKA 21	FDDKA 21	DINE 21	FDEKA 21	OBKA 21	FDHKE 21	EKA 21	-	COBKA 2	GDHKB 21	VERA 2	DEKA 2	VEXA 2		BKA 22	AHBKA 23	XOFKA 23	AAAKA 2.	BDFKA 2
		42	04	02	FIG	FD	0	9	Q	<u>e</u>	4	IAC [0]	1		Contraction of the	09		6		MBM		AH	19	A.	
	3AS	15 15.02	22,310	23,078	23,139	23,148	23,148	23,170	23.176	23.240	13.241	23,234	23.237	23.242	23,278	23 203	23,295	23.322	23,388	23,409	23,531	23,624	23,663	23,855	23,880
ŝ	LOW GAS	Internal AN	IGKA	DBKA	BKA	DHKA	FDHKB	DFKA	CUBKA	DBKA	DOKA	DEKA	DHKW	SDHKB	SDHKA	VEBKA	CENA	AFBRA	DHKE	DDBKA	ABBKA	OFKA	VIEWA	BEKA	WWA
HIGH CO, CREDIT PRICES	iAS	ALLA SULT	22.735 FUGKA	22 869 FDBKA	22.902 F BKA	22,916 FDHKA	22.921	22,936 FUFKA	22.944 (22,859 GDBKA	22.975 FDDKA	23.018 FDEKA	23.019 FDHKW	23,044 [GDHKB	23.049 GDHKA	23.069 AEBKA	23.081 ACBKA	23.081	23,116 FDHKE	23.163 L	23,261 4	23 427 XDFKA	23.440 AVBKA	23,560 BDFKA	23 591 AAAKA
[©] CRED	MID GAS	NAL-DIEL	CKA	FDBKA	FDMA	DFKA	[WWHO]	DHKB	DBKA	DOKA	DEKA	IBKA	GDBKA	ICBKA	DHHA	DHKE	SMIKE	EBKA	FBKA	DBKA	VEBAA	(DFKA	WBKA	DFKA	AAKA
GH 00	GAS	WARE PLAN	22.329 F KOKA	22,386 F	22,391 [F	22,303 FDFKA	22 397 6	22 430 FDHKB	22,435 COBKA	22,439 FDDKA	22,445 FDEKA	22.480 FIBKA	22 400 (C	22.552 ACBKA	22,566 (GDH40A	22,615 FDHKE	22.623 CDHKB	22,648 AEBKA	22,656 AF BKA	22,674 DDBKA	22,731 AGBKA	22,953 XDFKA	22 967 ALBKA	22 967 BDFKA	256.22
H4	HIGH GAS	ndprint Left	DRKW	F DIRCA	IGNA	EDFKA	DBKA	FDDKA	DHKB	FDEKA	DBKA	FD+KE	KCBKA	3DHKA	DBKA	GDHKB	VERKA	DBKA	V BKA	ABBICA	BKA	WERKA	OFKA	<u>adaka</u>	REFKA
						1.100001		899569				IAC	01 (께	1							19523		<u></u>	Lacator
	LOW GAS	NOVAR!	23,497	23,666	23 727	23.734	23,736	23 757	23.763	23,798	23 794	23,821	23,824	23,829	23,866	23,881	23 893	23,910	23.972	23,997	24,119	24,212	24.251	24,441	24 467
	LOW	Entrous PLAN	FECKA	23,532 FDBKA	FERA	23,577 FOHKB	23.582 FDHKA	23.508 FDFKA	23.605 COBKA	23.620 GDBKA	23 635 F D D KA	23.682 FDEKA	23.683 F.DHRW	23.706 GDHKB	23.710 COHKA	23.731 AEBKA	23 743 ACBKA	23,744 AFBKA	23,777 FOHKE	23.825 DDBKA	23.922 ABBKA	24.087 XDFKA	24-102 ALEKA	24.221 BDFKA	24.250 AAAkA
	MID GAS	NP159 1 STOR	23,359 (F K2%)	23,532	23,563 FEKA	23,577	23.582	23.598	23,605	23,620	23635	23,682	23 683	23.706	23,710	23,731	23.743	23 744	23,777	23,825	23.922	24,087	24 102	24.221	24,250
	MID	Enderant	FRA	23,134 FOBKA	23 140 FDHKA	23.143 FDFKA	23.147 FDHMW	23 178 FDHKB	CUBKA	23,186 FDDKA	23.193 F DEKA	23,226 GDBKA	FREA	23.301 ACBKA	23.317 GDHKA	23,363 FDHKE	23.373 (COHKB	23.398 AEBKA	23.416 AFBKA	23.421 DDBKA	23 484 ABBKA	23.704 XDFKA	23 710 AHBKA	23.715 BDFKA	23,739 AAAKA
	GAS	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	23.074 FREKA	23,134	23.140	23,143	23.147	23 178	281 82	23,186	23,193	23,226	23,247 FIBKA	23,301	23.317	23,363	23.373	23,398	23.416	23,421	23,484	23 704	23.710	23715	23,739
	HIGH GAS	Endrom PLAN N	F DHRAVE	FDHKA	FDFKA	FIGKA	FDBKA	FDDKA	FDHKB	FDEKA	DBHA	DHKE	ACBKA	GDHKA	GDBKA	CDHKB	ALBKA	DDBKA	A BKA	ABBKA	FIBKA	AHBKA	AAAKA	DFKA	BOFKA
						14		<u></u>			84,089	۷O		A MILLING				11-2				44			

2013 Annual Update

7.3.6 CRITICAL UNCERTAIN FACTOR - LOW CO	õ
6 CRITICAL UNCERTAIN FACTOR – I	N O
6 CRITICAL UNCERTAIN	
6 CRITICAL UNCERTAIN	SR N
6 CRITICAL UNCERTAIN	ACT
6 CRITIC/	NIN F
6 CRITIC/	ERT/
6 CRITIC/	INCE
7.3.6 CRITIC.	ALL
7.3.6 CF	RITIC
7.3.6	Ч С
	7.3.6

	GAS	27 27 27	19.327	19,328	19,353	19,367	19.393	19.400	19,404	19.409	19.427	19,493	19,499	19,508	19.623	19.625	19.626	19,656	19,702	19.712	19,768	19,800	19.941	20.015	20 106
	LOW GAS	Call Athonic	18,523 F.DBKA	FIGKA	FDHKA	18,543 FDFKA	18,548 FDDKA	18.553 FDHKB	CDBKA	18.621 FDEKA	ODIRA	GDHKB	CDBKA	18.706 ACBKA	8.749 ACBKA	18.761 AFBKA	F BKA	18.793 XDFKA	ABBRA	18,896 [FDHKW	DDBKA	18 957 FDHKE	ANGKA	19,138 AAAKA	19.273 BDFKA
	MID GAS	L 24	ļ	18,530 FIGKA	18.539	18,543	18,548	18 553	18 585	18.621	18,644	18,655	18.681	18,706	18.749	18.761	18.772	j	18.888	18,896	18,932	18 957	13 121	19 138	19.273
	M	21 Entern	17.635 F DHKA	17.648 FDFKA	17,649 FDDKA	17.655 FDBKA	17 655 FDEKA	17 666 FDHKB	17 GES ACBKA	17.722 (GDHKA	17.779 GDBKA	17,780 GDHKB	17.828 CDBKA	17 832 ABBKA	17 850 AFBKA	17.863 FICKA	17.877 AEBKA	17.914 FDHAW	17,932 FOHKE	18.058 XDFKA	(8.090 DDBKA	18 163 AAAKA	13,300 FIBKA	18.340 AHBKA	13 588 BDFKA
	HIGH GAS	1 APAR	Į	 	[_			<u> </u>			ļ	18,09	18,16	18,30	ļ	13,58
	UHH		ACEKA	FDDKA	FDEKA	FDFKA	FDHKA	FDHKB	ABBKA	FDBKA	COHAR	GDHKB	COBKA	Brital	GDBKA	AFBKA	ANAKA	AEBKA	FUNKE	DDBKA	XDFKA	FIGKA	AHBKA	BDFKA	FIBKA
	<u> </u>	<u> </u>										IAC) /	NO	1										
	LOW GAS	an Hayay	19:000	19,672	19 603	19.706	19 / 32	19.738	19,245	19.747	19.766	19.828	19.640	19.847	19,965	19.967	026.01	19 996	20.038	20,046	20,110	20.135	20.281	20.347	20504
loes	Low	IN E MARCHINE	FURKA	18.972 FIGKA	18:981 (FDHKA	18.988 FDFKA	18.989 FDDKA	18,993 FDHKB	GOBKA	19,064 FDEKA	GDHKA	19,093 GDHKB	19,127 CDBKA	19.135 ACBICA	19.191 AEBKA	19.215 AFBKA	19.216 FRKA	19.224 XDFKA	ABBKA	19,339 FDHKW	DDBKA	19.377 FDHKE	19 576 AHBKA	19.583 AAAKA	19 712 BOFKA
LOW CO, CREDIT PRICES	MID GAS	MEN AN	18,0%6	18 972		18,988	18,989	-	60061		19091	_		19,135	19,191	19.215	19,246		19,319	19,339	EVE.01		19,576	-	
O, CR	V	PLEN PLAN	13 176 FDHXA	13, 197 F.DFKA	18, 197 FUDKA	18,205 FDEKA	18 206 FDBMA	18.213 FDHKB	B 214 ACBKA	18.278 GDHKA	18,325 GDBKA	18,329 GOHKB	4 COBKA	18.382 ABBKA	18 383 AFBKA	18.406 FIGKA	19 411 AEBKA	18,464 FDHKW	18 464 FEMILE	18.612 XDFKA	18.651 AAAKA	18.733 DDBKA	IS 856 FEMA	18.665 AVBKA	19 158 EDFKA
LOW C	HIGH GAS	in the second	 										18,364						+			18.73	18.85		3815
	HIG	PLAN	ACREA	FDEKA	FOOKA	FDFKA	F DHKA	ABBKA	E CHKB	FUBKA	COHES 0	GDHKA	FUNKW	VI CDBKA	AAAKA	GDBKA	AFBKA	AFBKA	FDIGE	DDBKA	XDFKA	FICKA	AHERA	BDFKA	FEKA
			-017/25						STATE OF	Escas							Si kate	-			NAM		Corelia V		
	LOW GAS	1 Novre	20.023	20.029	SN042	20.058	20.084	20,089	20,038	20.1	80	20,1	203	20,199	20.319	20.321	20.327	20,349	20,388	20.3	20,464	20,484	20.635	20.693	20.856
	FO!	DATER PLAN	19,428 FDBKA	19.433 FIGKA	19.442 FDF%CA	19.448 FDFKA	19.454 FDDKA	19.454 FDHKB	19,481 FOEKA	19.527 GDBKA	19.554 GDHKA	19.557 GDHKB	19.584 CDBKA	19.588 ACBKA	19,654 AEBKA	19.675 AFBKA	19,680 F 19KA	19.685 XDFKA	19,773 ABBKA	19.803 FDHKW	19.812 DDBKA	19.842 FDHKE	AHERA	20.047 AAAVA	20,174 BDFKA
	MID GAS	N NEVRE	-	4								-			19.654	_		19.68			19.81		20,047		
	Z	3 Entroit	18.745 F.DF&A	18.766 FDFKA	18.769 FDDKA	18.771 FDEKA	9 FDHKB	2 FDBKA	18 788 ACBKA	18.859 GDHKA	9 GOHKB	18.907 GDBKA	18.919 ABBKA	18.922 CDBKA	18.958 AFBKA	18,986 FDHKW	S AEBKA	19.027 FIGKA	19 041 FDHKE	2 XUFKA	19.230 AAAKA	19,322 DDBKA	19 435 FIBKA	19 463 AHBKA	19.749 BDFKA
	HIGH GAS	NEWR	18.74	18,76	18,70	18,77	18.779	18,782	18.78	18,85	18,899	18,90	13.91	18.92.	18.95	18,98	16,986	19.02	19.04	19,192	19.2.3	19,32,	19.43.	19.46	19.74
	HIG	Eraban	ACBKA	ABBKA	FDERG	FDDKA	FDFKA	FDHKA	FDHKB	FDBKA	C. States		AAAKA	NAMORE IN	10000200	AFBKA	GDBKA	FDHKE	AFBKA	DDBKA	XDFKA	FIGKA	ANDKA	BDFKA	FBKA
											ď	40	ΙH	911	1										

2013 Annual Update

7.3.7 CRITICAL UNCERTAIN FACTORS - SUMMARY AND EVALUATION

This summary table, Table , provides the expected value for NPVRR across the twenty-seven endpoint tree by plan and the value for NPVRR for the mid-load, mid-gas and mid-CO₂ scenario, Endpoint 14.

10010 011					
Expected Value			Endpoint	14	
PLAN	NPVRR	Delta	PLAN	NEVRR	Deita
FDHKA	20,797	-	FDHKA	20,721	-
FDBKA	20,799	2	FDBKA	20,727	7
FDFKA	20,806	9	FDFKA	20,729	8
FDDKA	20,832	35	FIGKA	20,748	28
FDHKB	20,833	36	FDDKA	20,755	34
FDEKA	20,843	45	FDEKA	20,764	44
FIGKA	20,844	47	FDHKB	20,771	50
АСВКА	20,907	109	GDHKA	20,838	117
CDBKA	20,908	110	CDBKA	20,840	120
GDHKA	20,918	120	GDBKA	20,847	127
GDBKA	20,923	125	ACBKA	20,855	135
FDHKW	20,945	147	FDHKW	20,881	160
GDHKB	20,958	160	GDHKB	20,904	184
AEBKA	21,033	236	FDHKE	20,995	274
AFBKA	21,039	242	AEBKA	20,996	275
FDHKE	21,063	266	AFBKA	21,006	285
ABBKA	21,071	274	ABBKA	21,031	310
DDBKA	21,144	347	DDBKA	21,079	358
FIBKA	21,175	378	FIBKA	21,087	366
XDFKA	21,239	Company and a second second	XDFKA	21,152	431
AAAKA	21,356	559	AHBKA	21,312	591
АНВКА	21,383	585	AAAKA	21,324	604
BDFKA	21,503	706	BDFKA	21,432	711

 Table 57: Alternative Resource Plan NPVRRs

Table 58 below provides the Alternative Resource Plan that had the lowest NPVRR for each endpoint scenario.

			Conditional
EP	Pian	NPVRR \$MM	Probability
1	FDHKW	23,074	2%
2	FDFKA	20,639	3%
3	ACBKA	18,745	2%
4	FIGKA	23,399	3%
5	FDHKA	21,260	6%
6	FDHKA	19,428	3%
7	FIGKA	23,497	2%
8	FIGKA	21,570	3%
9	FDBKA	20,023	2%
10	FDHKW	22,329	3%
11	FDHKA	19,990	6%
12	ACBKA	18,176	3%
13	FIGKA	22,735	6%
14	FDHKA	20,721	13%
15	FDHKA	18,966	6%
16	FIGKA	22,910	3%
17	FIGKA	21,126	6%
18	FDBKA	19,669	3%
19	FDHKW	21,614	2%
20	FDHKA	19,367	3%
21	ACBKA	17,635	2%
22	FIGKA	22,097	3%
23	FDHKA	20,203	6%
24	FDHKA	18,523	3%
25	FIGKA	\$22,345	2%
26	FIGKA	\$20,698	3%
27	FDBKA	\$19,327	2%

Table 58: Endpoint/Lowest NPVRR Alternative Resource Plan

The sum of the conditional probabilities and the count of the number of times an Alternative Resource Plan is the low cost scenario endpoint is shown below:

	onditional	
		Count .
ACBKA	<u>6%</u> 6%	3
FDFKA	3%	3
FDHKA	47%	8
FDHKW	6%	3
FIGKA	31%	9
Total	100%	27

Table 59: Conditional Probabilities of Lowest NPVRR Plans

7.3.8 ADDITIONAL UNCERTAIN FACTOR

The primary other uncertain factor that could materially impact the Preferred Plan is changes to the assumptions surrounding proposed and projected environmental regulations. The Preferred Plan calls for Montrose 1 to be retired in 2016. This is primarily driven by the need to add environmental retrofits by early 2016 for MATS compliance and the projected need to add additional NO_x controls by 2019 to meet potential Ozone NAAQS requirements. Based on current assumptions regarding compliance requirements and costs, it would not be economic to invest in MATS required controls for a 2016 compliance start date to then retire the unit in 2019 due to the need to add additional NO_x controls.

While the MATS rules are final, there are several outstanding court challenges that have the potential to delay the 2016 compliance date. If the compliance date were to be delayed, the Montrose 1 retirement would likely be delayed as well. This could push the retirement date to 2019 when the additional NOx controls (for future Ozone NAAQS compliance) may be needed.

The Preferred Plan currently indicates that Montrose Units 2 and 3 would be retired in 2021. Like Montrose Unit 1, this retirement date could be delayed depending on future environmental regulations. KCP&L's current assumption is that proposed coal combustion residual rules will require the wet ash handling systems at Montrose to be converted to a dry handling system by 2021. Based on the current assumptions regarding compliance requirements, costs, and the assumption that a scrubber, bag

house, and SCR would be needed by 2023 for Ozone NAAQS and Particulate Matter NAAQS compliance, it would not be economic to convert these systems by 2021 and the Units would be retired. Given that the rules concerning coal combustion residuals are not final, this could change the 2021 retirement date. If the projected coal combustion residual rules compliance date was delayed, this could shift the retirement date to 2023 when additional environmental controls may be needed.

7.4 BETTER INFORMATION

The Company calculated the value of better information for each of the critical uncertain factors. For each uncertainty, the preferred plan NPVRR for the specific uncertainty scenarios (or endpoints) was compared to the better plan under each extreme uncertainty condition. The comparison was made on an expected value basis assuming that only those three particular scenarios (high value uncertainty, mid value and low value uncertainty) would occur. Baye's Theorem was applied to the endpoint probabilities to develop conditional probabilities for the calculation scenarios. The difference between the expected value of the preferred plan and the expected value of the better information results is the expected value of better information.

These values represent the maximum amount the company should be willing to spend to study each of these uncertainties. It must be noted that should a Preferred Plan out-perform all alternatives across the range of a critical risk, the calculation for better information will yield a value of zero.

The results for these calculations are shown in below.

5 F	DUIZA				
	ипка	21,260	6.25%	25.00%	20,726
14 F	DHKA	20,721	12.50%	50.00%	e de la françois de la calegra de la constante de la constante de la constante de la constante de la constante La constante de la constante de
23 F	DHKA	20,203	6.25%	25.00%	
		NAVAD	50 0	6	E and a second state of the
ann aranna ann an a	on a description of the second	and the state of the	anna an	and the second	Experient Value
5 1	FDHKA	21,260	6.25%	25.00%	20,726
14	FDHKA	20,721	12.50%	50.00%	
23	FDHKA	20,203	6.25%	25.00%	
	23 F dpoint P 5 I 14 I	S FDHKA 14 FDHKA	23 FDHKA 20,203 dpoint Plan NPVRR 5 FDHKA 21,260 14 FDHKA 20,721	23 FDHKA 20,203 6.25% dpoint Plan NPVRR EP Prob 5 FDHKA 21,260 6.25% 14 FDHKA 20,721 12.50%	23 FDHKA 20,203 6.25% 25.00% dpoint Plan NPVRR EP Prob Cond. Prob 5 FDHKA 21,260 6.25% 25.00% 14 FDHKA 20,721 12.50% 50.00%

Preferred Plan	Endpoint	Plan	NPVRP	EP Prob	Cond. Prob	Expected Value
High Natural Gas	11	FDHKA	19,990	6.25%	25.00%	20,688
Mid	14	FDHKA	20,721	12.50%	50.00%	
Low Natural Gas	17	FDHKA	21,320	6.25%	25.00%	
	e and the states of	(D) and	MOV/OP	ED Droh	Cond Prob	Expected Value
		Plan FDHKA	NPVRR 19,990	EP Prob 6.25%	Cond. Prob 25.00%	
Better Information High Natural Gas Mid		2016.002.002001-2		annan an thailte an thairte an th		Expected Value 20,639

staten den som		Plen -	L HAVER !!	12010000	COLLEGE STOLD	Stephen Voltes
High CO2	13	FDHKA	22,902	6.25%	25.00%	20,827
Mid	14	FDHKA	20,721	12.50%	50.00%	
Low CO2	15	FDHKA	18,966	6.25%	25.00%	
Better Information High CO2		Pilan FIGKA	NPVRR 22,735	EP Prob 6.25%	Cond. Prob 25.00%	Expected Value 20,786
Mid	14	FDHKA	20,721	12.50%	50.00%	
	16	FDHKA	18,966	6.25%	25.00%	

7.5 CONTINGENCY RESOURCE PLANS

KCP&L has identified contingency plans should the critical uncertain factors exceed the limits specified. These contingency plans are provided in Table 60 below:

			conung	ency Resou	ice Flans	
Plan Name	DSM Level	Retirement Assumption	Retirement Year	Renewab	le Additions	Generation Addition (if needed)
FDBKA	MEEIA/RAP	Montrose-1 Montrose-2 Montrose-3	2016 2016 2016	Solar: 2018 - 11 MW 2021 - 6 MW	Wind: 2016 - 50 MW 2020- 150 MW 2024 - 200 MW	193 MW CT in 2026 193 MW CT in 2031
FDEKA	MEEIA/RAP	Montrose-1 Montrose-2 Montrose-3	2019 2023 2023	Solar: 2018 - 11 MW 2021 - 6 MW	Wind: 2016 - 50 MW 2020- 150 MW 2024 - 200 MW	193 MW CT in 2026 193 MW CT in 2031
FDHKW	MEEIA/RAP	Montrose-1 Montrose-2 Montrose-3	2016 2021 2021	Solar: 2018 - 22 MW 2021 - 12 MW	Wind: 2016 - 100 MW 2020- 300 MW 2024 - 400 MW	193 MW CT in 2027 193 MW CT in 2032

Table 60: Contingency Resource Plans

These contingency plans were identified through an evaluation of the relative cost performance of each alternative plan under different combinations of the critical uncertain factors. The combinations of critical uncertain factors under which these contingency plans are projected to be lower cost than the Preferred Plan are as follows:

Low Gas, All CO₂ Price Scenarios: FDBKA (earlier Montrose Station retirement than the Preferred Plan)

<u>High Gas, Low CO₂ Price Scenario</u>: FDEKA (delayed Montrose retirement compared to the Preferred Plan)

<u>High Gas, High CO₂ Price Scenario</u>: FDHKW (more than double the current Renewable Energy Standard required wind)

<u>High CO₂, Mid Gas Price Scenario</u>: FDBKA (earlier Montrose Station retirement than the Preferred Plan)

The Company will update and review the critical uncertainties, Preferred Plan and contingency plans as part of the 2014 IRP Update to be filed in March 2014.

7.6 IMPLEMENTATION PLAN

The Implementation Plan consists of a schedule for environmental retrofits, a wind resource addition, and a Demand-Side Management schedule

7.6.1 ENVIRONMENTAL RETROFITS

Based on the 2013 Annual Update Preferred Plan for KCP&L, limited environmental retrofits are anticipated to be required for Montrose Units 2 & 3. These minor retrofits are projected to be needed to operate these units through year 2020. A draft schedule of the major milestones for the retrofit projects are provided in Table 61 below.

	橋	
		ġ.*
		20
	観	g i
		34
රා		
-		
<u> </u>		
Ψ		
$\overline{\mathbf{n}}$		
~~~		
•••		
ۇسىقە	100	1124
		20
_0		Sr.
œ		
		No.
- 22		
- 7-		
_		
Ψ		
드	100	30
드		1
0		6.2
- Ľ		S.
-=		Ľ.
>		
C		
-177		
ш	截	
2		
_		
- 60		
~		
<u> </u>		
C		
	in the second	
-		
	龖	
<u> </u>	풻	
Ö	1	
_	쮎	
Φ		
Table 61: KCP&L Environmental Retrofit Sche	18	
2		
S C		
- Januar		-
•		ġ.
		and the second

...

rofit Project Milestone Description Date Range	ose 2 & 3 ACI Studies/Specification/Bid/Award 09/2014 - 06/2015	ose 2 & 3 ACI Engineering/Procurement/Construction 07/2015 - 12/2015	rose 2 & 3 ACI Checkout/Startup/Tuning/Testing 01/2016 - 02/2016	3 ESP Improvements Studies/Specification/Bid/Award 01/2015 - 06/2015	3 ESP Improvements Engineering/Procurement/Construction 07/2015 - 12/2015	2 ECD Immunity Charlenting Charles and a contraction of the contractio
Retrofit Project	Montrose 2 & 3 A	Montrose 2 & 3 A	Montrose 2 & 3 A	Montrose 2 & 3 ESP Improvements	Montrose 2 & 3 ESP Improvements	Montrose 2 & 3 ESP Improvements

2013 Annual Update

# 7.6.2 GENERATION ADDITION

Also, it is anticipated that in order to meet the Kansas RPS requirements, 50 MW of wind capacity is required to be operational by 2016. A draft schedule of the major milestones for the wind resource addition is provided in Table 62 below.

Table 62: Wind Resource Addition Schedule

Issue RFP       Issue RFP         Proposals Due       Issue Recommend         Preliminary Proposal Screening       Issue Recommend Short List to Senior Leadership         Recommend Short List to Senior Leadership       Issue Recommend Short List to Senior Leadership         Senior Management Direction for Proceeding       Issue Recommend Short List to Senior Leadership         Notify Responders of Status       Issue Recommend Recommens         Begin Contract Negotiations with Short Listed Responders       Issue Recommens         Conclude Contract Negotiations       Issue Recommens         Sign Contract       Issue Recims	November - 2014 December - 2014 January - 2015 January - 2015 January - 2015 January - 2015
Proposals Due       Preliminary Proposal Screening         Preliminary Proposal Screening       Preliminary Proposal Screening         Recommend Short List to Senior Leadership       Predership         Senior Management Direction for Proceeding       Proceeding         Notify Responders of Status       Predership         Begin Contract Negotiations with Short Listed Responders       Predership         Conclude Contract Negotiations       Sign Contract         Sign Contract       Procurement Bedins	December - 2014 January - 2015 January - 2015 January - 2015 January - 2015
Preliminary Proposal Screening       Preliminary Proposal Screening         Recommend Short List to Senior Leadership       Proceeding         Senior Management Direction for Proceeding       Proceeding         Notify Responders of Status       Proceeding         Begin Contract Negotiations with Short Listed Responders       Proceeding         Conclude Contract Negotiations       Proceeding         Sign Contract       Procurement Bedins	January - 2015 January - 2015 January - 2015 January - 2015
Recommend Short List to Senior Leadership         Senior Management Direction for Proceeding         Notify Responders of Status         Begin Contract Negotiations with Short Listed Responders         Conclude Contract Negotiations         Sign Contract	January - 2015 January - 2015 January - 2015 T -
Senior Management Direction for Proceeding Notify Responders of Status Begin Contract Negotiations with Short Listed Responders Conclude Contract Negotiations Sign Contract Sign Contract	January - 2015 January - 2015 
Notify Responders of Status Begin Contract Negotiations with Short Listed Responders Conclude Contract Negotiations Sign Contract Engineering and Procurement Begins	January - 2015 
Begin Contract Negotiations with Short Listed Responders         Conclude Contract Negotiations         Sign Contract         Engineering and Procurement Begins	
Conclude Contract Negotiations Sign Contract Engineering and Procurement Begins	repruary - 2015
Sign Contract Engineering and Procurement Begins	April - 2015
Engineering and Procurement Begins	May - 2015
	June - 2015
Construction Begins	August - 2015
Substation Energized	March - 2016
First Turbine Commissioned	April - 2016
Last Turbine Commissioned	June - 2016
Final Project Completion	August - 2016

2013 Annual Update

7.6.3 DEMAND-SIDE MANAGEMENT SCHEDULE

The current schedule for ongoing and planned DSM programs is shown in Table 63 below:

				2				> =				
Program Name	Program Type	New or Existing	Segment	Planned Tariff Filing Date	Planned EM&V Plan Filing Date	MEEIA and DSM program approved	RFPs for new vendor selection issued	Vendor selected and contract awardsd	Program Implemented	Annual Report	Evaluations Begun	EM&V Completed and report available
tow-income Weatherization Program	Energy	Easine	Vesice	by Dec 2013	by Dec 2013	estimated by Dec 2013	4M	AN NA	8 montre after MEEIA anoroval	12 months after NEEIA molementation	24 months after MEEIA implementation	42 crontins after MEEA approval
Energy Star® New Homes Program	Efficiency	Existing	Residental	estimated by Dec 2013	estimated by Dec 2013	estimated hy Dec 2013	ş	ŇĀ	6 months after MEEIA approval		24 months after MEEIA Implementation	42 months after MEELA approval
Cool Homes Program	Energy Efficiency	E in	Residential	estmated by Dec 2013	estimated by D= c 2013	distimate by Dec 2013	¥.	WN	6 montes after MEEUA approvai	1.2 months after MEEA Incomentation	24 months after MEED	42 months after A.E.E.M. approval
Home Ferformance with Energy Slar® Program	Energy Efficiency	Existing	Residential	by Dec 2013	estimated by Dec 2013	estmated by Dec 2013	NA	MA	6 months after MEEIA approval	Section of the sectio	24 months after MEEM Implementation	42 months after MEEIA approval
Commercial and Industrial Rebale Program Program	Erengy Efficiency	Easting	C&	av Dec 2013	a se se	exerated by Dec. 2013	ą,	¥	6 months after MEEA approval	12 months after MEEIA Implementation	A TOTAL CAN	42 moners after MEELA approval
Microser Ridde	Demand Response	Existing	3	by Dec 2013	estimated by Dec 2013	estmated by Dec 2013	Å	Å	6 months after MEEIA approval		24 months after MEEM implementation	42 months after MEEIA approval
Energy Colomace Pregram.	Derred Preparate	Existing	Residential	estimated by Dec 2013	ectra ed ty Dec 2013	esimated by Dec 2013	MA	W	6 months after MERA sectoral	12 months after MEE/A	24 months after NEEIA ruplementation	42 months after MEEIA approval
Building Operator Cartification Program	Educational	Existing	g	estimated by Dec 2013 estimated	estimated by Dec 2013 stimated	Dec 2013	¥	MA	6 months after MEEIA approval	after Alcon	24 munits after MEEA mitiation 24 months after	42 months after NEEIA approvat
Horas Energy Analyzer Program	Educational	Easting	Recidential	ny Dec 2013 Petitopian	DY CHAC 2013 Desimated	Dec.2013	PKA	W	6 months after MEEIA approved	ALLE ALLE ALLE ALLE ALLE ALLE ALLE ALLE	Aff E.M. Implementation 24 months affect	42 months after MEEM approvat
Business Energy Analyzar Program	Educational	Exising	3	by Dec 2013	by Dec 2013	estimated by Dec 2013	<b>N</b>	NA	6 months after MEEIA approval		MEEA mplementation 24 months 244	42 months after MEEIA approval
Azalance Turnin Program	Eaercy Efficiency	ğ	Received	by Dec 2013	by Dec 2013	estimated by Dec 2013	Enorth after MEELA approved	à months after ME ElA significati	to months after MEEM approval	ALEN MEEN Indiananon Indianantation	MEIA Implementation	42 months after MEEIA approval
Commercial and Industrial Prescriptive Rebate Program	Energy Efficiency	ŝ	ğ	by Dec 2013	by Dec 2013	estimated by Dec 2013	1 month after MEEIA approval	4 months after MEEA approval	6 months after MEEIA approval	12 months after MEEA implementation	24 months after MEEIA implementation	42 months after MEEIA approval
Multi Fairsty Renate Progem	Energy Efficiency	New	Residectual	N SA	ty Dec 2013	esurated by Dec. 2013	1 month after MEEA approval	5 months after MEE/A approval	6 mores and	Section of the lot of	MELA	42 months after MEEIA approval
Residential Energy Reports Program	Energy Efficiency	ş	Residential	estmaled by Dec 2013	estimated by Dec 2013	estimated by Dec 2013	1 month after MEEIA approval	6 months after MEEIA approval	6 months after MEEIA approval		24 months after MEEIA Implementation	42 months after MEEIA approvat
Residential Lighting and Appliance Program	Efficiency	ġ	Residential	oy Dec 2013	a cura	estimated by Dec 2013	1 more after 2 months after MEEA approval MEEA approval	Z months attei MEBIA approval	& mores and MEA approx	ACEN INCEN	A regress and MEM	42 months after NEEIA approval

Table 63: DSM Program Schedule

2013 Annual Update

# 7.7 RESOURCE ACQUISITION STRATEGY: AGREED UPON REMEDIES TO ALLEGED DEFICIENCIES AND CONCERNS

The following section addresses the Alleged Deficiencies and Concerns from the 2012 KCP&L IRP, Case No. EO-2012-0323. The Resolutions are either verbatim or a shortened version of the agreed-to resolution from the Joint Filing filed in that case.

# 7.7.1 Staff's Deficiency 9

The filing requirements of Rule 4 CSR 240-22.070(2) or Rule 4 CSR 240-22.070(3) were not described and documented for the any of the twenty-two (22) KCP&L candidate resource plans.

**Resolution:** The Company agrees that the filing requirements and results per these rules for KCP&L will be provided in the 2013 Annual Update.

**Comment:** The filing requirements of Rule 4 CSR 240- 22.070(2) and Rule 4 CSR 240-22.070(3) results are provided in Sections 6.8, 7.3 and 7.4 above.

# 7.7.2 MDNR's Concern 5

KCP&L did not select the lowest-cost plan as its preferred plan. A more complete estimation of achievable savings is necessary to justify the selection of a higher-cost alternative resource plan.

**Resolution:** The Company will use the results of the DSM Potential Study to meet the requirements of Rule 4 CSR 240-22.060 in the 2013Annual Update. It is understood that the DSM Potential Study will provide DSM impacts and costs, such as MAP, RAP, and economic potential, etc. The Company will include the following in separate alternative resource plans that satisfy the objective and priorities identified in 4 CSR 240-22.060(1) over the entire 20-year planning horizon and are consistent with the state energy policy in MEEIA of achieving all cost-effective demand-side savings: (1) MAP, (2) RAP, (3) approximately the RAP plus one-third of the difference between RAP and MAP, and (4) approximately RAP plus two-thirds of the difference between RAP and MAP.

2013 Annual Update

**Comment:** This issue has been addressed. KCP&L utilized the results of the Navigant DSM Potential Study which provided DSM impacts and costs used for the DSM Portfolios in the 2013 Annual Update.

#### 7.7.3 MDNR's Deficiency 13

Questionable methodology for allocating combined plans. There does not appear to be any underlying methodology for allocating the resources in the combined company plans. Rather, the combined plans appear to be constructed from previously identified company-specific resources. In its annual update, KCP&L should provide a complete description of its approach to constructing combined plans and its allocation procedures. If the Company uses a combined planning approach in the future, the combined plan should include an articulated methodology for sharing demand side, supply side and renewable resources between companies.

Resolution: MDNR and the Company have resolved this deficiency.

#### 7.7.4 MDNR'S Deficiency 14

Missing Analysis of Critical Uncertain Factors for KCP&L Preferred Plan. KCP&L did not analyze the impacts of critical uncertain factors on its preferred plan. Given that the Company has not provided a methodology for allocating the resources in the combined plan to each individual utility, it is not possible to allocate the impacts of the critical uncertain factors.

**Resolution:** This issue is resolved. The Company and MDNR agree that the Company did comply with 4 CSR 240-22.070(2) and 4 CSR 240-22.070(4). Documentation is in the 2012 KCP&L IRP Volume 7.

#### 7.7.5 MDNR's Concern 6

Federal renewable/clean energy standard as a critical uncertain factor. A potential federal renewable energy standard (RES) or clean energy standard (CES) will have significant impacts on renewable electricity generation and/or acquisition as well as associated costs.

2013 Annual Update

**Resolution:** This issue is resolved.

2013 Annual Update

# **SECTION 8: SPECIAL CONTEMPORARY ISSUES**

From the Commission Order, EO-2013-0106, the following Special Contemporary Resource Planning Issues are addressed as follows:

#### 8.1 AGGREGATORS OF RETAIL CUSTOMERS

Investigate and document the impacts on the Company's preferred resource plan and contingency plans of aggressive regulations by the FERC, regional transmission organizations ("RTOs") or Missouri statutes or regulations to allow aggregators of retail customers ("ARCs") to operate and market demand response services in Missouri.

Comment: On January 6, 2010, the Missouri Public Service Commission ("MPSC") issued an order in Case No. EW-2010-0187 for the purpose of investigating the coordination of state and federal regulatory policies concerning demand-side programs. This investigation docket has proceeded through a series of informationgathering processes, including several workshops. All of Missouri's investor-owned electric utilities, as well as a number of other interested parties, have participated in this process. Issues in this docket have included the question of whether the MPSC should permit the participation of retail customers in wholesale demand response programs operated by a RTO, and if so, under what rules and pricing terms. KCP&L has submitted written comments in this docket and participated actively in the workshops, expressing its views regarding potential ARC activity in Missouri and the appropriate structure for such activity if permitted. KCP&L's comments touched on numerous elements including the method of retail billing for demand response load. the establishment of economically efficient pricing mechanisms, the impact of ARC participation on the utilities' internal demand response programs, and the potential for costs to shift among customer groups as a result of retail participation in wholesale markets. Before ARCs can operate in the MPSC's jurisdiction, these issues must be resolved. In addition to state regulatory activity, several dockets at FERC are dealing with demand response questions both in rulemaking and in compliance filings made by RTOs such as Southwest Power Pool and the Midwest Independent Transmission System Operator. Given the numerous unresolved questions at both the state and 2013 Annual Update 116

federal levels, it will be speculative for KCP&L to posit the conditions, framework, and pricing necessary for an IRP analysis of the impact of ARC activity in Missouri. Therefore, the company proposes that this potential risk be analyzed in a similar manner as the Federal Energy Efficiency Standard risk was conducted in the KCP&L Updated IRP Filing On July 1, 2011. The Company will incorporate findings from the workshops being conducted in Case No. EW-2010-0187 to develop a method of analysis as the workshop and IRP filing schedules permit.

# 8.2 AGGRESSIVE RENEWABLE ENERGY STANDARD

Investigate and document the impacts on the Company's preferred resource plan and contingency plans of a new much more aggressive renewable energy standard (e.g., at least double the current standard for Missouri) with no rate cap.

**Comment:** KCP&L has included an Alternative Resource Plan FDHKZ in the 2013 Annual Update that consists of replacing capacity with only renewable capacity. See Appendix F for this plan's results.

# 8.3 VERY AGGRESSIVE ENERGY EFFICIENCY RESOURCE STANDARD

Investigate and document the impacts on the Company's preferred resource plan and contingency plans of a very aggressive energy efficiency resource standard (e.g., annual energy savings of 1.5% each year for 20 years and annual demand savings of 1.0% each year for 20 years from electric utility demand-side programs) with no rate cap in Missouri.

**Comment:** This issue was addressed by KCP&L evaluating Alternative Resource Plan BDFKA that included the Maximum Achievable Potential (MAP) results from the Navigant DSM Potential Study.

# 8.4 LOSS OF SIGNIFICANT LOAD

Investigate and document the impacts on the Company's preferred resource plan and contingency plans of a loss of significant load for the short term and potentially for the

long term that may be the result of: 1) a prolonged double-dip recession, and/or 2) the largest customer or a group of customers no longer taking service from Company.

**Comment:** This issue was addressed by KCP&L evaluating Alternative Resource Plans EDBKA, EDEKA, and EDEKA. See Appendix F for evaluation results of these plans.

2013 Annual Update

# 8.5 AGGRESSIVE ENVIRONMENTAL REGULATIONS

Investigate and document the impacts of aggressive environmental regulations on Company's preferred resource plan and contingency plans.

Environmental Driver	Emittant	Compliance Year (Expected)	Status	Retrofit
Mercury and Air Toxics Standards (MATS)	Mercury, PM, HCI	April, 2016	Petitions for judicial review have been filed.	ACI, ESP Improvements, Low Chlorine Coal
Ozone National Ambient Air Quality Standards (O ₃ NAAQS)	NOx	(2019)	Under revision by EPA, final rule July, 2014	SNCR (LR 4/6) LNB/OFA (M-1)
PM National Ambient Air Quality Standards (PM NAAQS)	PM, SO ₂ , NO _x	(2023)	Final Rule issued - KC area attainment/nonattainment currently undetermined	SCR (on all units)
SO ₂ National Ambient Air Quality Standards (SO ₂ NAAQS)	s0 ₂	(2023)	Final Rule issued - KC area attainment/nonattainment currently undetermined	Scrubber/BH (on all units)
Clean Water Act 316(b) (Fish Impingment and Entrainment)	. <b>4</b>	(2018)	Under revision by EPA, final rule June, 2013	Fish Friendly Screens
Clean Water Act 316(b) (Fish Impingment and Entrainment)		(2019)	Under revision by EPA, final rule June, 2013	Cooling Towers (river units)
Clean Water Act 316(a) (Thermal Discharge)	I	(2019)	KCP&L in discussion with MDNR/EPA	Cooling Towers (lake units)
Effluent Guidelines	Wastewater Constituents	(2019)	Final Rule May, 2014	Cease Wet Sluicing
Coal Combustion Residual (CCR)	Ash/Water	(2019)	Final Rule 10, 2014	Cease Wet Sluicing/increased Dust Controls

# Table 64: Potential Environmental Regulations

2013 Annual Update

# 8.6 RANKING OF EXISTING COAL GENERATION

Analyze, rank, and document existing coal plant fleet as retirement candidates that includes documentation indicating the date the plant was put in service, the original design life in years and the results of any subsequent life extension studies or modifications to extend the design life, the cost in \$/kw to produce energy, and any analysis, studies, inspections, calculations used to justify the continued operation of the plant beyond its original design life.

**Comment:** The results of the evaluation for the 2013 IRP Update support the justification for planned coal plant retirements and the continued operations for those plants not identified for retirement. Ranking of KCP&L's coal fleet with respect to dispatch cost is shown in Table 65 below.



 Table 65: Ranking of Coal Plants in Order of Dispatch Cost **Highly

 Confidential**

Annual Update integrated analysis shows that Montrose Unit 1 would be the first unit to be retired, followed by Montrose Units 2 and 3. After these units, integrated analysis show LaCygne Unit 1 and then Unit 2. It should be noted that integrated analysis of various retirement scenarios did not include Hawthorn Unit 5, or latan Units 1 or 2. However, ranking these units by efficiency show latan Unit 2 to be the most efficient, followed by latan Unit1, then Hawthorn Unit 5.

The commercial start dates for all of KCP&L's existing coal units are shown in Table 66 below.

KCP&L PLANT	Commercial Start Date
Montrose 1	July - 1958
Montrose 2	Apr - 1960
Montrose 3	May - 1964
LaCygne 1	Jun - 1973
LaCygne 2	May - 1977
Hawthorn 5	June - 2001
latan 1	May - 1980
latan 2	August - 2010

Table 66: Coal Unit Commercial Operation Dates

There is no official design life for the generation units, but economic analyses on a life-cycle basis was performed on some of the units from the time the unit was designed inferring a minimum operating life. These minimum operating life assumptions are provided in Table 67 below:

Table 67: Coal Uni	t winimum Operating Life
KCP&L PLANT	Minimum Design Life (Years)
Montrose 1	30
Montrose 2	30
Montrose 3	30
LaCygne 1	30
LaCygne 2	30
Hawthorn 5	30
latan 1	30
latan 2	40

Table 67: Coal Unit Minimum Operating Life

The Life Assessment and Management Program (LAMP) for generating units can be reviewed in Section 3.1.4 above.

# 8.7 DISTRIBUTED GENERATION, DSM PROGRAMS, AND COMBINED HEAT AND POWER PROJECTS

Analyze and document the impacts of opportunities to implement distributed generation, DSM programs, and combined heat and power (CHP) projects in collaboration with municipal water treatment plants and other local waste or agricultural/industrial processes with on-site electrical and thermal load requirements, especially in targeted areas where there may be transmission or distribution line constraints. In particular, develop a model or business case to identify the most cost effective CHP projects and a strategy to increase the deployment of identified cost effective CHP projects.

**Comment:** This issue was addressed by KCP&L incorporating the results of the Navigant DSM Potential Study in the 2013 Annual Update. The potential for combined heat and power was identified and included in the update. Also included in all scenarios is a projection of Residential Solar PV installations. KCP&L also collaborated with, committed resources and entered into a PPA with Hampton Alternative Energy Products, LLC in early 2012 for the net generation output from the Confined Animal Feedlot Operation (CAFO) facility in Triplett, Missouri, in which an anaerobic digester will capture methane from manure and utilize gen-sets to convert the captured methane into electricity. The expected power output from the facility is 300 kW.

# 8.8 ENERGY EFFICIENCY IN THE AGRICULTURAL SECTOR

Analyze and document analysis of DSM programs targeted to achieve energy efficiency savings in the agricultural sector.

**Comment:** The agricultural sector was analyzed as part of the Navigant DSM Potential Study. The sector was found to be less than one half of one percent of KCP&L's retail load. Therefore, agriculture is included as part of the sector "C&I Other".

2013 Annual Update

# 8.9 CUSTOMER INFORMATION/BEHAVIOR MODIFICATION PROGRAM OPTIONS

Analyze and document alternative customer information/behavior modification program options utilizing either in-house or outside industry experts or a combination of both to increase customer awareness and encourage more efficient use of energy.

**Comment:** This issue was addressed by KCP&L utilizing the results of the Navigant DSM Potential Study in the 2013 Annual Update. The behavioral modification programs identified were included in the update.

# 8.10 POTENTIAL CHANGES IN ENVIRONMENTAL AND/OR RENEWABLE ENERGY STANDARDS

Analyze potential or proposed changes in state and/or federal environmental and/or renewable energy standards and report how those changes would affect company's plans for compliance with those standards.

**Comment:** See Section 8.5 for a description of the proposed and projected environmental regulations that have been considered in the alternative resource plans analyzed for the 2013 Annual Update.

# 8.11 COST OF ENERGY COMPARISON

Analyze the levelized cost of energy needed to comply with the current Renewable Energy Standards law compared to the cost of energy resulting from a portfolio comprised solely of existing resources with no additional renewable resources.

**Comment:** Given that the current Renewable Energy Standards (RES) law includes a 1% retail rate impact limit and KCP&L expects to hit that limit starting in 2013, the additional revenue needed to meet the RES requirements is expected to be on average 1% greater than would have occurred without the RES. The 1% limit is based on a projected 10-year rolling average revenue requirement of a non-RES compliant resource plan.

#### 8.12 FUEL SOURCE SUBSIDIES

Disclose and discuss the amount and impact of every state or federal subsidy the Company expects to receive with regard to any or all fuel sources it intends to use during the IRP study period.

**Comment:** The Company does not expect to receive any state or federal subsidy for any fuel (biofuel, coal, natural gas, oil, or uranium) it expects to consume during the IRP study period.

#### 8.13 SMALL MODULAR REACTOR ANALYSIS

Analyze and document nuclear powered small modular reactor (SMR) as a potential supply-side resource option.

**Comment:** The small modular nuclear reactors (SMRs) are included in this annual update filing as a supply-side resource option. Based on market information from EPRI TAG©, SMRs are generally classified as nuclear reactors of 700 MW or smaller, but often focus on reactors 335 MW or less. With SMRs still being in the research and development stages, cost data is limited and is primarily based upon large-scale nuclear plants with adjusted scaling factors to account for economy of scale. Lacking the benefits of economy of scale, the specific capital costs of SMRs are generally higher than large-scale nuclear plants. However, SMRs have the advantage of a shorter estimated construction period of about 3-4 years and an ability to allow for multiple units to be built in increments over several years. These features result in lower interest accumulation during construction and less capital-at-risk, which can result in SMRs being cost competitive with larger-scale nuclear plants. Overnight cost estimates for multi-unit SMR plants range from \$4,610/kW to \$7,292/kW. SMRs also have the advantage of being a carbon-free energy alternative. For the 2013 Annual Update filing, SMRs have been included with an overnight capital cost of \$5,255/kW, based upon the lower end of the capital cost estimate range.

# 8.14 RECALIBRATE LOAD FORECAST

In its annual update, KCP&L should recalibrate its forecast of the number of households to reflect the existing economic situation. The analysis should describe and document any changes in the components of the load forecast made to account for changes in the economic situation.

# Comment:

- The economic forecast for the KC metro area was updated. In the 2012 IRP filing, KCP&L used forecasts produced by Moody's Analytics in June 2011. In this filing the forecasts were produced in September 2012.
- Billing statistics were updated through August 2012 for this filing. In the 2012 IRP filing, the statistics were current through June 2011. These statistics include the number of customers, kWh sales and dollars per kWh.
- Both the sales and customer models were recalibrated using updated billing statistics and economic data.

# 8.15 MARKET STATUS OF DISTRIBUTIVE TECHNOLOGIES

In its annual update, KCP&L should provide a more detailed analysis of the market status of a number of distribution technologies as well as their potential impacts. KCP&L should also explore more opportunities with customer-side CHP.

**Comment:** This issue was be addressed by KCP&L incorporating the results of the Navigant DSM Potential Study in the 2013 Annual Update. The potential for combined heat and power was identified and included in the update. Also included in ALL scenarios is a projection of Residential Solar PV installations. KCP&L also collaborated with, committed resources and entered into a PPA with Hampton Alternative Energy Products, LLC in early 2012 for the net generation output from the Confined Animal Feedlot Operation (CAFO) facility in Triplett, Missouri, in which an anaerobic digester will capture methane from manure and utilize gen-sets to convert the captured methane into electricity. The expected power output from the facility is 300 kW.

2013 Annual Update

# 8.16 COMBINED COMPANY IRP PLANNING

KCP&L should describe and document the legal and administrative steps necessary to allow for IRP planning on a combined company basis.

**Comment:** The IRP rules (4 CSR 240-22. 080(1)) require that each electric utility selling over 1 million megawatt hours in Missouri must make a triennial compliance filing. The Company will be making separate IRP update filings for each Company that will reference joint planning information in certain sections of the IRP update filing. KCP&L, pursuant to the Joint Operating Agreement, will continue to operate and plan for GMO as a separate control area.

# 8.17 COMBINED COMPANY IRP PLAN DEVELOPMENT

In its annual update, KCP&L should describe and document its approach to constructing combined plans and its allocation procedures. If the Company uses a combined planning approach in the future, the combined plan should include an articulated methodology for sharing demand side, supply side and renewable resources between companies.

**Comment:** Please see Section 6.7 for a description of the approach to developing combined company plans. Since the Preferred Plans for each utility are based on stand-alone company plans, no allocation of resources between companies is needed.

# 8.18 DEFICIENCIES FROM FILE NO. EO-2012-0041

Address deficiencies raised by MDNR in the analysis of Special Contemporary Issues B, C, H, I, J, K and L from File No. EO-2012-0041.

**Comment:** All of those issues were addressed in Section 8: above.

# 8.19 NATURAL GAS PRICE OUTLOOK

The prospects for continued stability of natural gas prices, especially in light of unconventional gas supplies.

2013 Annual Update

**Comment:** Unconventional natural gas production is expected to continue to grow through about 2025 and decline thereafter. Recent low natural gas prices have led to resurgence in natural gas demand. Environmental regulations, limited nuclear capacity additions, and uncertainty of renewable resources are also expected to increase demand for natural gas. The net result is the current pricing paradigm for natural gas may not be sustainable for the long-term.

# 8.20 EXISTING, PENDING, OR POTENTIAL ENVIRONMENTAL STANDARDS WITH RESPECT TO CAPITAL AND OPERATING COSTS

Analyzing and documenting the future capital and operating costs faced by each KCP&L coal-fired generating unit in order to comply with all existing, pending, or potential environmental standards, including:

- Clean Air Act New Source Review provisions
- 1-hour Sulfur Dioxide National Ambient Air Quality Standard
- Cross State Air Pollution Rule in the event the Rule is reinstated
- Clean Air Interstate Rule
- Mercury and Air Toxics Standard
- Clean Water Act 316(b) Cooling Water Intake Standards
- Clean Water Act Steam Electric Effluent Limitation Guidelines
- Clean Air Act Section 111 Greenhouse Gas New Source
- Performance Standards
- Clean Air Act Regional Haze requirements
- Coal Combustion Waste rules.

# Comment:

**Clean Air Act New Source Review provisions:** The Company has no plans to modify an existing unit or construct a new unit that would be significantly impacted by these provisions.

# 1-hour Sulfur Dioxide National Ambient Air Quality Standard: Because the

Montrose Station units are currently expected to be retired before the expected compliance year of 2023 for NAAQS SO₂, no listing is shown in Table 68, Table 69, or Table 70 below. Iatan Station, LaCygne Station and Hawthorn Unit 5 are currently complaint with, or will be by 2015, NAAQS SO₂.

# Cross State Air Pollution Rule in the event the Rule is reinstated: The

Company was ready to comply with this rule when it was stayed through generation 2013 Annual Update

planning and allowance trading Adjustments were made to this rule prior to the stay that significantly reduced the impacts on KCP&L. In addition, the compliance dates have now past and new compliance dates are unknown. It is anticipated control additions or generation planning associated with compliance with other rules (MATS, SO2 NAAQS, etc.) will also assist in compliance if the CSAPR is reinstated.

**Clean Air Interstate Rule:** The Company complies with this rule by utilizing existing SO₂ allowances.

Mercury and Air Toxics Standard: See Table 68, Table 69, and Table 70 below.

Clean Water Act 316(b) Cooling Water Intake Standards: See Table 68, Table 69, and Table 70 below.

**Clean Water Act Steam Electric Effluent Limitation Guidelines:** See Table 68, Table 69, and Table 70 below.

**Clean Air Act Section 111 Greenhouse Gas New Source:** No final rule for GHG NSPS standards for new or existing has been finalized. The new source GHG NSPS was proposed but never finalized. The proposal does not provide sufficient clarity to model the impacts of the rule.

Performance Standards: See Table 68, Table 69, and Table 70 below.

**Clean Air Act Regional Haze requirements:** See Table 68, Table 69, and Table 70 below.

Coal Combustion Waste rules: See Table 68, Table 69, and Table 70 below.



# Table 68: Retrofit Capital Cost Estimates ** Highly Confidential **

#### Table 69: Retrofit Fixed O&M Estimates ** Highly Confidential **

Potential Environmental Rule/Technology (\$/kW - 2012 \$)	Wolfose 1 Hornose 2 Horn tanton ser 1
MATS/Activated Carbon Injection	
MATS/ESP Rebuild	
CWA 316(b)/Fish-Friendly Screens	
CWA 316(a)/Cooling Towers	
CCR/Wet-to-Dry Bottom Ash Conversion	
Notes	
NA = Not Applicable	
Equipment Installed	
R=Retired before Rule is promulgated	····
MATS = Mercury and Air Toxics Standard	
CCR = Coal Combustion Residual Rules	
CWA = Clean Water Act	



# Table 70: Retrofit Variable O&M Estimates ** Highly Confidential **

# 8.21 ANALYSIS OF DSM

Analyzing and documenting the technical, maximum achievable, and realistic achievable energy and demand savings from demand side management, and incorporating each level of savings into KCP&L resource planning process.

**Comment:** This issue was addressed by KCP&L incorporating the results of the Navigant DSM Potential Study in the 2013 Annual Update.

# 8.22 ACHIEVABLE COMBINED HEAT AND POWER

Analyzing and documenting the levels of achievable combined heat and power (CHP) and incorporating such achievable CHP into KCP&L's evaluation of demand side management.

**Comment:** This issue was addressed by KCP&L incorporating the results of the Navigant DSM Potential Study in the 2013 Annual Update. The potential for combined heat and power was identified and included in all Alternative Resource Plans developed for the Annual Update.

# 8.23 SPECIAL CONTEMPORARY ISSUES: AGREED UPON RESOLUTIONS TO ALLEGED DEFICIENCIES AND CONCERNS

The following section addresses the Alleged Deficiencies and Concerns from the 2012 KCP&L IRP, Case No. EO-2012-0323. The Resolutions are either verbatim or a shortened version of the agreed-to resolution from the Joint Filing filed in that case.

# 8.23.1 Sierra Club

The Sierra Club asserts that KCP&L has hindered public review of its IRP through a failure to describe its resource plans or to produce workpapers with formulas intact. Missouri's IRP rules set forth an open and transparent planning process that is supposed to provide interveners with the information that is needed to allow for a thorough review of the contents of the IRP and the analyses and assumptions upon which the IRP relies.

First, the IRP provides virtually no explanation for how the Combined Company resource plans were developed. Second, contrary to the requirement that "all spreadsheets shall have all formulas intact," many of the workpapers and other supporting documentation provided by KCP&L consisted of spreadsheets that were populated with hardcoded numbers.

KCP&L should revise its IRP filing to describe and document how the Combined Company resource plans were developed and how those plans interact with the resource plans identified for KCP&L and GMO individually. In addition, KCP&L should produce all workpapers and other supporting documentation involving spreadsheets in documents that have all formulas intact.

**Resolution:** This issue has been resolved. The Company provided additional explanation to Sierra Club regarding the manner in which the Company conducted its MIDAS modeling of alternative resource plans and the separate naming conventions used in the single company and Combined Company alternative resource plan modeling (which were not fully set forth in the IRP documents).

# 8.23.2 Staff's Deficiency 11

The Filing failed to comply with the Commission's special contemporary issue "h" by not analyzing and documenting aggressive DSM portfolios without constraints and by not including analysis and documentation of demand-side investment mechanisms to implement each DSM portfolio.

**Resolution:** Company will include an analysis and description of demand-side investment mechanism necessary to implement the DSM portfolios referenced in the resolution to Staff Deficiency 7 of this Joint Filing.

**Comment:** In the 2013 Annual Update, aggressive DSM portfolios were evaluated. The Maximum Achievable Potential level of DSM from the DSM Potential Study was evaluated with the development of Alternative Resource Plan BDFKA.

. The demand side investment mechanism for all DSM portfolios would follow the same frame work as the KCP&L GMO MEEIA filing, Case No.: EO-2012-2009. This would include cost recovery, a shared benefit and a performance incentive.

# 8.23.3 Staff's Concern F

KCP&L and GMO do not have the proper operating agreements and/or contracts in place to correctly analyze joint company planning. In the absence of proper operating agreements and/or contracts, joint company planning must be performed in the context of a comprehensive plan to merge KCP&L and GMO, and no such plan to merge the two companies exists at this time.

**Resolution:** The Company will research what agreements and/or contracts must be in place to analyze joint company plans and include a discussion of the issue in its 2013 Annual Update.

**Comment:** KCP&L has researched what agreements and/or contracts must be in place to analyze joint company plans and has included a discussion of the issue in Section 6.11 above.

# 8.23.4 MDNR's Deficiency 17

Special Contemporary Issue B: Energy savings requirements for Special Contemporary Issue B have not been met, citing Special Contemporary Issue B File No. EO-2012-0041.

**Resolution:** The Company will include an alternative resource plan in the 2013 Annual Update that consists of only renewable resource additions to meet future capacity requirements.

**Comment:** KCP&L has included an Alternative Resource Plan FDHKZ in the 2013 Annual Update that consists of replacing capacity with only renewable capacity. See Appendix F for this plan's results.

# 8.23.5 MDNR's Deficiency 18

Special Contemporary Issue C: Energy savings requirements for Special Contemporary Issue C have not been met, citing Special Contemporary Issue C File No. EO-2012-0041.

**Resolution:** The Company will continue to use the simulation of H.R. 888 to estimate the effects of an efficiency standard.

**Comment:** In the 2013 Annual Update, KCP&L evaluated an alternative resource plan that included the Maximum Achievable Potential (MAP) results from the Navigant DSM Potential Study. The plan developed and evaluated was Alternative Resource Plan BDFKA..

# 8.23.6 MDNR'S CONCERN 7

Special Contemporary Issue H: Response to Special Contemporary Issue H does not address the "demand-side investment mechanisms necessary to implement" an aggressive DSM portfolio. The response to Special Contemporary Issue H does not analyze or document the demand-side investment mechanisms necessary to implement an aggressive DSM portfolio, citing Special Contemporary Issue H File No. EO-2012-0041.
**Resolution:** The Company will utilize the results of the Navigant Demand-Side-Management Potential Study in its 2013 Annual Update. With this update, the Company will include an analysis and description of demand-side investment mechanisms to implement a DSM portfolio.

**Comment:** In the 2013 Annual Update, aggressive DSM portfolios were evaluated. The Maximum Achievable Potential level of DSM from the DSM Potential Study was modeled. The demand side investment mechanism for all DSM portfolios would follow the same frame work as the KCP&L GMO MEEIA filing, Case No.: EO-2012-2009. This would include cost recovery, a shared benefit and a performance incentive.

#### 8.23.7 MDNR's Deficiency 19

Special Contemporary Issues I and J: KCP&L has not analyzed distributed generation, DSM programs, and combined heat and power projects in collaboration with municipalities and in the agricultural sector, citing Special Contemporary Issues I and J, File No. EO-2012-0041.

**Resolution:** The Company will incorporate the results of the Navigant DSM Market Potential Study in its 2013 Annual Update.

**Comment:** This issue was addressed by KCP&L incorporating the results of the Navigant DSM Potential Study in the 2013 Annual Update. The potential for combined heat and power was identified and included in the update. Also included in ALL scenarios is a projection of Residential Solar PV installations. KCP&L also collaborated with, committed resources and entered into a PPA with Hampton Alternative Energy Products, LLC in early 2012 for the net generation output from the Confined Animal Feedlot Operation (CAFO) facility in Triplett, Missouri, in which an anaerobic digester will capture methane from manure and utilize gen-sets to convert the captured methane into electricity. The expected power output from the facility is 300 kW.

# 8.23.8 MDNR's Deficiency 20

Special Contemporary Issue K: Customer Information and Behavioral Modification programs not considered. Customer information and behavior modification mentioned in Special Contemporary Issue K, citing Special Contemporary Issue K, File No. EO-2012-0041.

**Resolution:** The Company will utilize the results of the Navigant Demand-Side-Management Potential Study in its 2013 Annual Update. If additional behavioral modification programs are identified, they will be included in its 2013 Annual Update.

**Comment:** This issue was addressed by KCP&L utilizing the results of the Navigant DSM Potential Study in the 2013 Annual Update. The behavioral modification programs identified were included in the update.

## 8.23.9 MDNR's Deficiency 21

Special Contemporary Issue L: The Environmental Impact of Plan ABEK6 has not been analyzed; the requirements of Special Contemporary Issue L have not been met, citing Special Contemporary Issue L, File No. EO-2012-0041.

**Resolution:** This issue is resolved.

# 8.24 UNRESOLVED DEFICIENCIES AND CONCERNS

The following section addresses the Unresolved Deficiencies and Concerns listed in the Joint Filing from the 2012 KCP&L IRP, Case No. EO-2012-0323.

## 8.24.1 Sierra Club – Natural Gas Prices

The Sierra Club asserts that KCP&L's use of unreasonably high natural gas price projections skewed its analysis in favor of retrofitting versus retiring LaCygne Units 1 and 2, Montrose Units 2 and 3, and Sibley Unit 3, and against natural gas-fired supply-side options such as conversion of coal units to natural gas combined cycle ("NGCC") facilities or purchase of existing underutilized NGCC capacity. KCP&L should rerun its economic modeling with up-to-date natural gas price projections, such as those from the EIA AEO 2012. At a minimum, KCP&L should exclude the PIRA natural gas price extrapolation from its natural gas price projections.

**Comment:** For the 2013 Annual Update, new natural gas price forecast were developed. The 2012 forecasts were no longer used.

### 8.24.2 Sierra Club – Aging Coal Units

The Sierra Club asserts that KCP&L failed to evaluate the reasonableness of continued investment in its aging coal units. The IRP assumes that KCP&L will incur expenditures in the next three to eight years installing pollution controls needed to keep a number of aging coal-fired generating units operating for twenty or more years into the future. KCP&L purports to have evaluated as part of this planning process whether to retrofit or retire the LaCygne, Montrose, and Sibley coal units. The available evidence, however, strongly suggests that retirement would be the lower NPVRR option for most or all of LaCygne Units 1 and 2, Montrose Units 2 and 3, and Sibley Unit 3.

The Sierra Club asserts that past analyses and changed market conditions demonstrate that retirement is likely the lowest NPVRR option for LaCygne Units 1 and 2, Montrose Units 2 and 3, and Sibley Unit 3. Declines in natural gas and market energy prices, among other factors, are leading to a growing number of decisions by utilities to retire decades old coal units that would need significant pollution control 2013 Annual Update 136 investments to continue long term operations. The Sierra Club cites analyses and a study by Black & Veatch indicating that retrofitting the LaCygne and Montrose units may not result in the lowest NPVRR.

KCP&L should evaluate the NPVRR impacts of retrofitting versus retiring each of the LaCygne Units 1 and 2, Montrose Units 2 and 3, and Sibley Unit 3 plants based on up-to-date information and data that fully reflects changed market conditions, and that explains any differences between the modeling in this proceeding and that used in the Kansas predetermination proceeding.

**Comment:** The 2013 Annual Update includes current fuel pricing and energy costs. Future potential environmental retrofits have been studied by Burns and McDonnell and are incorporated in the 2013 Annual Update. In addition, the Company developed the resulting net present value revenue requirement (NPVRR) for all Alternative Resource Plans developed which include retirement scenarios of LaCygne 1, LaCygne 2 and Montrose units.

### 8.24.3 Sierra Club – Non-environmental Capital Costs

The Sierra Club asserts that KCP&L has likely underestimated the non-environmental capital costs needed to keep the Montrose Units operating. KCP&L should ensure that its economic modeling factored in assumptions regarding capital investments that will need to be made to keep the Montrose units operating that are reasonable in light of the assumed retirement dates for such units.

**Comment:** Burns and McDonnell evaluated the 20-year capital budget for Montrose Station and the results of that evaluation are incorporated in the 2013 Annual Update. The 20-year capital budgets are provided in Table 16 through Table 27 above.

## 8.24.4 Sierra Club – DSM Evaluation

The Sierra Club asserts that KCP&L failed to thoroughly evaluate demand side management as required by Missouri's IRP rules. Missouri's IRP rules make clear that DSM is an important resource that should be evaluated in the resource planning process on an equal footing with supply-side resources. Despite clear evidence that significantly higher levels of cost-effective DSM would reduce NPVRR, KCP&L 2013 Annual Update punted the issue of additional DSM down the road and cursorily dismissed, without the required analyses, the idea that anything above a minimal increase in DSM energy savings is cost-effectively achievable.

The Sierra Club asserts that the Company put together a DSM portfolio that would purportedly achieve 0.5% energy savings per year, and then went through the motions of assessing a 1% energy savings and 1.5% energy savings DSM program. Rather than assess its maximum achievable and technical potentials for energy savings, KCP&L notes that it has hired a consultant, Navigant Consulting, to carry out a DSM potential study that is expected to be finished early next year.

KCP&L's contention that a 1% per year energy savings is not realistically achievable is inaccurate. KCP&L has provided no support for that contention, and the reality is that there are many states across the country that have established long-term aggressive energy efficiency goals that go beyond the 1% level to as much as 2 or 2.5% per year.

KCP&L has also erroneously failed to evaluate combined heat and power ("CHP") as part of a DSM portfolio. Missouri has substantial amounts of untapped CHP potential, as the state's technical potential is approximately 16 times as much as the current 227 MW of total installed CHP capacity. KCP&L states that it considers CHP to be "a demand-side resource" but the Company inexplicably failed to analyze it in developing its proposed DSM portfolio.

KCP&L should complete an evaluation of its technical, maximum achievable, and realistic achievable energy savings potential from DSM, including CHP, and incorporate the results of such evaluation into its resource planning as part of the current IRP process.

**Comment:** This issue was addressed by KCP&L incorporating the results of the Navigant DSM Potential Study in the 2013 Annual Update.

#### 8.24.5 Staff's Deficiency 8

The only requirements of Rule 4 CSR 240-22.060 Integrated Resource Plan and Risk Analysis that are satisfied and described and documented for each of the Filing's 2013 Annual Update 138 fourteen (14) combined/joint candidate resource plans are for integrated resource analysis and the calculation of PVRR for each plan.

**Comment:** The Combined Company resource plans were developed to determine if either of the stand-alone company preferred plans should be adjusted to take into account the resources held by KCP&L and GMO. The results indicate that no adjustments were needed to either stand-alone company plan. The combined company plans analyzed and the NPVRR are documented Section 6.7. Combined-Company plan performance measures are provided in Sections 6.8 through 6.10 as well.

## 8.24.6 NRDC – Renewable Energy

NRDC asserts that KCP&L's IRP is deficient because KCP&L has not evaluated renewable energy and supply side resources on an equivalent basis, nor have they complied with the rules requiring a maximum RE scenario. KCP&L appears to have only modeled renewable energy to meet new capacity needs and not as a potential replacement for existing nonrenewable plant capacity.

**Comment:** In the 2012 IRP filing, alternative resource plan (ARP) ABEK6 includes 800 MW of wind resource additions over the 20-year planning period which is twice the amount of non-solar additions currently expected to be required per Missouri Renewable Energy Standards (RES). In the 2013 Annual Update, more than double the wind expected to be required to meet current Missouri RPS was modeled in an Alternative Resource Plan FDHKW.

# 8.24.7 Sierra Club - DSM Delay

The Sierra Club asserts that KCP&L's two-year delay of additional DSM programs increases NPVRR. Following withdrawal of its MEEIA filing, KCP&L assumes in the IRP that it will not start additional DSM programs until at least 2014. KCP&L should pursue a resource plan that begins implementation of all cost effective DSM as expeditiously as possible, rather than waiting until at least 2014 to do so.

**Comment:** The Preferred Resource Plan resulting from this 2013 Annual Update, includes additional DSM in the KCP&L Missouri service territory starting in 2013 Annual Update

2014. KCP&L plans to use the Market Potential Study, results of this update including customer rate impacts, and the experience gained through the GMO MEEIA DSM initiatives to develop a strategy to implement the DSM levels in the Preferred Resource Plan.

### 8.24.8 Sierra Club – Resource Plan Modeling

The Sierra Club asserts that KCP&L's other resource plans that KCP&L apparently did not model would likely have lower NPVRRs. The inflated NPVRR of KCP&L's preferred resource plan is masked by the fact that the Company did not model a number of plans that would likely have even lower NPVRRs. While the IRP reports the NPVRR for 16 different resource plans that include DSM A, it includes only two resource plans with DSM D. Presumably many of the plans with DSM A would end up with a lower NPVRR if DSM D had been assumed. KCP&L should model the impact of DSM D on NPVRR for each of its resource plans, including each of the Combined Company plans.

**Comment:** In the 2013 Annual Update, five different levels of DSM are evaluated in the Alternative Resource Plans.

## 8.24.9 Sierra Club – Critical Uncertain Factors

The Sierra Club asserts that KCP&L failed to meaningfully assess the impact of critical uncertain factors on its evaluation of alternative resource plans. KCP&L's evaluation of CO2 prices, natural gas prices, and load growth as critical uncertain factors fails to satisfy the requirements of the IRP rules, as follows.

First, KCP&L never evaluated the critical uncertain factors on a meaningful range of alternative resource plans. Instead, the Company evaluated two Combined Company resource plans – AJDC2 and AGDC2 – that are identical with the exception of the retirement of a single 170 MW coal unit.

Second, KCP&L erred by not evaluating the impacts of critical uncertain factors on any of the KCP&L or GMO specific resource plans. Instead, KCP&L merged a single plan for each company into a Combined Company plan, and then carried out a limited analysis of critical uncertain factors with regards to the Combined Company plan. As 2013 Annual Update 140 a result, there was never an evaluation of how changed values for critical uncertain factors would impact the comparative NPVRR of resource plans involving DSM D versus DSM A, or of resource plans involving the retirement of one or both LaCygne units.

Third, KCP&L's critical uncertain factors analysis was improperly skewed against coal plant retirements and in favor of retrofitting and continued operation of the LaCygne Units 1 and 2, Montrose Units 2 and 3, and Sibley Unit 3 plants. A lower natural gas price would improve the comparative economic performance of natural gas combined cycle options versus coal plant retrofits. Similarly, a higher CO2 price would favor DSM, renewable energy, natural gas combined cycle, and other lower-carbon alternatives to coal plants. A lower load forecast would help cushion any impact from the loss of generation that would result from a coal plant retirement. KCP&L only considered the impacts of higher natural gas prices, lower CO2 prices, and higher load, each of which would favor keeping the plants stated above operating.

KCP&L should fully evaluate the robustness of each of the potential resource plans under a broad range of circumstances by modeling the impacts of both higher and lower natural gas prices, CO2 prices, and load forecasts on each of the KCP&L and GMO specific resource plans, and on each of the Combined Company resource plans.

**Comment**: In the 2013 Annual Update, KCP&L evaluated the impact of a range of gas prices,  $CO_2$  prices, and load forecast on each of the alternative resource plans analyzed. Results can be found in Section 7.3 above. Forecasts for each of these uncertainties were updated of the 2013 Annual Update.

### 8.24.10 Staff's Deficiency 10

The only requirements of Rule 4 CSR 240-22.070 Resource Acquisition Strategy Selection that were satisfied and described and documented for each of the fourteen (14) combined/joint candidate resource plans are: 1) analysis and specification of ranges for critical uncertain factors, and 2) the expected value of better information related to the critical uncertain factors (CO2, load forecast and natural gas prices).

**Comment:** The combined company resource plans were developed to determine if either of the stand-alone company preferred plans should be adjusted to take into account the resources held by KCP&L and GMO. The results indicate that no adjustments were needed to either stand-alone company plan. The combined company plans analyzed and the NPVRR results are documented in Section 6.7. Combined-Company plan performance measures are provided in Sections 6.8 through 6.10 as well.

#### 8.24.11 NRDC – Plan NPVRR and DSM

NRDC asserts that KCP&L's IRP is deficient because KCP&L's preferred plan does not result in the lowest NPVRR and is not justified by the Company. The Company has not explicitly identified or quantitatively analyzed any other considerations that may constrain or limit the NPVRR minimization criterion, as required by the rules. The Company simply asserts that achieving 1.0% in annual incremental savings is unrealistic, even though there is abundant evidence that DSM program administrators across the nation are achieving the same or greater savings.

**Comment:** In the Company's Integrated Analysis, the system impact of DSM is evaluated over the 20-year study period for every alternative resource plan. The amount of DSM savings and costs are part of the set of options [both DSM and Supply] that make up each resource plan. That process assures DSM will be evaluated in the same manner as other supply options. DSM levels based on meeting arbitrary targets could not be selected as a preferred plan as they were necessarily constructed using DSM programs that are not in existence. Utilizing the results of the Navigant DSM Potential Study, KCP&L has incorporated the Maximum Achievable Potential (MAP), Realistic Achievable Potential (RAP), RAP plus one-third of the difference between RAP and MAP, and RAP plus two-thirds of the difference between RAP and MAP into the alternative resource plans developed in the 2013 Annual Update.

### 8.24.12 Sierra Club – Lowest Resource Plan NPVRR

The Sierra Club asserts that KCP&L's IRP is deficient because KCP&L failed to select the lowest NPVRR Resource Plan, or justify selecting a more costly Plan. 2013 Annual Update

142

KCP&L should select the resource plan with the lowest NPVRR as its preferred resource plan, and select a Combined Company preferred resource plan that is based on the lowest NPVRR resource plans in both the KCP&L and GMO IRP proceedings.

**Comment:** For the 2013 Annual Update, KCP&L has described the reason for selecting other than the lowest NPVRR resource plan. See Section 6: for a description of KCP&L's plan selection process.

#### 8.24.13 Sierra Club – DSM D

The Sierra Club asserts that KCP&L has not attempted to justify its rejection of the lowest-NPVRR resource plan. KCP&L rejected the lowest-NPVRR plan on the ground that DSM D is purportedly "not considered to be realistically achievable." KCP&L should develop a plan for achieving DSM D and include it in its preferred resource plan or, at a minimum, describe and document any conclusion that such level of savings is not achievable.

**Comment:** For the 2013 Annual Update, KCP&L has described the reason for selecting other than the lowest NPVRR resource plan. Please see Section 6: for a description of KCP&L's plan selection process

#### 8.24.14 Sierra Club – Off-System Sales

The Sierra Club asserts that KCP&L has apparently unreasonably assumed that all excess power from the LaCygne Units 1 and 2, Montrose Units 2 and 3, and Sibley Unit 3 plants would generate significant off-system sales revenue. The Company is assuming that it can generate revenue by selling all or most of the excess energy it generates into the wholesale market at a profit. A likely explanation for such modeling results is that KCP&L is assuming that higher natural gas prices will drive up market prices and, therefore, increase the price at which the Company can sell the excess energy it generates. Conversely, a lower natural gas price would reduce the price at which KCP&L could sell excess energy and the resulting reduction in sales revenue would largely offset the NPVRR benefit that we would otherwise expect to see from declining natural gas prices.

2013 Annual Update

143

KCP&L should clarify the extent to which it relies on off-system sales revenue in its resource plans, should explain its bases for its assumptions regarding off-system sales, and perform modeling that evaluates the impact of likely declines in off-system sales revenue on the comparative NPVRR of the resource plans evaluated in the IRP.

**Comment:** For the 2013 Annual Update, KCP&L has updated the natural gas price forecasts and wholesale electric market forecasts. To the extent that KCP&L resources are available to make wholesale sales after all retail obligations are met, plan results include such sales.

## 8.24.15 Sierra Club – CO₂ Costs

The Sierra Club asserts that KCP&L underestimated likely future CO2 costs. Given that coal-fired units are the most carbon intensive form of power generation, failing to fully account for likely future CO2 costs skews the analysis in favor of continued operation of coal plants and against pursuit of lower-carbon alternatives KCP&L should rerun its resource plan models with an assumed CO2 price that is more in line with that used by other utilities throughout the country.

Comment: The 2013 Annual Update includes updated CO₂ price forecasts.

## 8.24.16 MDNR's Deficiency 16

KCP&L requests acknowledgement of the combined company methodology rather than a preferred plan or resource acquisition strategy. In making its acknowledgement request, KCP&L is asking the Commission to acknowledge its use of combined company planning approach in this plan and in the allocation methods used to create a KCP&L-specific preferred plan from its combined planning effort.

**Comment:** The 2013 Annual Update contains stand-alone plans for each utility. However, KCP&L and GMO did perform analyses based on a combined-company view as described in Section 6.7 above. KCP&L and GMO continue to request acknowledgement of this element of their planning process. That specific request for acknowledgement can be found in Section 6.11 above.

2013 Annual Update

### 8.24.17 MDNR'S Concern 1

KCP&L did not request waivers to address omissions in its DSM analysis or to address the use of a combined company planning process. MDNR is concerned that important analyses have not been conducted by the Company and these omissions limit the ability to fairly assess KCP&L's planning process.

**Comment:** The 2013 Annual Update includes extensive DSM analysis and as such no waiver for the DSM analysis in required. Since the Company's analysis of combined company resource plans is not in conflict with the IRP requirements, the Company does not believe that a waiver is required.

### 8.24.18 OPC'S Deficiency 1

KCP&L failed to request a variance from, or waiver of, the requirement in 4 CSR 240-22.080 (1) for utilities to make separate utility specific triennial compliance filing and KCP&L has instead chosen to "perform its resource planning on a joint company basis" with GMO. Even though no such waiver was requested, KCP&L makes a request on page 25 of Volume 8 for "Commission acknowledgement that it is reasonable for KCP&L and GMO to perform resource planning on a joint company basis." KCP&L has not requested the variance or waiver from Chapter 22 rules that would be necessary for the Commission to make the requested acknowledgement. Furthermore, in addition to not requesting such a variance 12 months prior to its triennial filing date, the Company has not shown good cause for such a waiver or variance. KCP&L's attempt to show financial benefits from performing resource planning on a joint company basis is premised upon the assumption that neither GMO nor KCP&L would make investments in a new gas-fired combined cycle plant unless the combined capacity need of GMO and KCP&L would be sufficient to allow GMO and KCP&L combined to have majority ownership of the plant. KCP&L has not presented any type of financial or risk analysis to support this planning assumption.

**Comment:** KCP&L has performed its resource planning on a stand-alone company basis. The Company does not believe that the additional analysis completed on a combined company basis required a waiver from the Commission.

#### 8.24.19 OPC'S Deficiency 2

Public Counsel recommends that the Commission find, pursuant to 4 CSR 240-22.080 (16)(A) that the electric utility's filing pursuant to this rule does NOT demonstrate compliance with the requirements of Chapter 22, and that the utility's resource acquisition strategy either does not meet the requirements stated in 4 CSR 240-22. KCP&L's request that the Commission find that its preferred resource plan is reasonable should be denied because the utility's preferred resource plan is premised upon the lawfulness and reasonableness of KCP&L and GMO performing resource planning on a joint company basis. As shown in deficiency number one above, KCP&L did not request the variance or waiver from Chapter 22 rules that would be necessary for the Commission to make the requested reasonableness finding regarding the preferred plan resulting from joint planning that has not been authorized by the Commission. In addition, the performance of resource planning on a joint company basis that was done for this triennial filing: (1) failed to show any substantial financial benefits of joint filing that are not premised upon the assumption that neither GMO nor KCP&L would make investments in a new gas-fired combined cycle plant unless the combined capacity need of GMO and KCP&L would be sufficient to allow GMO and KCP&L combined to have majority ownership of the plant 4 and (2) did not comply with all the requirements of Chapter 22 such as the requirement in 4 CSR 240-22.080 (2)(C)3 for special contemporary issues to be addressed.

**Comment:** KCP&L has performed its resource planning on a stand-alone company basis. The Company does not believe that the additional analysis completed on a combined company basis required a waiver from the Commission. Combined cycle additions were not based on majority ownership in the 2013 Annual Update.

#### 8.24.20 OPC'S Deficiency 3

Failure to provide required statement of commitment in the letter of transmittal. The letter of transmittal provided by Roger Steiner does not contain the required commitment to the approved preferred resource plan and resource acquisition strategy and does not appear to be signed by an officer of the utility having the authority to bind and commit the utility to the resource acquisition strategy. 2013 Annual Update

146

**Comment:** The 2013 Annual Update Letter of Transmittal contains a reference to the Corporate Approval statement.

# 8.24.21 NRDC – DSM Information

NRDC asserts that KCP&L's IRP is deficient because KCP&L's DSM research activities, which support the Company's preferred plan, includes outdated research and information, and does not tie directly to KCP&L's program savings goals and budgets, nor reflect current best practices and an accurate estimate of what is realistically achievable. KCP&L cites a number of studies that have no clear direct bearing on estimating cost-effective achievable DSM resources within its territory, do not explain how these studies are relied on (if at all), and admit that the main study they are required to do has not been done.

**Comment:** The 2013 Annual Update contains updated research on the potential for DSM that includes realistic achievable potential estimates.

## 8.24.22 NRDC – DSM Program Design

NRDC asserts that KCP&L's IRP is deficient because KCP&L has not designed highly effective DSM programs that broadly cover the full spectrum of cost effective end use measures. KCP&L's program descriptions do not reflect industry best practices, nor do they adequately suggest that a full spectrum of cost effective measures are actually included in the programs.

**Comment:** The 2013 Annual Update contains updated research on the potential for DSM that includes realistic achievable potential estimates.

## 8.24.23 NRDC – Demand Side Rates

NRDC asserts that KCP&L's IRP is deficient because KCP&L has not completed a full review of the demand side rates designed to reduce net consumption or modify the timing of its use. The IRP is deficient for several reasons; the most significant being that the Company refers to research that will be completed at some time in the future but does not indicate they have performed the required analyses to assess the potential for new rate designs to induce demand-side reductions or shifts in usage.

**Comment:** This issue was addressed by KCP&L incorporating the results of the Navigant DSM Potential Study in the 2013 Annual Update. The DSM potential from Demand Side Rates was identified and included in the analysis.

### 8.24.24 NRDC – Energy Efficiency vs. Supply Side Resources

NRDC asserts that KCP&L's IRP is deficient because KCP&L has not evaluated energy efficiency and supply side resources on an equivalent basis. KCP&L has not completed a recent DSM potential study and, therefore, has not assessed the full potential of energy efficiency or its levelized costs. Due to the lack of good data, the Company is not in a position to compare energy efficiency resources to supply side resources on an equivalent basis.

**Comment:** The 2013 Annual Update is based on the recently completed DSM Potential Study. DSM and supply side resources are both considered as options for meeting retail customer demand and energy needs.

### 8.24.25 MDNR'S DEFICIENCY 15

Inadequate analysis of combined plan. KCP&L and GMO conducted a combined planning exercise that estimated 14 combined company plans, selected a combined preferred plan, identified contingency plans, and allocated the preferred plan back to each individual company. In completing the combined analysis, the Company neglected to meet the analysis and filing requirements described in the Chapter 22 rules.

**Comment**: In the 2013 Annual Update, the KCP&L and GMO preferred plans are based on a stand-alone analysis performed per the IRP requirements.