Exhibit No.:Issues:Callaway Power PlantWitness:Charles D. NaslundSponsoring Party:Union Electric CompanyType of Exhibit:Direct TestimonyCase No.:ER-2007-0002Date Testimony Prepared:July 5, 2006

MISSOURI PUBLIC SERVICE COMMISSION

CASE NO. ER-2007-0002

DIRECT TESTIMONY

OF

CHARLES D. NASLUND

ON

BEHALF OF

UNION ELECTRIC COMPANY d/b/a AmerenUE

St. Louis, Missouri July, 2006

TABLE OF CONTENTS

I.	INTRODUCTION	1
II.	PURPOSE AND SUMMARY OF TESTIMONY	2
III.	BACKGROUND OF CALLAWAY'S PERFORMANCE	3
IV.	MAJOR CAPITAL ADDITIONS	4
V.	PERIODIC REFUELINGS	8
VI.	FUTURE DECISIONS REGARDING CALLAWAY	9

1		DIRECT TESTIMONY
2		OF
3		CHARLES D. NASLUND
4		CASE NO. ER-2007-0002
5		I. <u>INTRODUCTION</u>
6	Q.	Please state your name and business address.
7	А.	Charles D. Naslund, Ameren Services Company ("Ameren Services"), One
8	Ameren Plaz	za, 1901 Chouteau Avenue, St. Louis, Missouri 63103.
9	Q.	What is your position with Ameren Services?
10	А.	I am Senior Vice President and Chief Nuclear Officer.
11	Q.	What is Ameren Services?
12	А.	Ameren Services provides various corporate, administrative and technical
13	support servi	ices for Ameren Corporation ("Ameren") and its affiliates, including Union
14	Electric Con	npany d/b/a AmerenUE ("Company" or "AmerenUE"). Because AmerenUE is
15	the only Am	eren company owning or operating a nuclear power plant, all of Ameren
16	Services' act	ivities relating to nuclear generation are provided to AmerenUE.
17	Q.	Please describe your educational background and employment
18	experience.	
19	А.	I earned a bachelor's degree in Electrical Engineering in 1974 from the
20	University of	f Missouri-Rolla and have completed 27 of 30 hours toward a master's degree in
21	Civil Engine	ering Construction Management at the University of Missouri – Columbia.
22		I began my career at Union Electric Company in December 1974 as an
23	assistant eng	ineer in substation design. In February 1976 I became Construction Supervisor

1	for the new Callaway Nuclear Power Plant ("Callaway Plant"), working at the Callaway
2	Plant at the time of its groundbreaking. In 1980, I was promoted to Supervising Engineer
3	Start-up and I became Superintendent of Start-up in 1983. After the nuclear core of the
4	Callaway Plant was loaded in June 1984, I became the Superintendent of Instrument &
5	Controls. Over the next thirteen years, I held the following additional positions at the
6	Callaway Plant: Manager of Operations Support, 1986 to 1991; Manager of Nuclear
7	Engineering, 1991 to 1998; and Assistant Vice-President of Power Operations, July 1998 to
8	January 1999. From 1999 to September 2004, I was in charge of the fossil and hydroelectric
9	generating fleet for AmerenUE. In September 2004, I returned to Callaway Plant as Vice-
10	President, Nuclear Operations, and in December 2004 I was promoted to Senior Vice-
11	President and Chief Nuclear Officer.
12	II. <u>PURPOSE AND SUMMARY OF TESTIMONY</u>
12 13	II.PURPOSE AND SUMMARY OF TESTIMONYQ.What is the purpose of your testimony in this proceeding?
12 13 14	 II. <u>PURPOSE AND SUMMARY OF TESTIMONY</u> Q. What is the purpose of your testimony in this proceeding? A. The purpose of my testimony is to: (a) provide a background of the Callaway
12 13 14 15	II.PURPOSE AND SUMMARY OF TESTIMONYQ.What is the purpose of your testimony in this proceeding?A.The purpose of my testimony is to: (a) provide a background of the CallawayNuclear Plant's performance and its importance to Missouri; (b) discuss the substantial
12 13 14 15 16	II. PURPOSE AND SUMMARY OF TESTIMONY Q. What is the purpose of your testimony in this proceeding? A. The purpose of my testimony is to: (a) provide a background of the Callaway Nuclear Plant's performance and its importance to Missouri; (b) discuss the substantial capital additions made to the Callaway Plant since the Company's last rate proceeding (Case
12 13 14 15 16 17	II. PURPOSE AND SUMMARY OF TESTIMONY Q. What is the purpose of your testimony in this proceeding? A. The purpose of my testimony is to: (a) provide a background of the Callaway Nuclear Plant's performance and its importance to Missouri; (b) discuss the substantial capital additions made to the Callaway Plant since the Company's last rate proceeding (Case No. EC-2002-1, initiated in July, 2001); (c) provide up-to-date information on several
12 13 14 15 16 17 18	II. PURPOSE AND SUMMARY OF TESTIMONY Q. What is the purpose of your testimony in this proceeding? A. The purpose of my testimony is to: (a) provide a background of the Callaway Nuclear Plant's performance and its importance to Missouri; (b) discuss the substantial capital additions made to the Callaway Plant since the Company's last rate proceeding (Case No. EC-2002-1, initiated in July, 2001); (c) provide up-to-date information on several changes to the Callaway Plant's security infrastructure and the associated operation and
12 13 14 15 16 17 18 19	 I. <u>PURPOSE AND SUMMARY OF TESTIMONY</u> Q. What is the purpose of your testimony in this proceeding? A. The purpose of my testimony is to: (a) provide a background of the Callaway Nuclear Plant's performance and its importance to Missouri; (b) discuss the substantial capital additions made to the Callaway Plant since the Company's last rate proceeding (Case No. EC-2002-1, initiated in July, 2001); (c) provide up-to-date information on several changes to the Callaway Plant's security infrastructure and the associated operation and maintenance ("O&M") cost increases, nearly all of which were driven by governmentally-
12 13 14 15 16 17 18 19 20	 I. <u>PURPOSE AND SUMMARY OF TESTIMONY</u> Q. What is the purpose of your testimony in this proceeding? A. The purpose of my testimony is to: (a) provide a background of the Callaway Nuclear Plant's performance and its importance to Missouri; (b) discuss the substantial capital additions made to the Callaway Plant since the Company's last rate proceeding (Case No. EC-2002-1, initiated in July, 2001); (c) provide up-to-date information on several changes to the Callaway Plant's security infrastructure and the associated operation and maintenance ("O&M") cost increases, nearly all of which were driven by governmentally- mandated requirements following the September 11, 2001 terrorist attack; (d) discuss a key
12 13 14 15 16 17 18 19 20 21	 I. PURPOSE AND SUMMARY OF TESTIMONY Q. What is the purpose of your testimony in this proceeding? A. The purpose of my testimony is to: (a) provide a background of the Callaway Nuclear Plant's performance and its importance to Missouri; (b) discuss the substantial capital additions made to the Callaway Plant since the Company's last rate proceeding (Case No. EC-2002-1, initiated in July, 2001); (c) provide up-to-date information on several changes to the Callaway Plant's security infrastructure and the associated operation and maintenance ("O&M") cost increases, nearly all of which were driven by governmentally- mandated requirements following the September 11, 2001 terrorist attack; (d) discuss a key Callaway Plant operation, its regular (every 18 months) refueling outages; and (e) provide

1 the Company should seek to relicense the Callaway Plant. Attachment A is an Executive

- 2 Summary of my testimony.
- 3

III. **BACKGROUND OF CALLAWAY'S PERFORMANCE**

4 5 Q. Please briefly describe the Callaway Plant.

The Callaway Plant is a 1,292 megawatt ("MW") nuclear plant located in A.

6 Callaway County, Missouri. In 2005, the Callaway Plant was the third largest power

7 producer on the Ameren system, accounting for 10.3 percent of AmerenUE's total

8 generation. Only the coal-fired Labadie and Rush Island plants produced more power than

9 Callaway. Callaway's 2005 net generation of 8 million megawatt-hours ("MWh") was

10 enough to supply all the electricity needs of more than 656,000 homes.

11

12

Q. How has production from the Callaway Plant compared with production at other nuclear plants?

- 13 Callaway's production has exceeded that of most other nuclear units. Since A. beginning operation in 1984, Callaway has achieved the sixth highest lifetime generation 14 15 among the 103 nuclear power plants operating in the U.S. (188,831,745 MWh through 2005). Callaway's lifetime generation through 2005 also ranked 22nd in the world, out of 443 16 17 nuclear plants operating in 30 countries.
- 18

How has the operation of the Callaway Plant impacted the economy in **Q**. 19 **Central Missouri?**

20 Callaway is a major factor in both the state and local economy. More than A. 21 1,000 AmerenUE employees and contractors work there full time, with a total annual payroll 22 of \$81 million. During refueling outages which occur every 18 months, hundreds of 23 additional workers are usually brought in for several weeks—providing a significant boost to

1	the local economy. The Callaway Plant is a major source of tax revenue to fund education
2	and other critical services. In 2005, the plant accounted for \$9.5 million of AmerenUE's
3	property taxes paid to Callaway County, with \$6.5 million of that amount going to local
4	schools. In addition, assessed values based on AmerenUE's investment in the plant resulted
5	in another \$20.9 million in taxes shared by the remaining 68 counties in AmerenUE's
6	Missouri service area.
7	IV. MAJOR CAPITAL ADDITIONS
8	Q. Please summarize the capital additions made to the Callaway Plant since
9	2001.
10	A. Significant major component replacements have been made to the Callaway
11	Plant since 2001, including the 2005 replacement of the plant's four steam generatorsthe
12	giant boilers that produce steam for generating electricity. In addition, in 2005 AmerenUE
13	replaced one high pressure and three low pressure turbines and their associated casings and
14	diaphragms. Turbines are the components of the plant which spin with steam pressure to
15	operate the generators. Finally, the Company replaced the main feedwater isolation valve
16	actuators, and installed new distributed control systems. In the area of plant security
17	infrastructure, the Company installed a number of new security barriers, devices and systems
18	required to meet federal guidelines. In total, the Company made \$449,677,723 in capital
19	additions to the Callaway Plant over approximately the past 5 years. Schedule CDN-1
20	summarizes each of these additions and their associated costs.
21	Q. Please explain some of the key drivers that necessitated the nearly \$450
22	million of capital additions at the Callaway Plant over this period.

Q.

Q.

A. From a general perspective, each of these additions to the Callaway Plant was necessary to ensure that Callaway remains a reliable source of power for AmerenUE and its Missouri ratepayers. The Callaway Plant has now been in operation for more than 20 years. Many of its components are at end of their useful lives and/or have become obsolete due to the unavailability of replacement parts necessary to perform proper maintenance on them.

6

Are there more specific drivers?

7 Yes. Several components were fabricated almost 30 years ago from "alloy A. 8 600" materials. "Alloy 600" is a special type of stainless steel metal used to fabricate steam 9 generator tubing, piping and as a weld filler metal for many of the welds made in Callaway's 10 reactor coolant system. In the 1970's when Callaway was being designed and components 11 fabricated, alloy 600 was the best alloy available for the required temperature and pressure 12 operating conditions. It is now known that alloy 600 materials were not able to withstand the 13 operating temperature and pressure they were subjected to in a nuclear power plant, over the periods for which they were designed. As a result, the alloy 600 materials have failed 14 15 prematurely. Among other consequences, the premature failure of the alloy 600 materials 16 necessitated the replacement of all four of the Callaway Plant's steam generators.

17

What materials were used to replace the alloy 600 materials?

A. In designing the new components, including the new steam generators, AmerenUE selected state-of-the-art materials that we expect to last for the remaining life of the plant. For the new steam generator tubing, alloy 690, a more durable stainless steel alloy was utilized. In addition, AmerenUE utilized modern design technologies to increase the efficiency of the components. This allowed the Company to improve both durability and plant output.

Q.

1

Q. What was involved in replacing the Callaway steam generators?

2 Replacing the steam generators was no small task, because each one is about A. 3 70 feet tall and 17 feet in diameter, and weighs about 400 tons. The new steam generators 4 were manufactured in France and contain tubing from Sweden. They feature improved 5 technology that has proven to be more efficient and durable than the original units. The 6 improved efficiency of the new steam generators, combined with turbine upgrades that were 7 also performed during the 2005 outage, increased Callaway's net generating capacity by 60 8 MW. The cost of the steam generator replacement and turbine upgrade projects was 9 approximately \$200 million.

10

Please address the increase in plant output more specifically.

A. As a byproduct of replacing the newly designed steam generators, turbines and actuators in 2005, the Company was able to increase the output of the Callaway Plant from 1,232 MW gross to 1,292 MW, or a 60 MW output increase. This increase in plant output further assists the Company in serving its growing loads with a low-cost supply of energy.

Q. Was the Company successful in completing its replacement projects in 2005?

A. Yes. In 2005, Callaway set a new world record for the shortest time it took to replace four steam generators. Callaway's replacement time of 63 days and 13 hours was more than a day shorter than the previous record of 64 days and 17 hours set by the South Texas Project in 2002.

The entire 2005 outage was completed on time, under budget, and with no lost-time accidents among either Ameren employees or contractors. This was the most

complex and challenging outage since construction, because it included replacement of all 1 2 four steam generators as well as replacement of all four turbines. The plant shut down 3 September 17 and returned to service on November 19. 4 As in past refueling outages, which occur approximately every 18 months, 5 thousands of maintenance activities, modifications, inspections and tests were performed 6 throughout the plant to ensure top safety and reliability until the next refueling. About 3,000 7 people worked on the project, including more than 2,000 contractors and Ameren employees 8 from other locations who joined the plant's regular staff to help handle the large volume of 9 work. They completed approximately 2.1 million work hours. 10 Q. You previously mentioned post-9/11 upgrades in security infrastructure 11 and related costs. Please elaborate. 12 A. After September 11, 2001, the Nuclear Regulatory Commission ("NRC") 13 issued a series of orders to all U.S. nuclear plants, requiring major changes in how nuclear 14 power plant operators must provide security for and defense of their nuclear plants. These 15 changes were primarily driven by a revised Design Basis Threat, or "DBT." A DBT is the 16 set of threat assumptions imposed by the NRC for which each nuclear plant must be able to 17 defend against and protect the safety of the nuclear core. In order to meet these new 18 requirements, the Company implemented a number of capital modifications by October 19 2004. Schedule CDN-2 summarizes the capital costs incurred to meet this new DBT. In 20 addition to the security/defense related capital additions to the plant itself, the new DBT 21 required a substantial increase in staffing requirements and other O&M expenses. These 22 security-related costs have added \$5 million per year to the Callaway Plant's O&M cost

23 structure. These costs increases are also shown in Schedule CDN-2.

1

Q. What was the nature of these security changes?

2 The security changes to the plant include a concrete barrier around the entire A. 3 site perimeter to act as a vehicle barrier to defend against the design basis threat. A portal 4 through this barrier system to allow the processing of materials in and out of the plant was 5 constructed. Multiple new fences with detection and monitoring systems were installed. 6 Elevated hardened defense positions that provide 100% oversight of the site's perimeter were 7 also constructed. Finally a new training facility and firing range were constructed to meet the 8 training requirements established for the security force. 9 V. **PERIODIC REFUELINGS**

Q. You mentioned in the purpose section of your testimony the subject of
periodic refuelings of the Callaway Plant. Please explain the need for those refuelings
and what a "refueling outage" entails.

13 A. The Company completed the most recent refueling outage at the Callaway Plant in November of 2005. Like all nuclear power plants, the Callaway Plant's nuclear fuel 14 15 must be replaced; i.e., the reactor must be "refueled" periodically. In the case of the 16 Callaway Plant, refuelings must occur nominally every 18 months. During a refueling 17 outage, the Company not only completes the necessary refueling, but also uses the outage as 18 an opportunity to perform required maintenance of the plant and implement any 19 capital/maintenance modifications required to meet regulatory requirements, address 20 reliability issues or replace obsolete equipment. By combining scheduled maintenance and 21 capital addition work with refuelings, the Company can minimize outage time and maximize 22 the efficiency of the necessary operations. Schedule CDN-3 summarizes the duration and

1 costs of each outage since Callaway went online in December 1984. During this 21 year

2 period and 14 outage cycles, Callaway has averaged 49.4 days per outage.

3

VI. FUTURE DECISIONS REGARDING CALLAWAY

4 Q. You indicated earlier that the Callaway Plant had been in operation for 5 over 20 years and that the age of the plant required these rather major upgrades. What 6 is the life of the Callaway Plant?

7 A. When the Callaway Plant commenced operations in 1984, the NRC granted 8 the Company a 40 year license for the plant. This license will expire approximately 18 years 9 from now in 2024. The plant is thus just over one-half of the way through its licensing 10 period. The NRC has established a process for extending the original licenses an additional 11 20 years. This process normally is started about 10 years before the license is scheduled to 12 expire. Consequently, AmerenUE will not be deciding whether or not to commence the 13 relicensing process until around 2014. As of now, AmerenUE has made no decision as to 14 whether it should request an extension of the Callaway license. The Company continues to 15 engage in extensive data gathering, including monitoring critical plant components for life 16 impacts due to radiation exposure and high temperature environments. The single most 17 critical consideration in determining whether or not relicensing may be feasible is the 18 condition of the reactor vessel itself. Extensive monitoring is in place to measure neutron 19 embrittlement of the vessel wall. The additional data gained over the next approximately 20 eight years will be critical in assisting the Company in making a relicensure decision. While 21 no decision can be made for a number of years, the Company continues to do all the things 22 necessary to preserve this option.

1 Q. Are there other factors that AmerenUE will consider in deciding whether

2 to seek a license extension for the Callaway Plant?

- 3 A. Yes. The overall cost of continuing to operate the plant will also be a
- 4 consideration. The cost can be impacted by a number of factors including changing
- 5 regulatory requirements, increases in the cost of purchasing fuel or disposing of spent fuel
- 6 rods and increases in O&M costs. In addition, the relative costs of other power sources will
- 7 have to be considered at the time the decision is made.
- 8 Q. Does this conclude your testimony?
- 9 A. Yes, it does.

BEFORE THE PUBLIC SERVICE COMMISSION OF THE STATE OF MISSOURI

)

)

)

)

)

In the Matter of Union Electric Company d/b/a AmerenUE for Authority to File Tariffs Increasing Rates for Electric Service Provided to Customers in the Company's Missouri Service Area.

Case No. ER-2007-0002

AFFIDAVIT OF CHARLES D. NASLUND

STATE OF MISSOURI)) ss CITY OF ST. LOUIS)

Charles D. Naslund, being first duly sworn on his oath, states:

 My name is Charles D. Naslund. I work in the City of St. Louis, Missouri, and I am employed by Ameren Services Company as Senior Vice President and Chief Nuclear Officer.

2. Attached hereto and made a part hereof for all purposes is my Direct

Testimony on behalf of Union Electric Company d/b/a AmerenUE consisting of 10 pages,

Attachment A and Schedules CDN-1 through CDN-3, all of which have been prepared in

written form for introduction into evidence in the above-referenced docket.

3. I hereby swear and affirm that my answers contained in the attached testimony to the questions therein propounded are true and correct.

Charles D. Naslund

Subscribed and sworn to before me this 5th day of July, 2006.

My commission expires: 8 - 3 - 2007

LORI L. TWILLMAN Notary Public - Notary Seal STATE OF MISSOURI Callaway County My Commission Expires: Aug. 3, 2007

EXECUTIVE SUMMARY

Charles D. Naslund

Senior Vice President and Chief Nuclear Officer

* * * * * * * * * *

The purpose of my testimony is to: (a) provide a background of the Callaway Nuclear Plant's performance and its importance to Missouri; (b) discuss the substantial capital additions made to the Callaway Plant since the Company's last rate proceeding (Case No. EC-2002-1); (c) provide up-to-date information on several changes to the Callaway Plant's security infrastructure and the associated operation and maintenance ("O&M") cost increases, nearly all of which were driven by governmentally-mandated requirements following the September 11, 2001 terrorist attack; (d) discuss a key Callaway Plant operation, its regular (every 18 months) refueling outages; and (e) provide information related to a future decision that will have to be made regarding whether or not the Company should seek to relicense the Callaway Plant.

Callaway's production has exceeded that of most other nuclear units. Callaway's lifetime generation was the sixth highest among the 103 operating U.S. nuclear power plants, and 22nd in the world, out of 443 nuclear plants operating in 30 countries. Callaway has over 1,000 full-time employees and contractors. In 2005, the plant accounted for \$9.5 million of AmerenUE's property taxes paid to Callaway County, with \$6.5 million of that amount going to local schools.

Significant major component replacements have been made to the Callaway Plant since 2001, including the 2005 replacement of the plant's four steam generators--the giant

boilers that produce steam for generating electricity. In total, the Company made \$449,677,723 in capital additions to the plant over approximately the past 5 years.

In order to meet new security requirements imposed by the Nuclear Regulatory Commission ("NRC") after September 11, 2001, the Company implemented a number of capital modifications by October 2004 and substantially increased staffing and other O&M expenses. These security-related costs have added \$5 million per year to the Callaway Plant's O&M cost structure.

The Company completed a regular refueling outage at the Callaway Plant in November of 2005. By combining scheduled maintenance and capital addition work with such refuelings, the Company minimizes outage time and maximizes the efficiency of these necessary operations.

The NRC license for the Callaway Plant will expire approximately 18 years from now in 2024. The NRC's process for extending licenses an additional 20 years normally is started about 10 years before the license is scheduled to expire. Consequently, AmerenUE will not be deciding whether or not to commence the relicensing process until around 2014. The single most critical consideration in determining whether or not relicensing may be feasible is the condition of the reactor vessel itself. The additional data gained over the next approximately eight years will be critical in assisting the Company in making a relicensure decision. During that time, the Company will continue to do all the things necessary to preserve this option.

Schedule CDN-1-1

Ameren Corporation Project Based Proj Sum - Cap In-Budget Row Only

Grand **Escalated, Accountable Dollars**

Project

	Grand	Opening	Year	Year	Year	Year	Year	Closing
I								
02000 - RADIATION DETECTION INSTRUMENTS	109.782	14.831	13.926	81.025				
02050 - UPGRADE LAB MATERIAL CONDITION	105,909			4,683	28,918	71,096	1,211	
02069 - NIS COMPUTER ROOM HVAC	143,380				81,828	61,552		
02233 - PERM PLTFRMS ON ISOPHASE STRUCTURE	98,016			97,824	192			
02397 - LOAD INDICATORS FOR THE POLAR CRANE	104,982					103,213	1,769	
02460 - LN CONTNMNT SUMPS WITH STNLS STEEL	233,348		111,185	110,847	7,575	3,741		
02483 - STATOR COOLING WATER LEAK MONITORNG	107,446	62,417	9,763	35,266				
02485 - LAN CONNECTED TELEMETRY	141,891			90,023	51,869			
0A015 - CAPITAL SP PART (UOP) & INITIAL PUR	1,812,221			229,974	33,481	1,047,270	501,496	
0A173 - WORK CONTROL CAPITAL TOOL PURCHASE	170,479						170,479	
0A216 - OFFICE FURNITURE	239,321						239,321	
0A502 - MISC HP - OPERATIONS CAPITAL EQPMNT	150,656						150,656	
0A505 - MISC CHEMISTRY CAPITAL EQUIPMENT	108,802						108,802	
10376 - HP FEEDWATER HEATER DUMP VALVE RPLC	386,902	250,894	133,887	2,120				
10579 - UPGRD OF TERRY TURB CNTL-DIG CNTLR	425,069	56,679	167,632	162,614	22,748	14,751	646	
10591 - RADIATION DETECTN INSTR CALIBRATOR	108,888		108,888					
10669 - COOLING TOWER FILL ADDITION	559,211		529,787	29,424				
10704 - VOLTAGE CORRECTION EQUIPMENT	4,767,032	2,524,589	1,783,411	439,117	11,406	8,509		
10806 - TUBE BUNDLE REPLCMNT-FEEDWATER HTRS	4,981,129	1,049,892	3,928,779	2,457				
10878 - 98-1027 REPL 2 IN CS PIPE WITH SS	653,619						653,619	
11009 - STEAM GENERATOR REPLACEMENT	1,625,542	267,225	1,119,597	203,394	35,327			
11013 - INSTALL SVC WATER BASKET STRAINERS	673,443	17,352	656,091					
11028 - RENOVATE THE HP ACCESS AREA	373,012	217,155	155,857					
11030 - RPLC MN STEAM ISOLATION VLV ACTUATR	12,614,905		763,999	2,545,407	1,181,731	4,597,524	1,089,149	2,437,095
11031 - REMOVE & DISPOSE OF FILTER ABSORBER	156,472		11,219	141,156	4,098			
11040 - CARBON STEEL PIPING REPLACEMENT	1,608,381	4,510	476,630	266,207	206,316	541,392	113,326	
11041 - INFRASTRUCTURE FOR DIGITAL CNTL SYS	2,852,759	8,301	838,021	1,199,831	696,814	109,686	105	
11042 - DIESEL GEN EXCITOR CONTROLS RPLCMNT	4,688,685		6,797	49,948	140,215	957,574	792,450	2,741,701
11043 - DIGITL FDWATER HEATER LVL CNTLS RPL	3,217,289				330,920	1,346,864	237,050	1,302,456
11044 - UPGRD CNTLS-POLSHR WASTE WATER PROC	5,239,302	934,002	1,500,659	1,328,473	1,371,704	113,743	(9,280)	
11045 - INSTALL MN STEPUP XFRMR GAS MONITRS	364,939	100,779	51,127	164,207	48,584	242		
11064 - ADD 10 ESW ISOLATION VLVS FOR 5 RM	739,897	15,863	186,087	198,866	105,356	233,725		
11123 - RPLC ATMOSPHERIC STEAM DUMP SILENCR	157,733		157,733					
11140 - REPLACE CONTAINMENT COOLER COILS	4,818,198	84,131	3,053,096	1,651,924	29,048			
11151 - CONDENSER TUBE REPLACEMENT	32,785,662				9,223,586	23,530,703	31,373	
11183 - RPLC FIRE PROTECTION SYSTEM EQPMNT	1,158,538		18,795	228,154	338,683	582,956	(10,051)	
11185 - RPLCMNT OF PK11&PK12 BATTERY BANKS	339,547			317,458	22,089			
11189 - UPGRD RDWSTE BLDG DRUM STORAGE AREA	477,937		107,464	120,387	97,425	130,197	251	22,214

Ameren Corporation Project Based Proj Sum - Cap In-Budget Row Only

Escalated, Accountable Dollars

Project	Ċ		>					
	Total	Balance	2001	2002	2003	2004	2005	Balance
11218 - OFFICE FURN. FOR CALLAWAY FOR 2001	216,528		200,165			16,362		
11219 - FURNITIRE 2002 11220 - FURNITURE 2003	283,097 232.378			282,958	140 232.318	60		
11221 - FURNITURE 2004	196,788					198,786	(1,998)	
11234 - LOW PRESSURE ROTOR ELEMENT RPLCMNT	60,861,174			71,961	594,748	23,653,560	35,435,564	1,105,341
11283 - REPLACEMENT HEALTH PHYSICS SOFTWARE	510,803		65,417	445,386				
11286 - TRAINING CENTER HVAC UNITS	323,865		26,800	1,338	253,331	42,396		
11289 - MAIN FEED PUMP EHC UPGRADE	4,579,005				348,328	862,162		3,368,516
11293 - MN TURBINE GENERATOR GOVERNOR CNTLS	3,431,636				315,827	1,075,640	671,157	1,369,011
11298 - BOP NON-1E ANALOG CONTROLS REPLCMNT	424,344				265,409	147,427	11,507	
11307 - MAIN CONTROL BOARD UPGRADE	759,695				269,256	532,612	(82,297)	40,124
11308 - LSELS, ESFAS, MSFIS UPGRADE	14,572,038			1,502,355	1,181,269	7,525,779	(583,964)	4,946,601
11309 - DCS ACTIVITIES	282,136			139,519	467,817		(325,200)	
11311 - BCMS UPGRADE	366,225		20,628	162,180	130,465	50,258	2,694	
11312 - FLUX MAPPING SYSTEM UPGRADE	1,957,632			235,215	1,088,372	632,251	1,794	
11316 - WASTE GAS H2 ANALYZER REPLACEMENT	964,262		4,226	806,402	76,623	89,012	(35,405)	23,404
11339 - CONTROL ROOM SIMULATOR UPGRADE	4,660,514			846,186	1,456,573	1,257,880	1,099,875	
11342 - PLANT COMPUTER UPGRADE	9,813,035		248,917	1,009,430	1,034,148	2,570,478	1,533,043	3,417,018
11470 - 2004 WALKUP COPIER REPLACEMENT	145,737					145,737		
11472 - 2003 HIGH VOLUME COPIER REPLACEMENT	226,101				205,917	20,184		
11683 - REPLACE HVAC UNITS - 2 FL SERV BLDG	295,278		269,855	25,129	294			
11692 - MOLD REMOVAL IN CENTRAL PROCESS FAC	105,276		105,276					
11806 - RETIRE PASS	158,370		49,624	104,625	4,121			
12077 - INSTILL DIVERSION VLV:NEW HELPER TWR	492,679		492,679					
12319 - VIDEO CAPTURE & IRIS SCAN DOOR COMP	116,988				29,827	87,161		
12636 - STEAM GENERATOR REPLACEMENT	188,629,606		1,279,111	20,271,228	34,151,787	23,786,892	105,606,430	3,534,158
12748 - GAMMA 10 UPGRADE/REPLACEMENT	254,696				254,696			
12774 - REPLACE AUX BUILDING ROOF	628,792					394,176	228,381	6,235
12780 - CYCLE 12 SEC SIDE EROSION PIPE RPLC	1,762,403			1,750,157		12,246		
12817 - X-RAY MACHINE REPLACEMENTS	102,390			51,504	50,885			
12821 - BACKFILL UNIT 2 EXCAVATION	884,821		5,896	870,672	8,252			
12825 - REFUEL 13 NON SGR ACTIVITIES	2,142,469				121,314	2,594,090	(572,935)	
12828 - SGRP SUPPORT FACILITY	2,574,195				49,762	2,522,447	1,986	
12829 - DOCKING FACILITY	3,718,106		115	6,827	301,238	1,664,241	1,745,685	
12830 - SECURITY UPGRADE	1,461,152			8,534	265,195	1,177,339	10,084	
12866 - 01-1001 RPLC LIQUID RADWASTE SYSTEM	242,461				93,626	139,811	9,023	
12940 - UPGRADE MN GSU TRANSFORMER COOLERS	1,083,233				27,230	907,941	54,915	93,147
12970 - REPLACE MAIN FEEDWATER PIPING	2,959,407			2,959,407				
13128 - INSTALL VNDR SUPPLIED CHEM ADD EQPT	3,083,837		9,646	1,688,779	395,864	894,270	95,278	
13129 - RPLC ACID ADDTN EQPT FOR COOLNG TWR	554,080			360,914	40,601	66,389	40,773	45,403

Ameren Corporation Project Based Proj Sum - Cap In-Budget Row Only

Escalated, Accountable Dollars

Project

Closing		734,796	33,191 191	49,002 1,548,108 262,268 171,522 27.251,308
Year	2007 107 10	9,933 9,933 9,933 9,933 9,933	1,182,432 124,741 (4,195) (92,384, (306) 1,427,983 103,165 103,165	3,775 (27,433) (27,433) (27,436) 136,496 136,496 135,252 168,137 168,137 162,937 92,327 92,327
Year	15,411 228,890 331,826 62 306	042,800 104,487 521,764 52825 604,875 124,292 124,292 22,174 19,673,838 181,088	85,264 23,458 15,050 206,593 3,307,047 132,759 2,919 2,919 11,464 11,464	121,849 976,892 144,514 6,322 6,322
Year	310,589	29,303 29,312 23,219 148,325 169,137 230,082 1,340,781 230,781 206,130	1,720 56,775 257,659 973,356 973,336 127,902 318,173 50,708	62,357,798
Year	2002 1,678 3.051.502	N86''G0''0		46.354.763
Year	2001 125,543			18,794,331
Opening	Dalance			5,608,620
Grand	1013 326,000 228,890 331,826 127,221 3 256,405	3,250,405 563,156 563,156 201,150 783,945 124,292 252,255 252,255 252,255 273,15,170 398,011	1,302,607 204,974 257,659 988,386 330,300 3,532,836 183,161 1,430,902 114,630 1,291,262	174,626 949,459 144,514 1,684,604 362,115 768,434 168,132 168,172 162,937 263,848 449,677,723
	13143 - REPLACE PK13 AND PK14 BATTERY BANKS 13144 - REPLACE PJ11 BATTERY BANK 13169 - RCP MOTOR CHANGEOUT SPPT COSTS RF13 13201 - A LOOP FEEDWATER PIPING REPLACEMENT	13254 - PLANI SECURITY UPGRADE 13297 - CAPITAL SHOP TOOLS OVER \$1,000 13342 - 02-1013 VIDEO MONITORING FOR HP ACC 13411 - 22-1017 INSTALL SIRENS AROUND SITE 13412 - AUTOMATIC RECIRCULATION VALVE SYS 13417 - SF6 GAS RECLAIMER 13457 - 2 RELIEF VLV TEST MACHINES PURCHASE 13609 - 2003 SECURITY UPGRADES 13673 - 1E FOXBORO CABINETS UPGRADE	 13731 - REPLACE EP8818 VALVES 13908 - TRAINING FACILITIES IMPROVEMENTS 13925 - REPLACE WHOLE BODY COUNTERS 14150 - REPLACE 2 CIRCULATING PUMPS 14187 - RPLC MN GEN HYDROGEN COOLER BUNDLES 14207 - C13&R13 SEC SIDE EROSION PIPE RPLC 14275 - DOSE ASSESSMENT SOFTWARE 14383 - C14&R14 ESW CARBON STEEL PIPE RPLC 14842 - REPLACE PN01 AND PN02 INVERTERS 14938 - REPLACE RO1 AND PN02 INVERTERS 14938 - REPLACE RETIRE FEF02A AND FEF02B 	15127 - PORTLAND RIVER SAMPLER CNTRLS UPGRD 15203 - PRCHS 120 TON HYDRLIC TELESCPNG CRN 15210 - REPLC SENE0061 POST ACCIDENT DETECT 15889 - MILES GEAR, GUNS AND OPTICS 15954 - REACTOR VESSEL HEAD MTCE EQUIPMENT 16155 - MET TOWER REPLACEMENT 16169 - CLLAWAY DIRECTOR SYSTEM 16229 - REPLACE SWITCHYARD BATTERIES 16226 - X-RAY MACHINE REPLACEMENTS 16221 - REPLACE LOWER TURBINE BLDG ROOF

Capital Costs Relating to NRC Orders

Supplemental Vehicle Barrier System
New Owner Controlled Access Facility
Pavement of construction parking lot and roads
Lighting of construction parking lot

2003 Orders

Design Basis Threat
Security Training
Security Working Hours

New permanent Vehicle Barrier System

New active Vehicle Barrier System (sally port)
New hardened fixed security response positions

- New delay fences
- Modifications to our Secondary Alarm Station due to Design Basis Threat
- Movement of security multiplexer

2002 Interim Compensatory Measures Order

- New intrusion detection system
- New camera system
- Electrical upgrades to security equipment
- Upgrades to the Security Firing Range

Total Orders

\$28.6 million

\$25.3 million

\$3.3 million

O&M Increases in Costs 2001-2005

Total O&M Security Budget (By Year):

2001 \$4.8 million

2002 \$6.9 million

- Implementation of the Interim Compensatory Measures Order
- Additional security personnel to accommodate Order requirements
- Additional searches of vehicles and personnel
- Additional training requirements
- 2003 \$6.8 million
- 2004 \$9 million
 - Implementation of the Design Basis Threat Order, the Security Training Order, and the Security Working Hours Order.
 - Change in security strategy required additional staffing
 - Additional security weapons
 - Moving security presence out to OCA required additional staffing
 - Security Training Order required additional training with required us to move to a 5-crew schedule
 - Security working hours limits required less scheduled overtime therefore more people to cover the shifts

2005 \$9.8 million

- NRC evaluated Force on Force Exercise
- Support of RF14

Increase from 2001 to 2004: \$5 million

CALLAWAY REFUEL OUTAGE MAINTENANCE COSTS

	Refuel 1	Refuel 2	Refuel 3	Refuel 4	Refuel 5	Refuel 6	Refuel 7
	Spring	Fall	Spring	Fall	Spring	Fall	Spring
	1986	1987	1989	1990	1992	1993	1995
Maintenance Projects			\$14.0	\$16.1	\$23.0	\$19.8	\$20.7
Excluding AmerenUE							
Wages							
Incremental AmerenUE			\$4.0	\$5.7	\$5.1	\$5.0	\$4.5
Overtime Wages							
Replacement Energy			\$8.3	\$7.2	\$7.7	\$13.6	\$8.6
	Not	Not					
TOTAL	Available	Available	\$26.3	\$29.0	\$35.8	\$38.4	\$33.8
Duration	49 days	65 days	53 days	60 days	60 days	52 days	48 days

	Refuel 8	Refuel 9	Refuel 10	Refuel 11	Refuel 12	Refuel 13	Refuel 14
	Fall 1996	Spring 1998	Fall 1999	Spring 2001	Fall 2002	Spring 2004	Fall 2005
Maintenance Projects Excluding AmerenUE Wages	\$16.8	\$16.3	\$22.0	\$23.1	\$22.6	\$40.1	\$21.5
Incremental AmerenUE Overtime Wages	\$3.5	\$5.1	\$5.0	\$8.0	\$4.9	\$9.7	\$9.3
Replacement Energy	\$10.0	\$7.7	\$12.7	\$18.1	\$10.2	\$24.3	\$25.4
TOTAL	\$30.0	\$29.1	\$39.7	\$49.2	\$37.7	\$74.1	\$56.2
Duration	31 days	31 days	35 days	45 days	34 days	65 days	63D 13H

Schedule CDN-3-1