

ST. JOSEPH LIGHT & POWER COMPANY

ALLOCATION PROCEDURES

an article where

Mail and a state of the

Manual and

Sec. 2

CASE NO. EO-94-36

August 1994 Revised October 1994 Revised December 1994

January 1, 1995

ST. JOSEPH LIGHT & POWER COMPANY

ALLOCATION PROCEDURES

CASE NO. E0-94-36

[. CAPITAL PLANT ALLOCATION - Lake Road

- A. Portions of LR Capital Plant Allocated 100% to Electric
- B. Portions of LR Capital Plant 100% Assigned to Industrial Steam
- C. Portions of LR Capital Plant Common to Electric and Industrial Steam
- D. Reserve for Depreciation Allocation Lake Road

II. CAPITAL PLANT ALLOCATION - General Plant

- A. Capital Plant Allocation General Plant
- B. Reserve for Depreciation Allocation General Plant

III. INVENTORY - FUEL Lake Road

- IV. INVENTORY Materials and Supplies
 - A. Materials and Supplies Inventory Allocation Lake Road
 - B. Other Materials and Supplies

V. OTHER RATE BASE ITEMS

- A. PREPAYMENTS
- B. DEFERRED TAXES
- C. SPECIAL DEPOSITS

VI. EXPENSES - FUEL

liva juid

Surface and surg

Warehow's

al a static stat

A. Fuel and Daily Ash Expense Allocations

B. Auxiliary Electric Power Allocation

VII. EXPENSES - O & M EXPENSE ALLOCATION

VIII. Expenses- General & Administrative Expenses

IX. EXPENSES - PROPERTY TAXES

X. EXPENSES - INTEREST FOR TAXES

ST. JOSEPH LIGHT & POWER COMPANY ALLOCATION PROCEDURES CASE NO. E0-94-36

I. CAPITAL PLANT ALLOCATION - Lake Road

A. Portions of LR Capital Plant Allocated 100% to Electric

The following LR capital plant is to be allocated 100% to Electric, with the noted exceptions:

- 1. All "900 lb." steam turbine generators and associated equipment (Acc 314) including the following:
- main steam piping, with supports, leading to turbines (Acc 314);
- turbine generator controls and instrumentation (Acc 314);
- main steam condensers, condensate pumps, piping and auxiliaries (Acc 314);
- cooling towers and auxiliaries (Acc 314);
- circulating water pumps and circulating water lines (Acc 314);
- BUT EXCLUDING Turbine #1 (Acc 314).
- 2. All combustion turbine generators, Boiler #7 (HRSG) and associated equipment (Acc 340's).
- 3. Unit 4/6 (the "1800 lb. system") including Boiler #6 (Acc 312), Turbine Generator #4 (Acc 314), Boiler #6 condensate & feedwater system (including demineralizers) (Acc 312), Boiler #6 coal handling (including crusher house and coal crushing equipment) (Acc 312), Precipitator #6 (Acc 312), and Boiler #6 ash removal system (Acc 312).
- 4. Turbine building and other buildings and structures housing and/or associated with the 100% electric generation facilities (Acc 311 & 341).

B. Portions of LR Capital Plant 100% Assigned to Industrial Steam

The following LR capital plant is to be allocated 100% to Industrial Steam:

1. All steam piping, supports, desuperheating water piping, pressure reducing stations, attemperating stations, controls and metering equipment from the 200 psi plant output meters (12" and 16" meters), inclusive to the low pressure industrial steam customers (Acc 312).

- 2. All steam piping, supports, attemperating station, and associated controls and metering equipment from the 900 psi header to the high pressure (850 psi) industrial steam customer (Acc 312).
- 3. The high pressure (850 psi) industrial steam customer desuperheating pumps, piping, and controls (Acc 312).
- 4. All industrial steam customer meter houses, buildings and structures which house or are associated with 100% industrial steam facilities (Acc 311).

<u>C. Portions of LR Capital Plant Common to Electric and Industrial Steam</u>

The following LR capital plant is to be allocated between Electric and Industrial Steam, using the allocation methods specified.

1. Automatic Extraction Turbine #1 (Acc 314);

<u>Allocation</u> - Allocate a fraction, E, to the electric users, where E is the ratio between 1) the cost of a new standard turbine, i.e., non-automatic extraction turbine, and 2) the cost of a new automatic extraction turbine. The remaining fraction (R = 1 - E) is to be allocated further between electric and steam users since the extraction goes to both electric and steam customers. This fraction (R) shall be allocated between steam and electric users by applying the 900 lb Steam Demand Allocation Factor. A 1994 study of standard and automatic extraction turbine costs established that E=94.6% and R=5.4% (R=0.054). (See Attached Memorandum dated January 28, 1994 and marked Schedule 1).

- 2. Boilers 1 through 5, including the following (Acc 312):
- air and fuel supply systems, including coal handling facilities dedicated solely to Boiler #5 (312);
- feedwater pumps, valves and piping (Acc 312);
- deaerator and feedwater storage tanks (Acc 312);
- steam piping to the 900 lb. steam header (Acc 312);
- precipitators, stacks and emission control equipment (Acc 312);
- Ash handling facilities dedicated solely to Boiler #5 (Acc 312);

<u>Allocation</u> - Allocate by applying the 900 lb Steam Demand Allocation Factor.

3. Common coal handling facilities including the following (common to Boilers #5 & #6) (Acc 312):

- rotary car dumper (Acc 312);
- locomotive (Acc 312);
- common coal conveyors (Acc 312);
- dozers (Acc 312).

<u>Allocation</u> - Allocate first between Boiler #5 (allocated plant) and Boiler #6 (100% electric) based on the rate at which each boiler burns coal at its rated maximum output ("rated coal burn rate"). The Boiler 5 rated coal burn rate is 15 tons/hr and the Boiler #6 rated coal burn rate is 43 tons/hr. Thus, allocate a fraction R to Boiler #5, where R is 15/58, or 25.86%, and then allocate this portion further between electric and industrial steam by applying the 900 lb Steam Demand Allocation Factor. Allocate the fraction E = 1-R, or 74.14%, to Boiler #6 and charge 100% to electric.

- 4. Common ash handling facilities including the following (common to Boilers #5 & #6) (Acc 312):
- low side ash tank (Acc 312);
- associated exhausting vacuum system (Acc 312);
- . rotary unloader (Acc 312).

Allocation - Allocate first between Boiler #5 (allocated plant) and Boiler #6 (100% electric) based on the rate of ash production from each boiler at its rated maximum output, after adjusting these values for the fraction of ash from each boiler which actually is directed to the common ash tank. To accomplish this, obtain the maximum ash production rate for each boiler by multiplying the rated coal burn rate (15 tons/hr for Boiler #5 and 43 tons/hr for Boiler #6) by the ash content of the coal (A_5 and A_6 , respectively). Then recognize that 100% of Boiler #5 ash goes to the ash tank, but only a portion (estimated to be 17.7%) of the fly ash and none of the cyclone slag/bottom ash from Boiler #6 goes to the ash tank. Thus, allocate the fraction R to Boiler #5, where R is equal to (15 x A₅) divided by the quantity (15 x A₅ + (43 x \underline{a} x \underline{b}) x A_{k}), with <u>a</u> equal to the fraction of Boiler #6 fly ash going to the tank (currently 17.7%) and with b equal to the fraction of fly ash in total ash (30%) coming from Boiler Then allocate this portion (R) further between #6. electric and industrial steam by applying the 900 lb Steam Demand Allocation Factor. Allocate the remainder (E = 1-R)to Boiler #6 and charge 100% to electric. (If the two boilers are burning coal with the same ash content, the As and A_{k} terms can be dropped.)

5. Water Treatment Facilities (Acc 312);

<u>Allocation</u> - Allocate a fraction E to electric, where E is the ratio between 1) the cost of new water treatment facilities capable of treating only that amount of water needed for electric plant and 2) the cost of new water treatment facilities capable of treating water for both the electric users and the steam users. Allocate the remaining fraction (S = 1 - E) to industrial steam. A 1994 study of Lake Road Feedwater Treatment Facilities established that E = 17.1% and S = 82.9%. (See Attached Memorandum dated March 8, 1994 and marked Schedule 2).

6. Other plant facilities, buildings, structures and equipment (Accounts 310, 311, 312, 315 and 316, unless covered above).

Allocation

Account 310 - Land and Land Rights:

Allocate based on the ratio derived from the total plant allocated to industrial steam and electric in accounts 311, 312, 314, 315, 316, 341, 342, 344, 345 and 346.

Account 311 - Structures and Improvements:

- Turbine Building will be assigned 100% to Electric.
- Steam Meter Houses will be assigned 100% to Industrial Steam.
- Allocate the Water Softener Building and the Water Treatment Building using the same allocation factor used to allocate the water treatment facilities.
- The remainder of account 311 will be allocated based on the ratio between the total plant allocated to industrial steam and electric in Accounts 312 and 314 only.

Account 315 - Accessory Electric Equipment:

A review was made of the details of Account 315 (L1315) assigned to electric. This review identified that a portion of account 315 should be allocated between electric and industrial steam and that a portion is 100% electric. The review of the industrial steam account 315 (L6315) identified that all of this account should be assigned to industrial steam. The allocable portion of account L1315 should be allocated based on the total plant ratio determined in allocation accounts 311, 312, and 316. (See Attached Memorandum dated March 14, 1994 and marked Schedule 3).

Account 316 - Miscellaneous Power Plant Equipment : Items under Account 316 should be allocated by applying the 900/1800 lb Steam Demand Factor.

D. Reserve for Depreciation Allocation - Lake Road

A portion of the electric reserve balance for each plant account is allocated to Industrial Steam based on the percentage of the electric plant in service allocated to Industrial Steam.

Weither market

Contraction of the

(and a subject of

20-Dec-94

. ,

· latiturituri

Plantainter

A THE REPORT OF A LOCAL DESIGNATION OF A LOCAL DESIGNATION OF A LOCAL DESIGNATION OF A LOCAL DESIGNATION OF A L

يلاديه بدؤا تعمده كز

States was and

「「こいっちょう」

And white with

A trade

HERBERG

;

				LAKE ROAD I	LAKE ROAD PLANT ALLOCATION - SETTLEMENT SCENERIO DECEMBER 31, 1933	N - SETTLEMEN	IT SCENERIO				~	
ACCOUNT #, TITLE	ELECTRIC P.I.S. @12/31/93	STEAM P.I.S @12/31/33	TOTAL P.I.S. @12/31/83	100% BLECTRIC	100% STEAM	PEMAINING	900# STEAM DEMAND BLECTRIC STEAM 76.9% 23	DEMAND STEAM 23.1%		Jun	TOTAL PLANT	PLANT
312 BOLERS	15,788,698	6 414,810	16,203,509	6,399,056 (A.B)	718,643 (8)	9,065,808	6,966,986	2,098,822		'1	S S	2,817,465
312A COAL HANDLING	8,573,722	51	8,573,722	6,353,128 (D)		2,220,594	1,707,637	512,957			8,060,765	512,957
312B ASH HANCLING	55,663	5	55,663	7,348 (E)		48,315	37,154	11,161			44,502	11,161
314 TURBO GENERATORS	7,976,637	7	7,976,637	7,927,593 (C)		49,044	37,715	11,329			7,965,308	11,329
341 STRUCTURES & IMPROV	1,086,796	53	1,086,796	1,086,796		0	0	o			1,086,796	0
342 FUEL HOLDERS, PROD	587,259	~	587,259	567,259		0	0	0			587,259	0
344 PRIME MOVERS/GENRITH	12,567,275	10	12,667,276	12,667,276		¢	0	0			12,667,276	0
345 ACCESSORY ELECTRIC	528,112	01	528,112	528,112		0	0	0			528,112	Q
346 MISC POWER PLANT EQ	41,556	5	41,556	41,556		0	o	0			41,556	0
	47,305,720	0 414,810	47,720,530								44,367,618	3,352,912
							•			PATIO	0.830	0.070
						HEMAINING S	900/1800# STEAM DEMAND ELECTRIC STEAM 89.3% 10.7	I DEMAND STEAM 10.7%	BASED ON TOTAL PLANT RATIO CALOULATED ABOVE BLECTHIC STEAM 93.D% 7.D%	NT RATIO SOVE 7.0%		
310 LAND & LAND RIGHTS	319,438	8 11,450	330,858			330,568			307,726	23,162	307,726	23,162
311 STRUCTURES & IMPROV	5,839,246	6 78,600	5,917,846	19,186 (F)	63,012 (F)	5,805,648			5,399,253	406,395	5,418,439.	499,407
315 ACCESSORY BLECTRIC	1,861,673	3 357,844	2219,517	1,333,906 (G)	357, B44 (G)	527,765			490,821	36,944	1,824,729	394,786
316 MISC POWER PLANT	1,337,264	4 64,573	1,401,837			1,401,837	1,251,840	149,997			1,251,840	149,997
	9,357,621	1 512,467	9.870,088				~			,	8 802,734	1,067,354
	56,663,341	1 927.277	57,590,618	100		a been rete	retter			ı	53,170,353	4,420,265
(A) BOLER #6, PRECIPITATOR #6, CRUSHERS, & CRUSHER HOUSE DISTAM PRIMA AND WATER PURPERTION SOUNDERLY AND ASP DESPIREMENT PUMP (A) TIRDAKE #1 ISA IN CATER ON ASK-LEATION SOUNDERLY AND ASP DESPIREMENT ON AND TRANSF.	A #6, CRUSHER A PURIFICATION	IS, & CRUSHER F V EQUIPMENT AV DIC & 5 AMOUNT OF	HOUSE VO AGP DESUPE	PHEAT PUMP E DOARYS 1004 STUID								

Attachment A 1 of 3

20-Dec-94

internation of the second second

Underwideren viel

the weight with

Menderun Les

「日本は市政法へを

(Internet in the last

فطاطعهم

「「「「「」」

المشمطقا أينما

	ELECTRIC	STEAM	TOTAL		RATIO OF ADJUSTMENT	ELECTRIC RESERVE	ELECTRIC RESERVE
ACCOUNT #, TITLE	@12/31/93	@12/31/93	STEAM PLANT	ADJUSTMENT	ELECTRIC P.I.S.	BALANCE (2) @12/31/33	TO STEAM
312 BOILERS	15,788,699	414,810	2,817,465	2,402,655	11.97% (1)	17,680,609	2,116,369
312A COAL HANDLING	8,573,722	0	512,957	512,957			0
312B ASH HANDLING	55,663	0	11,161	11,161			
314 TURBO GENERATORS	7,976,637	o	11,329	11,329	0.14%	5,872,266	8,221
341 STRUCTURES & IMPRO	1,086,796	0	0	0	0.00%	1,016,795	0
342 FUEL HOLDERS, PROD	687,259	0	0	o	0.00%	557,092	0
344 PRIME MOVERS/GENRT	12,667,276	o	o	0	0.00%	7,218,320	٥
345 ACCESSORY ELECTRIC	528,112	0	0	0	0,00%	523,744	Q
346 MISC POWER PLANTE	41,556	0	0	0	0.00%	18,915	0

414,810 47,305,720

31,615 31,615 48,084 48,084	1,596,729 752,484 37,483,023	6.39%	36,944 85,424 85,424 3,492,988	394,788 143,997 4,420,285	357,844 64,573 512,467 927,277	1,861,673 1,337,264 9,357,621 56,663,341	315 ACCESSORY ELECTRIC 316 MISC POWER PLANT
48,084	752,484	6.39%	85,424	149,997	64,573	1,337,264	•
31,615	1,596,729	1.98%	36,944	394,788	357,844	1,861,673	
161,942	2,246,069	7.21%	420,807	499,407	78,600	5,839,246	311 STRUCTURES & IMPROV
o		3.67%	11,712	23,162	11,450	319,438	

ST. JOSEPH LIGHT & POWER COMPANY	LAKE ROAD PLANT ALL OCATION SETTLEMENT SCENEHIO DECEMBER 31, 1933 DATA - PLANT ACCOUNT 312 STEAM TOTAL BLECTRIC	P.I.S. P.I.S. 100% 100% & STEAM <u>B.ECTHIC</u> STEAM @12-31-33 @12-31-33 B.ECTHIC STEAM ALLOCABLE 76.9% 23.1% <u>B.ECTH</u>	REMANDER OF 312 INCLUDING BOILERS #1-3	TOTA. 1,2 & 3 @12-31-93 4.483,572 4.483,572 4.483,572 3,447,667 1,035,705 3,447,667 1,035,705	BCI EPS # 4.8. #5.	TOTN- 4 & 5 @12-31-53 4,548,149 4,548,149 4,548,149 4,548,149 3,497,527 1,050,622 3,487,527 1,050,622	BOILER #6 BOILER PRECIPITATOR GRUSHER, & GRUSHER HOUSE 6,325,229 6,325,229 6,325,229 0 0 0 6,325,229 0		41,745 70,025 00,723 54,067 41,594 41,593 12,494 41,593	15,789,699 414,810 16,203,509 6,399,056 718,543 9,085,808 6,986,987 2,098,821 13,386,045 2,817,464	ALECTAIC STEAM		ALE PLA ALATOR ALATO	ELECTRIC 6 PILS. PLS. P PILS. PLS. P 4,483,572 4,483,572 4,483,572 4,483,572 6,325,229 15,789,699 15,789,699	STEAM P.I.S. (2012-31-33 (2012-31-33 (2012-31-33) (2012-31) (2012-31-33) (2012-31-33) (2012-31		ST.JOSE AD RANT & ECEMBERS1 8 100% 49 100% 49 6.32 29 6.32 29 6.32 29 6.32 20 6.39	91, 1933 DATA - 1, 1933 DATA - 1, 1933 DATA - 100 100 100 100 100 100 100 10	OWER COMP. - PLANT ACCOMP. - PLANT ACCO 857,920 357,920 357,920 357,723 718,643	ANY ENT SCENEHIO JUNT 312 BLECTHIC & STEAM ALLOCABLE 4,546,140 4,546,140 6 54,087 54,087	900# STEAM ELECTRIC 76.9% 3,447,857 3,447,857 3,447,527 3,497,527 4,1,503 6,866,987	DEMAND STEAM 1,035,705 1,050,622 1,050,622 1,994 2,098,821	280 58 52 1X	050,85,70 050,82 <u>817,45</u>
----------------------------------	---	---	---	--	--------------------	--	--	--	---	--	----------------	--	--	---	--	--	---	--	--	--	---	--	--------------	--------------------------------------

Attachment A 1 of 3

23.1%

76.9%

DEMAND FACTOR

20~Dec-94

THE REAL PROPERTY.

Militar In Sec.

Plu high white

100

HALF REAL PROPERTY.

Januari Na

Indestations

internet in the

But of the second

a nélegothe

「「「「「「」」」」

「日本に、日本

Mary Cranks

ST. JOSEPH LIGHT & POWER PROPERTY WORKSHEET FOR ALLOCATION OF STEAM AND ELECTRIC PLANT A/C 312

NOTE "A"

PRECIPITATOR #6, BOILER #6, CRUSHER, & CRUSHER HOUSE

MO/YR	DESCRIPTION	J.O. #	AMOUNT
09/30/91	BEGINNING BALANCE FROM PREVIOUS WORKSHEETS		\$5,983,318
12/31/92	NO ACTIVITY FOR THE YEAR		O
09/30/93	NO ACTIVITY FOR THE YEAR		0
	BALANCE @ 09/30/93		\$5,983,318
12/31/93	Vent Line from Slag Tank to East Shothopper - Boiler #6	8144-002	13,613
12/31/93	Dissolved Oxygen Analyzer System – Boiler #6 Dissolved Oxygen Analyzer System Probe – Boiler #6	8146-001	\$3,638 1,686
			\$18,987
	BALANCE @ 12/31/93		\$6,002,255
	#1 CRUSHER & CRUSHER HOUSE		200,626
	#2 CRUSHER		122,348
	TOTAL		\$6,325,229

F:\ZGAPA1\ALLOC.WK3

14 Ma.

ST. JOSEPH LIGHT & POWER PROPERTY WORKSHEET FOR ALLOCATION OF STEAM AND ELECTRIC PLANT A/C 312

NOTE "8"

STEAM PIPING & WATER PURIFICATION EQUIPMENT

	-	DIRECTLY STEAM	ASSIGNABLE A	ALLOCABLE
Steam piping & Water Purification equipment in plant account 1312 that is considered		\$357,920	\$73,829	
Plant account 6312 – 54,087 is considered allocable and the remainder of the plant A/C is considered 100% steam		360,723 \$718,643	\$73,829	54,087
	Balance @ 12/03	\$414 810		

Balance @ 12/93 \$414,810 Less Allocable 54,087 100% Steam \$360,723

F:\ZGAPA1\ALLOC.WK3

ST. JOSEPH LIGHT & POWER PROPERTY WORKSHEET FOR ALLOCATION OF STEAM AND ELCETRIC PLANT A/C 312

NOTE *B* (BACKUP)

STEAM PIPING & WATER PURIFICATION EQUIPMENT

MO/YR	DESCRIPTION	J.O. #	AMOUNT	
	Pipe Steam to Softner		\$13,948	
	Phosphate Pump Discharge		6,607	
	Phosphate Pump Suction		2,086	,
	Water Purification Equipment		29,751	
	Softner Equipment		138,658	
	Supply & Purification Equipment		67,344	
	Purification Equipment		408	
	Feedwater System		10,665	
	Feedwater Pumps		2,709	
	Unchanged Since 4/11/88	-	<u> </u>	\$272,176
			•	Ψ475,110
12/93	Vent Condenser – Soffner #4	8126-010	\$7,401	
12/93	Loop Seal Piping – Softner #4	*	21,187	
12/93	Effluent Piping – Softner #4	×	10,284	
12/93	Gate Valves - Softners #1,2,3, & 4	2	18,957	
12/93	Vacuum Breakers – Softners #2 & #3	*	1,048	
12/93	5* Gate Valve for Backwash - Softner #4	×	1,560	
12/93	8" Gate Valve – Primary bypass between			
	pump suction header and pressure filter			
	inlet headers.	*	966	
12/93	Insulation - Top shell Softner #4	H.	2,416	
12/93	3" Stainless Steel Valve - 316 with EPR			
	Seat for Softners #2 & #3		2,310	
12/93	Well Water Piping & Valves			
	Softner #2, 3, & 4.	8126-012	47,686	
12/93	Booster Pump #1	8126-013	9,006	•
12/93	Booster Pump #2	*	9,006	
12/93	Booster Pump #3	14	11,411	
12/93	Piping Insulation and Valves –		, , , , , , , , , , , , , , , , , , , ,	
12/00	Booster Pumps 1,2,3.		15,001	
12/93	Skid Drains - 3 booster pumps to sewer	*	1,334	
12/30	Total for 1993 Activity	•	1,001	\$159,573
			·	\$431,749
	New Balance @ 12/31/93			X .829
	Balance @ 12/31/93 Directly Assignable to Steam		-	\$357,920
	Balance @ 12/31/93 Directly Assignable to Electric			\$73,829

F:\ZGAPA1\ALLOC.WK3

Maddin-Shakeling

itter ubie to a

A station to be

MISS NOT

Unicitien

the state of the state

Market

ST. JOSEPH LIGHT & POWER PROPERTY WCRKSHEET FOR ALLOCATION OF STEAM AND ELCETRIC PLANT A/C 6312

NOTE *B* (BACKUP)

STEAM PIPING & WATER PURIFICATION EQUIPMENT

MO/YR	DESCRIPTION	J.O. # AMOUNT
	Items Considered Allocable Plant	
	Boiler #1 Foundation	\$16,910
	Boiler #2 Foundation	16,910
	Fuel Oil Tank #1	3,813
	Fuel Oil Tank #3	7,622
	House Service Tanks	362
	Boiler #3 Panels	244
	Steam Pressure Equipment	4,892
	High Level Storage Tanks	849
	Fuel Oil Pipes	2,485
	Total Allocable Plant	\$54,087_

F:\ZGAPA1\ALLOC.WK3

学者学校

Parterstrint

Carling and the second

ja stabalie d

ST. JOSEPH LIGHT & POWER PROPERTY WORKSHEET FOR ALLOCATION OF STEAM AND ELECTRIC PLANT A/C 314

NOTE "C"

TURBINE #1

MO/YR	DESCRIPTION	J.O. #	AMOUNT
10/00	P		
12/50	Exciter	134100	\$810,185
12/50	Reinforced concrete	134100	19,694
12/50	Hydrogen cooling system	- 134100	5,135
12/56	#1 Turbine #328D965	Sum 56-344	3,836
12/56	1 1/4" return oil piping	Sum 56-344	67
12/56	2 1/2" return oil piping	Sum 56-344	107
12/56	3" return oil piping	Sum 56-344	51
12/56	Pneumatic control pilot	Sum 56-344	123
02/92	Bailey transmitter 0-12	8132-004	3,126
02/92	Bailey transmitter 0-400	8132-004	1,563
02/92	Bailey transmitter 0-120	8132-004	1.749
02/92	Bailey temp transmitter	8132-004	9,783
02/92	Vortex flow meter	8132-004	3,194
02/92	Flow totalizer computer	8132-004	4,103
02/92	Circular chart recorder	8132-004	24,006
02/92	Enhanced control module	8132-004	21,497
	BALANCED @ 12/31/93	· ·	\$908,219
	—		-
	Allocated to Electric - 94.6%		\$859,175
	Allocable - 5.4%		
	Alludable - 3.4%	_	49,044
			\$908,219

F:\ZGAPA1\ALLOC.WK3

Solution in Succession

A CLAUDE NO

Section of the section of

1.000 March 19

In section 2.

Purson life

and a second second

審員 ム

Manager and

Attachheit A Fof 3 (BACKUP)

	TOTAL COST		90%,219.41	909,219,41 V S.490 Stean	04
3	QUNRT,	$\{i_i\}_i \in C^1 \label{eq:constraint} (i_i) \in C^1 \ (i_i \in C^1) \ (i_i \in$	901	108	·
	Mice. Date:	00000000000000000000000000000000000000			
	202	222222222222222222222222222222222222222		-	
	ALLES -				一本 。
	DETORIT				Turbi n
a A C	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			-	秋 令
	Ka Y	20022000000000000000000000000000000000			* ** Futuralum
•	ای ملتز ۲ ۱۰۰۵ م	֎ֈՠֈՠֈՠֈՠֈՠֈՠֈՠֈՠֈՠֈՠֈՠֈՠֈՠֈՠֈՠ ՠֈՠՠֈՠֈՠֈՠֈՠֈՠՠՠՠՠՠ			
			20061 - LANOS	22 - 14002	· · · · · · · · · · · · · · · · · · ·

UNICASIA.

1013050440455

Gillenkarin

idensitie hurde

Authineer

Birton Section II

Julian Science (14

Laboration of the

Particular State

Markabler

and the second

ST. JOSEPH LIGHT & POWER PROPERTY WORKSHEET FOR ALLOCATION OF STEAM AND ELECTRIC PLANT A/C 312

NOTE "D"

COAL HANDLING EQUIPMENT

MO/YR	DESCRIPTION	J.O. #	AMOUNT
09/30/91	BEGINNING BALANCE FROM PREVIOUS WORKSHEETS		\$8,846,252
11/91	ADDITIONAL CLOSING	8122-029	1,494
11/91	ADDITIONAL CLOSING	8122-033	855
12/91	TWO COAL BATCH RETROFITS	8128-005	34,809
05/92	ASH WETTING SYSTEM	8124-002	7,193
10/92	CS137 CESIUM - FEEDERS FOR 6-1/6-2	8122-035	13,596
09/30/93	NO ACTIVITY FOR THE YEAR		0
	BALANCE @ 09/30/93		\$8,904,199
12/93	1992 Shuttle Wagon Rail Car Mover (SN 5M3508)	8124-005	\$154,608
12/93	RETIREMENT – Shuttle Wagon Rail Car Mover	9124-001	(112,660)
12/93	RETIREMENT - Trackmobile M #8 TM White 8015	9124-001	(49,451)
	BALANCE @ 12/31/93		\$8,896,696
	LESS #1 CRUSHER & CRUSHER HOUSE		(200,626)
	LESS #2 CRUSHER		(122,348)
	TOTAL		\$8,573,722

VIN CALL

Same and the second second

Print and the second

<u>.</u>

ST. JOSEPH LIGHT & POWER PROPERTY WORKSHEET FOR ALLOCATION OF STEAM AND ELECTRIC PLANT A/C 312

NOTE "E"

BOILER #5 & #6 - COMMON ASH HANDLING EQUIPMENT

MO/YR	DESCRIPTION	J.O. #	AMOUNT
12/50	ASH 20' DIA. X 24'	1341000	\$18,055
12/50	ASH PIT HOPPER	. 1341000	3,457
12/50	ASH PIT REINFORCED CONCRETE	1341000	734
12/50	ASH CONVEYOR SYSTEM	1341000	33,417
•	BALANCE @ 12/31/93		\$55,663

Allocated to Electric - 13.2%	\$7,348
Allocable based on Demand – 86.8%	48,315
	\$55.663

F:\ZGAPA1\ALLOC.WK3

Studies in

「「「「」」

ST. JOSEPH LIGHT & POWER PROPERTY WORKSHEET FOR ALLOCATION OF STEAM AND ELECTRIC PLANT A/C 311 & 6311

NOTE "F"

WATER SOFTNER BLDG, WATER TREATMENT, & POWER PLANT BLDG

MO/YR	DESCRIPTION	J.O. #	AMOUNT
09/30/91	BEGINNING BALANCE FROM PREVIOUS WORKSHEETS		\$112,198
12/31/92	NO ACTIVITY FOR THE YEAR		0
09/30/93	NO ACTIVITY FOR THE YEAR		0
12/31/93	NO ACTIVITY FOR THE YEAR		0
	BALANCE @ 12/31/93		\$112,198
	17.1% to Electric		\$19,186
	82.9% to Steam		93,012
			\$112,198

たませません

ST. JOSEPH LIGHT & POWER PROPERTY WORKSHEET FOR ALLOCATION OF STEAM AND ELECTRIC PLANT A/C 315

NOTE "G"

ACCESSORY ELECTRIC

MO/YR	DESCRIPTION	J.O. #	AMOUNT
12/50	Main control panel	134100	¢14 969
9/93	Motor control center	8132007	\$14,868 12,249
9/67	Battery 60 cell 125V 498 AH	112571	8,734
4/86	EV-7 Lead calculm batteries	8146065	8,118
9/91	30 KV inverter w/static switch	8136001	30,086
9/91	Installation charges inverter	8136001	18,759
9/91	300 amp battery charger	8136001	16,268
9/91	Installation charges battery	8136001	8,767
9/91	60 amp auto transfer switch	8136001	5,213
9/91	100 amp disconnect switch	8136001	10,480
9/91	Power distribution panel	8136001	38,770
12/58	Load circuit unit 480V	196000	17,639
4/85	Load circuit unit 1000V	8136002	24,127
4/85	#1 Load ctr. unit	8136002	26,849
12/50	Motor control center #1	134100	8,677
12/50	Motor control center #2	134100	5,723
12/62	Motor control center	8146000	6,199
4/85	#2 house service trans	8136002	48,865
12/85	#1 station lighting trans	8136002	22,172
12/85	#1 house service trans	8136002	40,402
12/50	1 1/2* conduit	134100	7,512
12/50	2* conduit	134100	5,207
12/50	3/4* conduit	134100	11,213
12/63	2400 V #2 swchg	136911	7,005
12/58	1* steel conduit	196000	8,742
12/58	3" steel conduit	196000	6,466
12/58	24" cope mesh type	196000	6,358
12/62	Conduit station 3/4" steel 3"	8146000	19,415
9/76	#1/0 AL 35KV Urd cable	8122008	5,200
12/58	Control cubicle assembly	198000	15,162
12/50	Swtichgear metal clad whse	134100	33,869
12/50	480 V switchgear metal clad molon	134100	15,241
12/64	#500 MCM	184800	6,011
12/58	30S grounding syt.	196000	7,399
	ALLOCABLE BALANCE @ 12/31/93		\$527,765

F:\ZGAPA1\ALLOC.WK3

BIP BARN

Milikashuk

Contraction of the section of

December 16, 1994

ST. JOSEPH LIGHT & POWER COMPANY ALLOCATION FACTORS Exergy-Basis CASE NO. E0-94-36

Diskards.

- and the second

Contraction of

in our property of

Diversities and

a which the set

Duesd west

261 HEEE

South States

And many

And a state of

out the way of

(Shinking)

1 Contraction

Plant Capacity Factor (PCTOD)	12.9%
Equivalent Employment Factor (PCTEQR)	31.3%
900 lb Steam Demand Allocation Factor (PCTMD)	23.1%
900 lb Steam Fuel Consumption Factor (PCTMF)	75.5%
Coal Burned Allocation Factor (PCTCB)	31.2%
Plant Structure Allocation (PCTPLT)	13.6%
900 LB Coal Use Factor (PCTCU)	77.0%
Ash Allocation Factor for Steam (daily) (AAFS)	74.0%
Combustion Turbine/Plant Capacity Factor	38.4%
900/1800 LB Steam Plant Demand Factor	10.7%

Attachment A 1 of 3 Schedule 1

MEMORANDUM

ارد شدد کند John Modlin Lake Road Results

January 28, 1994

TO: Dwight Svuba, Charles Cline, Mike Smith, Tim Rush

RE: PSC Case EO-94-36: Turbine 1 Capital Cost Allocation Study

I have obtained budgetary cost figures for two 24 MW steam turbine-generator units from a turbine-generator vendor to determine an "allocable fraction" of the Turbine 1 capital cost. The cost of the standard unit is 5.4% less than the auto-extraction unit. The prices include the turbine, generator, exciter, control valves, certain auxiliary systems, factory tests, and technical direction of installation.

I asked the vendor to break out the turbine and turbine-related items, but they replied that they supply a "package price" only. The two quoted units have identical generators, exciters, as well as other common equipment. The vendor did confirm that the cost difference is due to the auto-extraction capability alone.

I reviewed the equipment list provided by General Electric for Turbine 1 (SJLP P.O. 660461, c. 1950). The scope of equipment provided under the Turbine 1 P.O. is essentially the same as that included in the above "packages." It is not appropriate to allocate a portion of the generator and exciter to the industrial steam system. However, it is appropriate to estimate the original cost of the auto-extraction capability by applying a factor based on the current "package" quotes to the actual Turbine 1 "package" price.

Using the vendor's price estimates and the PSC Staff's proposed approach, the fraction of the Turbine 1 capital cost to be attributed to the auto-extraction capability would be 5.4%. If used, this factor should be applied to the complete Turbine 1 "package" only, as noted above.

As we discussed with the PSC Staff, it is possible for an auto-extraction unit to provide the same generating capacity as a standard unit while using a smaller condenser, cooling tower, and related equipment. Therefore, there was a possibility that these components were "under-sized" during design, which would yield capital cost savings to offset the additional cost of the Turbine 1 auto-extraction capability. I researched the design specifications of the Turbine 1 condenser, cooling tower, and related equipment. This equipment was adequately sized to allow the flexibility of operating Turbine 1 near full load as a standard steam turbine. That is, it does not appear that this equipment was "under-sized" due to Turbine 1's auto-extraction capability.

If you have any questions, please call me at extension 266.

John John

cc: file

Marked Markey

- PLANT ALLOCATION PROCEDURE -LAKE ROAD FEEDWATER TREATMENT FACILITIES

INTRODUCTION

ja avietacial

This procedure describes the methodology for allocating feedwater treatment equipment plant investment at Lake Road Plant between the electric and steam jurisdictions. It applies only to the water treatment equipment located in the 900 psi plant; it does not apply to the 1800 psi system demineralizer equipment which is only used for electric purposes serving Boiler 6.

The procedure for determining the allocation factor starts by estimating the peak treated water makeup requirement, in pounds per hour, for the electric jurisdiction (only), assuming the steam jurisdiction is not present. Next, an estimate of the total plant peak makeup requirement is determined, assuming simultaneous maximum makeup demands for each jurisdiction. These two quantities identify the treated water plant sizing criteria needed for the allocation. A conceptual equipment arrangement is prepared for each case, optimizing the design where possible to fit the sizing application. Factors such as redundancy for maintenance, filter backwash and zeolite regeneration requirements, hot versus cold lime treating, and equipment sizing margins are considered in the conceptual analysis. Cost estimates are prepared to implement each conceptual system. The allocation factor for the electric jurisdiction is then calculated by the ratio of the two cost estimates (electric water treatment plant cost divided by total water treatment plant cost). The allocation factor for the steam jurisdiction is one minus the electric jurisdiction factor.

In preparing the cost estimates, budgetary vendor prices were solicited for major system components only (lime softeners, pressure filters, zeolite softeners, and mixed bed demineralizers). It was assumed that all interconnecting pipe, ancillary equipment, and engineering costs associated with constructing the two systems would be proportional to the main component costs and thus would have no effect on the calculated ratio.

Two scenarios were established to identify the maximum-hour treated water makeup loads, a summertime electric (only) peak scenario and a wintertime (electric + steam) total peak scenario. Detailed explanations of each scenario are presented later in the discussion. In developing the scenarios, it was necessary to identify all significant consumptions of treated water and to estimate their approximate magnitudes during peak-use conditions. A discussion of the rationale used in developing each conceptual water treatment system plan is also included.

As an aid to the reader, a brief description of Lake Road Plant is provided first to explain the overall water treatment process and show the location of treated water uses.

DESCRIPTION OF WATER TREATMENT SYSTEM & RELATED WATER USES Refer to Figure 1 for a simplified schematic diagram of the Lake Road water treatment system and related flow paths of treated water uses identified in this discussion.

Raw well water for treated water makeup is brought into the plant and treated before being used in the 900 psi system boilers. "Treated water makeup" is treated water brought into the system to replenish mass flows of water and steam that leave the plant cycle. Water treatment is necessary because raw well water has too much hardness and other impurities for direct use in the Lake Road boilers.

The water treatment system is comprised of three major equipment components, hot lime softeners, pressure filters and zeolite softeners. The hot lime softeners remove most of the hardness and other contaminates through a chemical reaction that causes the unwanted material to precipitate out of solution where it can be removed as sludge. Lime and other chemicals are added to cause the chemical reaction. Steam is also added to accelerate the reaction by raising the temperature. The system has four hot lime softeners connected in parallel.

After leaving the hot lime softeners, water is sent through the pressure filters for removal of suspended solids. There are eleven pressure filters connected in parallel. Each filter is taken out of service and backwashed once a day to remove accumulated material.

Final treatment is done in the zeolite softeners where essentially all of the remaining hardness is removed. This type of softener contains a resin material that functions as a cation exchanger to collect unwanted calcium and magnesium hardness ions in exchange for sodium ions implanted in the resin. Zeolite softeners must be regenerated periodically to remove collected hardness ions and replace spent sodium ions. It typically takes 8-12 hours to regenerate each softener. The system has four zeolite softeners connected in parallel. A brine system is used to replace spent sodium ions. Backwash, rinse and recycle provisions are also required.

After leaving the water treatment system, makeup water is sent to the deaerator where it is mixed with returned condensate from the plant's 900 psi system turbine cycle. From there it goes to the boiler feedpumps which pump it into the 900 psi system boilers.

Each 900 psi system boiler has two.flow outputs, superheated steam and continuous (water) blowdown. Cutput steam flows into a header distribution system that supplies steam for the industrial steam customers, the 900 psi system turbines and various internal plant uses. Many of these steam functions, including industrial steam, do not allow for returning condensate to the plant cycle. These uses require makeup of new treated water to replenish all lost flows. Figure 1 provides a list of steam flow functions which do not return condensate.

Continuous blowdown is required to prevent solids from accumulating in the boilers. The water treatment system removes essentially all hardness, but does not remove all solids. Due to the evaporation which takes place in boilers, a continuous water blowdown flow is required to bleed off accumulated solids. The amount of blowdown required is equal to approximately 20 percent of the treated water makeup flow. The blowdown flow is first routed through flash tanks which allow part of the blowdown to flash into steam which is saved and sent to steam supply headers. The remaining blowdown water then flows through heat exchangers, which preheat the incoming well water, and is subsequently discharged to the sewer at approximately 80°F. Approximately 35 percent of the total blowdown flow leaving the boilers is recovered in the flashing process, and over 97% of the heat added to the well water is extracted before the water is sent to the This continuous blowdown sewer flow must be replenished sewer. with treated water makeup.

Steam turbines normally return essentially all of their condensate to the plant cycle via the deaerator path mentioned earlier. At Lake Road, the capability exists for routing part of the turbine condensate to an outside storage tank or to various systems and equipment that require condensate input. One of the important uses of this condensate is to supply influent water to the Boiler 6 demineralizer. Boiler 6 is a higher pressure (1800 psi) boiler which requires higher quality water than the 900 psi system boilers. A storage tank is also available for demineralized water. Other uses of condensate are identified on Figure 1. Like steam and continuous blowdown, any condensate removed from the 900 psi plant cycle must be replenished with new treated water makeup. Condensate storage serves the important function of providing a means for short-term water treatment equipment outages, and short duration treated water uses above the capacity of the water treatment equipment. Certain functions, such as filling boilers after annual outages or tube leak repair outages require a large, immediate supply of condensate-guality water.

ELECTRIC (ONLY) WATER TREATMENT PLANT PEAK LOAD SCENARIO

The peak electric (only) water treatment plant load is most likely to occur in the summertime when Lake Road generation requirements are higher and hot weather combustion turbine operation is probable. Wintertime peaks and various other situations can also dictate high electric water treatment demands. For purposes of defining a specific peak electric water treatment load scenario, a summertime situation is used.

The operating scenario used to establish the peak electric water treatment demand is as follows:

- Hot summer weather causing heavy Lake Road generating requirements.
- Unit 4/6 on line with one demineralizer operating at full load.
- All three 900# system steam turbines on line operating at current accreditation capacity (60 MW net).
- Boiler 5 on line burning coal at 250,000 lb/hr steam load.
- Boilers 1, 2, 3, and 4 on line burning oil as required to meet turbine load.
- Combustion Turbine 5 on line at full load burning gas with the evaporative cooler in operation.
- Units 6 & 7 (Jets) not on line.

The treated water makeup requirements corresponding to this operating scenaric are as follows:

	Make up Load
Makeup Load Description	<u>(1000 lbs/hr)</u>
Blr. 6 Demineralizer Makeup	10.0
Blr. 6 Sootblowing Steam	3.6
C.T. #5 Evaporative Cooler Makeup	5.4
900# Blr. Continuous Blowdown (Closed System)	1.0
Blrs. #4 & #5 Sootblowing Steam	0.6
Ash Tank Vacuum System Steam	3.0
No. 6 Fuel Oil Heating Steam	2.3
No. 6 Fuel Oil Atomizing Steam	3.2
Allowance for Unidentified Uses	1.0
Allowance for Losses	1.0
900# Blr. Continuous Blowdown (100% Makeup)	5.6
Total Electric (only) Treated Water Load	36.7

Make up Load (1000 lbs/hr)

> 290.0

11.0

0.6

3.O

3.1

3.1

3.6

2.0

3:0

58

388.3

9

10.0

205.0

0.6

3, 0

2.3

10.0

3.6

3,0

3.6

2.

0

.

2.4

TOTAL (ELECTRIC + STEAM) WATER TREATMENT PLANT PEAK LOAD SCENARIO The peak total (electric + steam) water treatment plant load has historically happened during the winter months when industrial steam loads are highest. Lake Road electric generation requirements may also be high in this situation.

The operating scenario used to establish the peak total water treatment plant demand is as follows:

- Cold winter weather causing peak industrial steam loads and moderately heavy Lake Road generating requirements.
- Unit 4/6 on line with one demineralizer operating at full load.
- All three 900# system steam turbines on line operating at a total load of 34 megawatts.
- Boiler 5 on line burning coal at 250,000 lb/hr steam load.
- Boilers 1, 2, 3 and 4 on line burning oil as required to meet total boiler load.
- No combustion turbines on line.

The treated water makeup requirements corresponding to this operating scenario are as follows:

Makeup Load Description Industrial Steam (12"+16"+AGP 850) Industrial Steam (Desup. Water) Blrs. #4 & #5 Soctblowing Steam Ash Tank Vacuum System Steam No. 6 Fuel Oil Heating Steam No. 6 Fuel Oil Atomizing Steam Blr. 6 Demineralizer Makeup Blr. 6 Soctblowing Steam Allowance for Unidentified Uses Allowance for Losses 900# Blr. Continuous Blowdown (100% makeup) Total (Electric + Steam) Treated Water Load

<u>CONCEPTUAL DESIGN - ELECTRIC (ONLY) SYSTEM</u> The following comments explain the design considerations used to develop the conceptual plan for the electric (only) water treatment system. A schematic diagram of the conceptual plan is provided with Figure 2.

ຣ່

Make up Load/ (1000 lbs/hr/

290.0 -

11.0

0.5

3.0

3:1

3.1

376

2.0

3:0

58.9

388.3

1/Å. O

TOTAL (ELECTRIC + STEAM) WATER TREATMENT PLANT PEAK LOAD SCENARIO The peak total (electric + steam) water treatment plant load has historically happened during the winter months when industrial steam loads are highest. Lake Road electric generation requirements may also be high in this situation.

The operating scenaric used to establish the peak total water treatment plant demand is as follows:

- Cold winter weather causing peak industrial steam loads and moderately heavy Lake Road generating requirements.
- Unit 4/6 on line with one demineralizer operating at full load.
- All three 900# system steam turbines on line operating at a total load of 34 megawatts.
- Boiler 5 on line burning coal at 250,000 lb/hr steam load.
- Boilers 1, 2, 3 and 4 on line burning oil as required to meet total boiler load.
- No combustion turbines on line.

The treated water makeup requirements corresponding to this operating scenario are as follows:

Makeup Load Description Industrial Steam (12"+16"-AGP 850) Industrial Steam (Desup. Water) Blrs. #4 & #5 Sootblowing Steam Ash Tank Vacuum System Steam No. 6 Fuel Oil Heating Steam No. 6 Fuel Oil Atomizing Steam Blr. 6 Demineralizer Makeup Blr. 6 Sootblowing Steam Allowance for Unidentified Uses Allowance for Losses 900# Blr. Continuous Blowdown (100% makeup) Total (Electric + Steam) Treated Water Load

CONCEPTUAL DESIGN - ELECTRIC (ONLY) SYSTEM

The following comments explain the design considerations used to develop the conceptual plan for the electric (only) water treatment system. A schematic diagram of the conceptual plan is provided with Figure 2.

- The conceptual electric (only) water treatment system is sized for a continuous output capacity of 40,000 lbs/hr. This is determined by rounding up the calculated peak electric (only) treated water load (36,700 lb/hr).
- The same general arrangement of major equipment components is used for the conceptual electric (only) water treatment system as that used in the actual existing system, with the exception that the zeolite softeners are replaced with mixed bed demineralizers (lime softener - pressure filter zeolite softener/demineralizer).
- Cold lime softeners are used in the electric (only) system instead of hot lime softeners. Cold lime softeners are less costly to install, but are not practical for the larger sizes required for the full-sized system. They could be used in the smaller electric (only) system.
- A 25 percent capacity design margin is used to size the lime softeners. This is based on SJLP experience. Increased size is needed to accommodate backwashing of pressure filters and zeolite softeners, sludge blowdown and stable sludge bed operation under varying load conditions.
- Two half-capacity lime softeners are used instead of one full-sized one to allow a means of taking units out of service for maintenance during reduced load periods.
- Three half-capacity pressure filters are used to allow for daily backwashing of each filter while still maintaining full throughput capacity. It is assumed units could be taken out of service for maintenance on a planned basis during low load periods. Pressure filters are slightly oversized to provide additional flow capacity needed for zeolite rinsing and recycling.
- Zeolite softeners do not adequately treat water from cold lime softeners for use in 900 psi boilers. Therefore, mixed bed demineralizers must be used for the final stage of feedwater treatment. Three half-capacity mixed bed demineralizers are used to allow for regeneration of each demineralizer. It is assumed units could be taken out of service for maintenance on a planned basis during low load periods. No capacity margin is used to size the demineralizers.

<u>CONCEPTUAL DESIGN - TOTAL (ELECTRIC + STEAM) SYSTEM</u> The following comments explain the design considerations used to develop the conceptutal plan for the total (electric + steam) water treatment system. A schematic diagram of the conceptual plan is provided with Figure 3.

- The conceptual total (electric + steam) water treatment system is sized for a continuous (gross) output capacity of 450,000 lbs/hr. This value is determined by increasing the calculated peak makeup load (388,300 lbs/hr) by 13.2 percent to account for 3 psi steam flow and then rounding up to 450,000 lbs/hr. The (net) treated water output capacity of the system is 397,500 lbs/hr. Use of hot lime softeners increases the size requirements of downsteam pressure filters and zeolite softeners due to the additional flow of 3 psi steam through these components.
- The same general arrangement of major equipment components is used for the conceptual total (electric + steam) water treatment system as that used in the actual existing system (lime softener - pressure filter - zeolite softener).
- Hot lime softeners are used in the total (electric + steam) system due to the prohibitively large physical size of equivalent capacity cold lime softeners.
- Three pound steam (equal to approximately 13.2 percent of the influent well water flow) is used to provide heat for the hot lime softeners.
- A 25 percent capacity design margin is used to size the lime softeners. This is based on SJLP experience. Increased size is needed to accommodate backwashing of pressure filters and zeolite softeners, sludge blowdown and stable sludge bed operation under varying load conditions.
- Four one-fourth capacity lime softeners are used instead of one full sized one to allow a means of taking units cut of service for maintenance during reduced load periods. This is the same number of lime softeners in the existing system.
- Eleven one-tenth capacity pressure filters are used to allow for daily backwashing of each filter while still maintaining full throughput capacity. It is assumed units could be taken out of service for maintenance on a planned basis during low load periods. Pressure filters are slightly oversized to provide additional flow capacity for zeolite rinsing and recycling. This is the same number of pressure filters as in the existing system.
 - Four one-third capacity zeolite softeners are used to allow for regeneration of each zeolite softener. It is assumed units could be taken out of service for maintenance on a planned basis during low load periods. No capacity margin is used to size the zeolite softeners. There are four zeolite softeners in the existing system.

EQUIPMENT PRICES

The following budgetary vendor prices were obtained for the major water treatment system components.

Electric (only) System:

Cold Lime Softener (28,000 lbs/hr capacity) Price: \$ 34,000 ea Pressure Filters (23,000 lbs/hr capacity) Price: \$ 10,000 ea Mixed Bed Demineralizers (23,000 lbs/hr capacity) Price: \$ 25,000 ea

Total (Electric + Steam) System:

Hot Lime Softeners (140,000 lbs/hr capacity) Price: \$ 161,250 ea Pressure Filters (50,000 lbs/hr capacity) Price: \$ 20,455 ea Zeolite Softeners (150,000 lbs/hr capacity) Price: \$ 35,000 ea

CALCULATION OF ALLOCATION FACTOR

The electric jurisdiction water treatment equipment plant allocation factor is calculated as follows:

- EF = <u>Total Electric (only) Water Treatment Plant Cost</u> Total (Electric + Steam) Water Treatment Plant Cost
 - $= \frac{2(LS) + 3(PF) + 3(DM)}{4(LS) + 11(PF) + 4(ZS)}$
 - $= \frac{2(34,000) + 3(10,000) + 3(25,000)}{4(161,250) + 11(20,455) + 4(35,000)} = \frac{173,000}{1,010,005}$

The steam jurisdiction water treatment equipment plant allocation factor is calculated as follows:

SF = 1.0 - EF= 1.0 - 0.1713 = 0.8287_____

^{= 0.1713}

- NOTES
- 1. NUMBERS SHOWN ON SCHEMATIC ARE FLOW RATES IN 1000 LBS./HR.
- 2. NUMBERS SHOWN INSIDE DEVICES ARE EQUIPMENT CAPACITY RATINGS USED FOR PRICING.
- 3. NUMBERS SHOWN OUTSIDE DEVICES ARE FLOW RATES THAT WOULD OCCUR AT RATED SYSTEM CAPACITY. IT IS ASSUMED THAT ONE PRESSURE FILTER IS OUT OF SERVICE FOR BACKWASH AND ONE DEMINERALIZER IS OUT OF SERVICE FOR REGENERATION (IN ITS RINSE CYCLE).

NOTES

- 1. NUMEERS SHOWN ON SCHEMATIC ARE FLOW RATES IN 1000 LBS./HR.
- 2. NUMEERS SHOWN INSIDE DEVICES ARE EQUIPMENT CAPACITY RATINGS USED FOR PRICING.
- 3. NUMBERS SHOWN OUTSIDE DEVICES ARE FLOW RATES THAT WOULD OCCUR AT RATED SYSTEM CAPACITY. IT IS ASSUMED THAT ONE PRESSURE FILTER IS OUT OF SERVICE FOR BACKWASH AND ONE ZEOLITE SOFTENER IS OUT OF SERVICE FOR REGENERATION (IN ITS RINSE CYCLE).
- DIFFERENCE IN GROSS VERSUS NET TREATED WATER OUTPUT IS DUE TO 3 PSI STEAM.

NOTES

- 1. NUMBERS SHOWN ON SCHEMATIC ARE FLOW RATES IN 1000 LBS./HR.
- 2. NUMBERS SHOWN INSIDE DEVICES ARE EQUIPMENT CAPACITY RATINGS USED FOR PRICING.
- 3. NUMBERS SHOWN OUTSIDE DEVICES ARE FLOW RATES THAT WOULD OCCUR AT RATED SYSTEM CAPACITY. IT IS ASSUMED THAT ONE PRESSURE FILTER IS OUT OF SERVICE FOR BACKWASH AND ONE DEMINERALIZER IS OUT OF SERVICE FOR REGENERATION (IN ITS RINSE CYCLE).

Rates & Market Research March 14, 1994

OFFICE MEMORANDUM

TO: File

FROM: Tim Rush PR

SUBJECT: Allocation Case - Account L1315, Electric Accessory Equipment

A review of our plant account L1315 was made by Mike Ceglenski. Maintenance/Construction Superintendent, over the last several weeks. This review was precipitated by an earlier review from John Modlin which determined that some of the items in account L1315 would be more appropriately allocated between electric and steam. Currently, this account is directly assigned to electric plant.

The attached is a summary of each item considered allocable. This amounts to \$527,765.27 which would be allocable between steam and electric. The remaining amount should be directly assigned to electric. To be consistent with our current allocation method, I would recommend that the allocable portion of the account L1315 be allocated based on the total plant ratio determined in allocating accounts 311, 312, 312A and 316.

Attachment

F:\ZRMSY1\MEMOS\ALOC7436.6 Marth 14, 1994

ST. JOSEPH LIGHT & POWER COMPANY Account #315

Manager,

(indiana)

BOUNDARY

うちょうの事業

Nicken Shiel

Manadal States

Material West

Paratalised,

ALL ALL

「日本の

Asset #	Description	Total Asset Cost
13150026400	Main Control Panel	\$14,868.04
13150115000	Motor Control Center	12,248.88
13150027100	Battery 60 Cell 125V 498 AH	8,733.75
13150027301	EV-7 Lead Calcium Batteries	8,117.65
13150107000	30 KVA Inverter W/Static Swt.	30,086.46
13150108000	Installation Charges Inverter	18,759.06
13150109000	300 Amp Battery Charger	16,267.61
13150110000	Installation Charges – Battery	8,767.14
13150111000	60 Amp Auto Transfer Switch	5,212.60
13150112000	100 Amp Disconnect Switch	10,479.95
13150113000	Power Distribution Panel	38,769.79
13150005400	Load Ctr. Unit Substn. 480V	17,639.01
13150005500	Load Ctr. Unit Substn. 1000KVA	24,126.79
13150004500	#1 Load Ctr. Unit Substation	26,849.28
13150024200	Motor Control Center #1	8,677.15
13150024300	Motor Control Center #2	5,722.53
13150025200	Motor Control Center	6,199.36
13150004600	#2 House Service Trans.	48,864.60
13150004400	#1 Station Lighting Trans.	22,172.15
13150004408	#1 House Service Trans.	40,401.25
13150021502	Conduit Rigid 1 1/2" C. Stat	7,511.93
13150021503	Conduit Rigid 2" C. Station	5,206.59
13150021500	Conduit Rigid 3/4" Conductor	11,212.99
13150010700	Lake Road Sub-2400V #2 Swchg.	7,004.94
13150020401	1" Steel	8,742.09
13150020405	3" Steel	6,466.33
13150020803	24" Cope Mesh Type 2/Blt—in C	6,358.34
13150021000	C. Station 3/4" Steel 3"	1 9,415.18
13150019502	#1/0 AI 35KV Urd Cable	5,200.49
13150000600	Control Cubicle Assem	15,162.46
13150001600	Switchgear Metal Clad Whse.	33,868.93
13150000400	480V Swchgr. Metal Clad Molon	15,241.30
13150003101	#500 MCM 13KV Kerite Cable	6,011.49
13150022400	30S Grounding Syt 500M, 37 Str. Cp.	7399.16
	TOTAL 04	\$527,765.27
	TOTAL 01	\$1,333.908.07
	GRAND TOTAL	\$1,861,673.34

Attachment A 1 of 3 Schedule A

ST. JOSEPH LIGHT & POWER COMPANY

Lake Road Feedwater Treatment Expense Allocation Study

Prepared by John T. Modlin & Michael S. Smith February 24, 1994

BACKGROUND

As part of the MPSC Docket EO-94-36, SJLP agreed to review the allocation of expense account 2502-010, "Boiler Feedwater Expenses," and determine if a different allocation approach is appropriate. The current SJLP allocation procedure allocates 90% of the expenses in account 2502-010 to the industrial steam jurisdiction and 10% to the electric jurisdiction. This report summarizes the findings of that study.

STUDY PROCEDURE

The study was composed of three parts. The first part was to review the expenses charged to the account. The second part of the study was to investigate feedwater consumption of plant processes so that the allocation factor could be assessed and modified, if necessary. Note that non-feedwater uses (cooling tower water, house service water, etc.) were not included in the study. The quantity of feedwater used for plant uses was found by various means, including direct measurement, equipment design information, flow calculations, and specifically-designed tests. Finally, the above information was used to develop specific recommendations regarding the allocation of this account and other related expenses.

RESULTS

The total 1993 expenses charged to account 2502-010 was \$234,490. This account currently contains three distinct groups of expenses, listed below:

- 900# Plant feedwater expenses. These expenses are composed primarily of payroll and chemical costs associated with operating lime softeners, pressure filters, and zeolite softeners in the 900# Plant. For 1993, these expenses were calculated to be \$200,500 by subtracting out the following expenses from the actual account total.
- 2. Unit 4/6 feedwater treatment expenses. These expenses are composed primarily of payroll and chemical expenses associated with additional treatment of the feedwater used in Boiler 6. These expenses are unique and separate from those of the 900# plant, above. For 1993, these expenses were calculated to be \$24,900, based on actual expenses and Boiler 6 operation during the year.
- 3. Nitrogen expense. Nitrogen is an inert gas used to fill out-of-service boilers, heat exchangers, and piping to protect them from corrosion. Although it can be used in all of the boilers, it is primarily used in Boilers 1, 2, 3, 6, and 7 and the Unit 4/6 feedwater heaters. The 1993 bulk nitrogen expense was \$9,126.

The results of the feedwater use study are shown on the attached sheet, entitled "SJLP Lake Road Plant - Annual 900# Feedwater Use." Based on 1993 data, approximately 96% of the total plant feedwater consumption can be attributed to the industrial steam jurisdiction.

DISCUSSION

The Unit 4/6 feedwater treatment expenses are 100% electric in nature and should be charged directly to a Unit 4/6 operating expense account. Account 2502-016,

Attachment A 1 of 3

"Boiler-6 Cleaning," is an "available" account for this purpose that is now used solely for Boiler 6 chemical-cleaning expenses. The SJLP account numbering practice has been to use 2502-01 and -02 account numbers for feedwater-related and boiler-related expenses, respectively. Following this practice, it is appropriate to place the Unit 4/6 feedwater treatment expenses in account 2502-016.

Boiler chemical-cleaning is a boiler-related expense that is more appropriately charged to the 2502-02 group of accounts. Chemical-cleaning of the 900# boilers (Boilers 1-5) has historically been charged to 2502-020, "Steam Expenses Other." The proper allocation of boiler expenses dictates that this type of expense be charged consistently for all of the boilers. Thus, it initially seems appropriate to charge Boiler 6 chemical-cleaning to 2502-020. However, this would result in moving a significant and measurable 100% electric expense to an allocated account, which reduces the accuracy of the allocation process.

Boiler 6 chemical cleaning is similar to other direct Boiler 6 expenses that are now charged to the allocated 2502-020 account. These expenses include the costs of cleaning the gas-side of the boiler, air heater, and gas ducts. These are normally contracted or other well-defined activities that could be charged to different expense accounts relatively easily. To improve the accuracy of the allocation process, it is desirable to place these expenses in a 100% electric boiler expense account. These same activities also occur on the 900# boilers and are now charged to 2502-020. It would be inappropriate to allocate these 900# boiler expenses on a total steam plant allocation factor when the corresponding Boiler 6 expenses are excluded from this account. Therefore, if direct Boiler 6 expenses are placed in a dedicated Boiler 6 expense account, a similar allocated account must be – used for the 900# boilers. This latter account would be allocated on a 900# steam plant factor, rather than a total steam plant factor.

Because the amount of chemical treatment depends directly on the amount of

water processed, 900# feedwater chemical expenses should be allocated based upon water consumption. On the other hand, feedwater labor expense is an essentially fixed cost, which is appropriate to allocate on a demand basis. An appropriate demand factor can be calculated from the water treatment capital cost study being prepared by SJLP. The 900# feedwater treatment expenses (account 2502-010) are roughly 50% chemicals and 50% labor. Therefore, a 50% consumption, 50% demand factor is appropriate for allocating this account.

RECOMMENDATIONS

The Unit 4/6 feedwater treatment expenses are 100% electric in nature and should not be allocated. Account 2502-016, "Boiler 6 Cleaning," should be renamed "Boiler 6 Feedwater Expenses" and be used for these expenses. Boiler 6 chemicalcleaning expenses, which are now charged to 2502-016, should be charged to a new account 2502-022, described below.

A new, 100% electric, operating expense account 2502-022, entitled "Boiler 6 Direct Operating Expenses," should be established. This account would receive all direct Boiler 6 non-maintenance cleaning expenses, such as expenditures for chemical-cleaning and cleaning of the gas-side of the boiler, air heater, and gas ducts.

A new, allocated, operating expense account 2502-021, entitled "Boiler 1-5 Direct Operating Expenses," should also be established. All direct 900# boiler (excluding Boiler 7) non-maintenance cleaning expenses would be charged to this account. This account would be allocated using a 900# steam plant demand approach, similar to that proposed for the whole steam plant account 2502-020.

The nitrogen expense, although related to feedwater treatment in that it is a chemical that protects boilers and other components from corrosion, is more appropriately charged against the boilers directly via account 2502-020. This

expense should be transferred to that account.

The remaining expenses in account 2502-010 should be allocated 50% on water consumption and 50% on demand. Using a consumption factor of 0.962 and a demand factor of 0.905¹ yields a 50/50 factor of 0.934.

The feedwater use study, which provides the 0.962 water consumption factor, was based both on specific 1993 data and generic annual water consumption calculations. The feedwater use study and the consumption factor should be updated if plant operation changes significantly or if Unit 4/6 auxiliary steam metering is installed.

SUMMARY OF RECOMMENDATIONS

- Rename account <u>2502-016 to</u> "Boiler 6 Feedwater Expenses."
- Charge Boiler 6 feedwater treatment expenses directly to account
 2502-016 (100% electric).
- 3. Charge bulk nitrogen expenses to account 2502-020.
- 4) Establish a new account 2502-021, entitled "Boiler 1-5 Direct Operating Expenses." Allocate this account on a 900# plant demand factor.
- Establish a new account <u>2502-022</u>, "Boiler 6 Direct Operating Expenses."
 This account will be 100% electric.
- 6. Charge direct boiler cleaning expenses to the appropriate account, either 2502-021 or -022.
- Allocate 93.4% of the account 2502-010 expenses to industrial steam and
 6.6% to electric.
- Review the feedwater consumption factor if Unit 4/6 metering is installed or if plant operation changes significantly. Update factors in recommendation 7, above, as necessary.

Based on SJLP 1994 Water Treatment Capital Cost Study design flows of 36,700 pph for electric and <u>388,300 pph</u> for a combined system.

286.5=2 w/ Mondost: Swith All removed

A Data No.

Astronomics In

¹ Some quantities are "annual," not specifically for 1993. ² Factors calculated from 1993 data.

ST. JOSEPH LIGHT & POWER COMPANY ALLOCATION PROCEDURES CASE NO. E0-94-36

II. CAPITAL PLANT ALLOCATION - General Plant

A. Capital Plant Allocation - General Plant

General plant refers to land, structures, furniture and equipment common to SJLP's three utility operations, electric, natural gas and industrial steam. General plant is classified in FERC accounts 389 through 398.

SJLP utilizes several different allocation procedures for the General Plant accounts to reflect the unique circumstances of each account.

Allocation Procedures

Accounts 389-390 - Land and Structures

Land and structure accounts consists of eight main locations. Because each location has different service territories and functions, a different allocation method is necessary for each area. Unless noted, land and structures for each location will use the same allocation method.

1. Location-St. Joseph T&D Function-Electric

Allocation Factor-100% Electric except for garage

The engineering, estimating, line and electrical departments are located at T&D, as well as a storeroom, garage, pole and transformer yards, relay shop, etc. The work performed at the line and electrical departments, storeroom, pole and transformer yards and relay shop is 100% electric. Periodically, the engineering department may perform gas and steam related tasks. Because the primary purpose of the T&D service center is to provide electric service and any gas or steam work is very immaterial, the T&D land and building with the exception of the garage will be considered 100% electric with no allocation necessary.

The garage is used to service vehicles for the entire company so it is necessary to allocate the garage to the three departments. Because the basic function of the garage is to maintain the transportation equipment in account 392, the garage will be allocated on the same basis as account 392.

2. Location-General Office Function-Electric, Gas and Steam

Allocation Factors-Adjusted Plant, Gross Margin and Direct Expenses (excluding fuel and purchased power)

The purpose of the general office building is to provide general and administrative services to the entire company with the exception of the SOC area which is used primarily for electric operations. For structure allocation, the SOC area will be classified as 100% electric as determined by square footage calculations. For all other areas, a composite factor based on the weighted average of adjusted plant, gross margin and direct expenses (as determined by the G&A calculation) will be used because the primary purpose of the general office staff is to control these rate base and cost of service items.

 Locations-Maryville, Mound City and Tarkio Offices and Warehouses
 Function-Electric and Gas

Allocation Factor-Payroll

The Maryville, Mound City and Tarkio offices provide electric and gas service to customers. Payroll charges for each location provide a reasonable basis for determining the type of work performed. Because there is a direct relationship between the task employees perform and the purpose of providing property to assist in the accomplishment of those tasks, labor charges for each location will be used as the allocation factor for each area.

4. Location-Microwave System (Account 389) Function-Electric

Allocation Factor-100% Electric

The land account 389 relates entirely to the Iatan microwave system which is 100% electric. The equipment related to the microwave system is classified under communications equipment (Account 397). Currently, there are two systems: 1) SOC to Iatan and 2) SOC to Lake Road.

5. Location-Building Services Shop Function-Electric, Gas and Steam

Allocation Factors-Square Footage and Number of Employees

Building services provide services to each of the main structures in the company. Each location is weighted according to square footage and number of employees and then allocated based on corresponding adjusted structure percentages after allocations. These factors provide the most direct relationship between services provided and associated costs.

6. Location-Savannah Office Function-Electric

Allocation Factor-100% Electric

The Savannah office provides only electric services to the customers in that location.

Accounts 391-398-Equipment

General equipment consists of a variety of office, shop and miscellaneous machines which are used at the main locations described above. Whenever appropriate, each equipment account will be broken down by location and allocated according to the method prescribed for the corresponding structure at that location.

Account 391-Office Furniture Function-Electric, Gas and Steam

Allocation Factor-Same as structures for corresponding locations.

Due to the direct relationship between office furniture and the structures where housed, the same allocation factors are utilized.

Account 391.1-Computer Equipment Function-Electric, Gas and Steam

> Allocation Factor-Number of Customers, Adjusted Plant, Gross Margin and Direct Expense (excluding fuel and purchased power)

> The majority of computer equipment is housed at the St. Joseph office to provide general and administrative services to the entire company. Therefore, the allocation factors used to allocate the general office are used with the additional factor of number of customers. This factor was added because the billing and meter reading systems relate directly to the number of customers. The SCADA system is considered 100% electric.

Account 391.2-Office Machines Function-Electric, Gas and Steam

Allocation Factor - Same as structures for corresponding locations.

Account 392-Transportation Equipment Function-Electric, Gas and Steam

> Allocation Factors-Specific Identification and Adjusted Plant, Gross Margin and Direct Expense for St. Joseph division and Payroll for North division

> All gas department, meter reader, line department, T&D and relay vehicles which are specifically identifiable are assigned to their respective departments. The remaining vehicles are allocated based on assigned locations with North Division vehicles allocated on payroll and St. Joseph division based on adjusted plant, gross margin and direct expenses.

Account 393-Stores Equipment Function-Electric, Gas and Steam

Allocation Factors-Materials and Supplies less Iatan

Because stores equipment is used primarily in the handling and maintenance of inventory, there is a direct correlation between the allocation basis for inventory and the equipment used to store and process the inventory. Therefore, stores equipment will be allocated on a like percentage.

Account 394-Tools, Shop and Garage Function-Electric and Steam

Allocation Factors-Transportation Equipment Allocation Factor

Because tools, shop and garage equipment are used to maintain transportation equipment, the allocation of this account shall correspond to the transportation account.

Account 395-Lab Equipment Function-Electric and Steam

Allocation Factors-Lake Road Allocation Ratio

Lab equipment is located at all major locations, with the majority in St. Joseph. Equipment at T&D, Maryville and Tarkio is considered 100% electric, with the remaining Lake Road equipment allocated based on the Lake Road Allocation

ratio. Maryville and Tarkio equipment consists of voltmeters and test panels which are used entirely in electric operations.

Account 396-Power Operated Equipment Function-Electric, Gas and Steam

Allocation Factor-Same as structures for corresponding locations.

Power operated equipment is located at St. Joseph, Maryville and Mound City. The majority of equipment at St. Joseph is located at T&D and will be classified as electric with Maryville and Mound City allocated consistent with the structures at those locations.

Account 397-Communication Equipment Function-Electric, Gas and Steam

Allocation Factor-Same as structures for corresponding locations (except Microwave - 100% electric).

Communication equipment is located at St. Joseph, Maryville and Mound City. SOC equipment and microwave equipment are considered 100% electric. The remaining equipment allocations will be based on corresponding structure factors.

Account 398-Miscellaneous General Equipment Function-Electric, Gas and Steam

Allocation Factor-Same as structures for corresponding structure factors.

Miscellaneous equipment is located at St. Joseph, Maryville and Mound City. Allocations are based on corresponding structure factors.

B. Reserve for Depreciation Allocation - General Plant

Depreciation reserve balances for accounts 390-398 are allocated based on the allocation percentages for each plant account. This method proves the most reasonable allocation basis between departments and it also preserves the consistency between plant and reserve balances.

14-Dec-94

ST. JOSEPH LIGHT & POWER COMPANY GENERAL ALLOCATION 12-31-93

	12-31-93						
ACC	DESCRIPTION	PLANT BALANCE	LESS 100% ELECTRIC	COMMON PLANT	ELECTRIC	GAS	SETTLEMENT
389	Land T&D, St. Joseph	\$545,188	\$490,388	54,800	49,156	- 3,896	1,748
	General Office/Savannah	100,602		100,602	91,659	3,581	5,362
	Maryville Office & Whse	41,502		41,502	29,612	11,890)
	Mound City Service Center	23,458		23,456	21,406	2,050	,)
	Tarkio Office	2,398		2,396	1,723	673	
	Mioroware System	4,584	4,584				
	Building Services Shop	15,793		15,793	14,529	474	790
	Total Acot. 389	\$733,521	\$494,972	\$238,549	\$208,085	\$22,564	\$7,900
390	Structures T&D, St. Joseph	\$4,388,951	\$3,947,790	441,161	395,721	31,367	14,073
	General Office	4,525,410	248,804	4,276,606	3,896,416	152,247	227,943
	Marwille Office & Whee	1,012,652		1,012,652	722,527	290,125	
	Mound City Service Center	136,480		136,480	124,552	11,928	
	Tarkio Office	76,722		76,722	55,186	21,536	
	Building Services Shop	238,637		238,637	219,546	7,159	11,932
	Savannah Office & Grant City	41,557	41,557	0			
	Total Acot. 390 *	\$10,420,409	\$4,238,151	\$6,182,258	\$5,413,948	\$514,362	\$253,948

ACCT	DESCRIPTION	PLANT BALANCE	LESS 100% ELECTRIC	COMMON PLANT	ELECTRIC	GAS	INDUSTRIAL STEAM
391	Office Furniture	1,034,634		\$1,034,634	957,363	34,923	42,348
391.1	Computer Equipment	7,149,990	1,005,563	\$6,144,427	5,587,128	311,522	245,777
391.2	Office Machines	233,388		\$233,388	213,160	10,804	9,424
392	Transportation Equipment	4,456,315		\$4,456,315	3,997,491	316,827	141,997
393	Stores Equipment	271,729		\$271,729	260,180	4,022	7,527
394	Tools, Shop, & Garage	678,115		\$678,115	608,296	48,211	21,608
395	Laboratory Equipment	259,881	110,366	\$149,515	138,039	٥	11,476
396	Power Operated Equipment	480,050	388,470	\$91,580	67,280	24,300	0
397	Communication Equipment	1,803,220	- 1,395,866	\$407,354	343,858	47,615	15,881
398	Miso, General Equipment	110,873		\$110,873	101,016	3,947	5,910
1	Fotal	\$27,632,125	\$7,633,388	\$19,998,737	\$17,895,844	\$1,339,097	\$763,796
		**********			******		法国 非限制 网络黄叶林 林中

.

* Total Structures is per RS-10, RS-84 reports \$10,427,481.

92.39%

4.85%

2.76%

\$

.....

Manager

MANDARY

PRINT: PLTALLOC

Marine State

Satisfied in the

International I

Contract No.

Allocation of General Reserve Based on 12-31-93 Plant

Settlement

Allocation of General Plant Reserve Accumulated Reserve Acct. 390-398

 Total Reserve per Accumulated Provis I 	sion @ December, 1993	\$13,343,135		
Allocation Percentages per general plant	allocation	<u>Electric</u> 92.39%	<u>Gas</u> 4.85%	<u>Steam</u> 2.76%
ALLOCATION OF G. P. RESERVE @	December, 1993	\$12,327,722	\$647,142	\$368,271

SETTLEMENT

ST. JOSEPH LIGHT & POWER COMPOSITE ALLOCATION FACTORS BASED ON PLANT, GROSS MARGIN & DIRECT EXPENSES

PLANT BASE	PLANT 12-31-93	LESS COMMON	LAKE ROAD	ADJUSTED PLANT BALANCE	%
Electric	\$258,937,608	(\$19,998,737)	(\$3,492,988)	\$235,445,883	94.81%
Gas	5,807,562			\$5,807,562	2.34%
Steam	3,584,835		3,492,988	\$7,077,823	2.85%
	\$268,330,005	(\$19,998,737)	\$0	\$248,331,268	100.00%

BOOKED GROSS MARGIN	12-Months Ended 12-31-93	%	
Electric	\$51,497,609	91.22%	(Sales revenue less fuel & interchange)
Gas	2,248,863	3.98%	(Sales revenue, including gas transportation, less gas purchased)
Steam	2,704,744	4.80%	(Sales revenue less steam fuei)
.(\$56,451,216	100.00%	

DIRECT EXPENSE	12-31-93	%
Electric	\$21,592,237	87.29%
Gas	1,078,162	4.36%
Steam	2,064,450	8.35%
	\$24,734,849	100.00%

COMPOSITE BASE	ADJUSTED PLANT BASE	GROSS MARGIN BASE	DIRECT EXPENSES	COMPOSITE ALLOCATION
Electric	94,81%	91.22%	87.29%	91.11%
Gas	2.34%	3.98%	4.36%	3.56%
Steam	2.85%	4.80%	8.35%	5.33%
	100.00%	100.00%	100.00%	100.00%

Adjusted Lake Road Plant Balances (Per L.R. Study) 12-31-93		
Electric	53,170,353	92.32%
Steam	4,420,265	7.68%
Total	57,590,618	100.00%

<u>.</u>

MERCENT

T&D Garage Allocation

Garage Square Footage

Total T&D Square Footage

Total T&D Land

Usidation

Total land allocable to garage

Total T&D Structures

Total structures allocable to garage

87,548

8,800

10.05%

\$545,188

10.05%

\$54,800

\$4,388,951

10.05%

\$441,161

= = =

· · · ·

T & D allocation of garage

Electric	89.70%	
Steam	7.11%	
Gas	3.19%	

BUILDING SERVICES ALLOCATION

Location	Square Footage	Weighted	Electric	Gas	Steam
General Office	51,144	10%	9%	0%	1%
T&D	87,548	16%	15%	1%	0%
Maryville	27,600	5%	4%	1%	
Mound City	4,187	1%	1%	0%	
Tarkio	3,150	1%	1%	0%	
Lake Road Plant	345,366	65%	60%		5%
Edmond Street	15,810	2%	2%	0%	0%
	534,805	100%	92%	2%	6%
	# of Employees 12-31-93*	Weighted	Electric	Gas	Steam
General Office	· 132	37%	34%		2%

27%

9%

3%

1%

21%

2%

100%

27%

6%

3%

1%

19%

2%

92%

3%

0%

0%

0%

4%

2%

0%

4%

362

*Per MKT

99

32

11

4

75

9

COMPOSITE BASE	SQUARE FOOTAGE BASE	EMPLOYEE BASE	COMPOSITE ALLOCATION
Electric	92%	92%	92%
Gas	2%	4%	3%
Steam	6%	4%	5%
	100%	100%	100%

Journal of

T & D/Savannah

Maryville

Tarkio

Mound City

Lake Road Plant

Edmond Street

adding .

Maryville, Mound City, and Tarkio Payroll Charges

Source: GACCREQ1 at 12-31-93

Notes where the

MANAGE INVESTIGATION

Shineda

	\$	%
Maryville-Location 6		
Electric	\$787,283.00	71.35%
Gas	\$316,134.00	28.65%
Total	\$1,103,417.00	100.00%
Mound City-Location 8	, in the second s	
Electric	\$386,541.00	91.26%
Gas	\$37,030.00	8.74%
Total	\$423,571.00	100.00%

Tarkio–Location 7		
Electric	\$83,468.00	71.93%
Gas	\$32,570.00	28.07%
Total	\$116,038.00	100.00%

OFFICE FURNITURE & EQUIPMENT ACCOUNT 391

Sources-RS10

SAVA SALAN SAVA

Por series

Standard and

MANAGER

and the second

Location	12-31-93	Electric	Gas	Steam
St. Joseph General Office	570,150 145,729	naar dhill falls Alla adar ung naar ann ann ann dhill agu na	. 485 UNE anno	
Total St. Joseph	715,879	652,238	25,485	38,156
Savannah	18,279	18,279		
T&D	207,923	207,923		
Building Services	1,536	1,413	46	77
Lake Road Main Structure Lake Road Office\Control Lake Road Store Room Lake Road Lab	33,702 8,793 2,375 8,747	-		
Total Lake Road	53,617	49,502		4,115
Maryville Grant City Butler Metal Office	21,989 546 3,267			
Total Maryville	25,802	18,410	7,392	
Mound City Oregon	5,920 578			
Total Mound City	6,498	5,930	568	
Tarkio	5,100	3,668	1,432	
	\$1,034,634	\$957,363	\$34,923	\$42,348

 \sim

COMPUTER EQUIPMENT ACCOUNT 391.1

Sources-OR Pages 6,10 & 11

MANA MANA

Section 199

CUSTOMERS 12-31-93	#	%
Electric	60,098	90.41%
Gas	6,370	9.58%
Industrial Steam	8	0.01%
	66,476	100.00%

COMPOSITE BASE	CUSTOMER BASE	ADJUSTED PLANT BASE	GROSS MARGIN BASE	DIRECT EXPENSES BASE	
Electric	90.41%	94.81%	91.22%	87.29%	90.93%
Gas	9.58%	2.34%	3.98%	4,36%	5.07%
Steam	0.01%	2.85%	4.80%	8.35%	4.00%
	100.00%	100.00%	100.00%	100.00%	100.00%

OFFICE MACHINES ACCOUNT 391.2 & 391.9

Sources-RS10

Hitlered State

Manual States

and the second se

A NUMBER OF

Location	12-31-93	Electric	Gas	Steam
St. Joseph	71,354			
General Office	48,687			
MVNG	15,113			
Total St. Joseph	135,154	123,139	4,811	7,204
Savannah	4,156	4,156		٢
T & D & Building Services	36,686	36,686		
Lake Road Main Structure & Lab	28,931	26,710		2,221
Maryville	14,590	10,410	4,180	
Mound City	10,768	9,827	941	
Tarkio	3,103	2,232	871	
	\$233,388	\$213,160	\$10,804	\$9,424
	=======:		* = = = = = = = = = = =	

TRANSPORTATION EQUIPMENT ACCOUNT 392

~

	Electric	Gas	Steam	Total
Specific Identification	\$1,317,580	\$135,199	\$0	\$1,452,779
Allocable				
St. Joseph	2,427,268	94,842	141,997	2,664,107
Maryville	188,228	75,581	0	263,809
Mound City	47,314	4,531	0	51,845
Tarkio	17,101	6,674	0	23,775
	\$3,997,491	\$316,827	\$141,997	\$4,456,315

89.70%

-

(and the second

(Internet South)

「「「「「「」」」

Contraction of

Constraints

Market

7.11%

3.19%

STORES EQUIPMENT ACCOUNT 393

Sources-Other Allocations

1000

Sector Sector

0000000

Southern N.

()

Materials & Supplies	\$	%
Electric less latan	\$3,911,596	95.94%
Gas	60,455	1.48%
Industrial Steam	105,348	2.58%
	\$4,077,399	100.00%

POWER EQUIPMENT ACCOUNT 396

Sources-RS10

Location	12-31-93	Electric	Gas	Steam
St. Joseph	\$388,470	\$388,470		
Maryville	81,850	58,400	23,450	
Mound City	9,730	8,880	850	
	\$480,050	\$455,750	\$24,300	\$0

Plant account 396 consists of trencher, backfill blade, sickle, snowblower, backhoe/loader, tractor, mobile oil processor, chipper, ditchwitch trailer, etc.

St. Joseph equipment is primarily at T & D which is considered 100% electric.

COMMUNICATION EQUIPMENT ACCOUNT 397

Sources-RS10

Location	Allocable 12-31-93	Electric	Gas	Steam
St. Joseph	125,061	\$113,944	\$4,452	\$6,666
Microwave at L.R.	120,058	110,844		9,215
Maryville	118,196	84,333	33,863	
Mound City	15,836	14,452	1,384	
Tarkio	28,202	20,285	7,916	
	\$407,354	\$343,858	\$47,615 =================	\$15,881

Total Acct 1397	\$1,803,220
Total electric	1,395,866
Allocable	\$407,354

Conception (Microwave)	\$67,817.13 (100% Electric)
latan	2,355.89 (100% Electric)
Maryville	118,196.36
M.C.	15,836.46
Savannah (Microwave)	147,542.08 (100% Electric)
St Joe	967,114.57 (100% Electric)
Tarkio	28,201.64
Electric-100	1,176.51 (100% Electric)
Electric-101	659.76 (100% Electric)
Electric-Microwave	15,724.25 (100% Electric)
St Joe-Gen Office	115,008.82
T&D	26,608.21 (100% Electric)
Building Service	1,192.95
Radio & Relay	8,859.42
LR-Main	120,058.41
LR-Substation	166,867.75 (100% Electric)
	\$1,803,220.21