January 27, 2011

CLEAN LINE ENERGY

GRAIN BELT EXPRESS HVDC LINE

PRELIMINARY DESIGN CRITERIA

PROJECT NUMBER: 121586

PROJECT CONTACT: BRIAN BERKEBILE EMAIL: BRIAN.BERKEBILE @POWERENG.COM PHONE: 803-835-5902

Schedule AWG-3 Page 1 of 94

PRELIMINARY DESIGN CRITERIA

PREPARED FOR: CLEAN LINE ENERGY PREPARED BY: BRIAN BERKEBILE PHONE 803-835-5902 EMAIL BRIAN.BERKEBILE @POWERENG.COM

REVISION HISTORY					
DATE	REVISED BY REVISION				
А	BHB	DRAFT for Review			

TABLE OF CONTENTS

ABBREVIATIONS	IV
GENERAL	1
PROJECT INFORMATION CORRESPONDENCE/PROJECT PERSONNEL POWER Engineers, Inc Client PROJECT DESCRIPTION	1 1 2
CODE(S) AND LOADING CONDITIONS	3
CONTROLLING CODE(S) LOADING CONDITIONS FOR NON-DEADEND STRUCTURES LOADING CONDITIONS FOR DEADEND STRUCTURES	4 5
TRANSMISSION CONDUCTOR	6
AMPACITY OPGW SHIELD WIRE CONDUCTOR SAG-TENSION LIMITS OPGW SAG-TENSION LIMITS CREEP-STRETCH CRITERIA GALLOPING ALUMINUM IN COMPRESSION	6 7 8 8 9 9
STRUCTURES	
CIRCUITS MATERIAL CONFIGURATION FOUNDATIONS CALCULATED LIGHTNING OUTAGES DISTANCE BETWEEN DEADENDS OTHER.	9 .10 .10 .10
GUYS AND ANCHORS	10
GUYS GUY CONNECTION GUY STRAIN INSULATORS GUY GUARDS ANCHORS	10 11 11
HARDWARE	11
DEADEND ATTACHMENT Suspension Attachment Bracing Vibration Analysis	.11 .11

FMC 009-009 (DD-DES-01) DES CRITERIA (01/31/10) MW 121586

PAGE i

Schedule AWG-3 Page 3 of 94

SPACER REQUIREMENTS	12
INSULATION	12
TYPE-TRANSMISSION Material Transmission Ratings-Transmission	12
RIGHT-OF-WAY	14
DESCRIPTION RIGHT-OF-WAY WIDTH CALCULATIONS FOR BLOWOUT ELECTRIC FIELD AFFECTS CORONA	14 15
CLEARANCES	15
CLEARANCE TO STRUCTURE/INSULATOR SWING GROUND CLEARANCE	
MISCELLANEOUS	
GROUNDING REQUIREMENTS (TYPE AND FREQUENCY OF GROUNDING REQUIRED) SPECIAL EQUIPMENT MATERIAL ENVIRONMENTAL PROTECTION	
DRAWINGS AND MAPS	19
Maps Drawing Requirements	
SUSTATION/SWITCHYARD INTERFACE	20
OTHER	20
APPENDIX A – CLEARANCES CALCULATIONS TABLE	
APPENDIX B – OPGW DETAILED SPECIFICATION	
APPENDIX C – LIGHTNING ALGORITHM: EXPECTED CHARGE CALCULATION AT LOCATION	LINE

APPENDIX D- OPGW OUTER LAYER'S WIRE DIAMETER CALCULATION BASED ON EXPECTED LIGHTNING CHARGE AT LINE LOCATION

APPENDIX E – SAG & TENSION FILES

APPENDIX F – AMPACITY CALCULATIONS

APPENDIX G- COMPARISON OF STRUCTURES TYPES

APPENDIX H- PLS-CADD WIR FILE WITH DC RESISTANCES APPENDIX I- PRELIMINARY CONDUCTORS COMPARISON APPENDIX J-FOUNDATION DESIGN CRITERIA

ABBREVIATIONS

ACSR:	Aluminum Conductor, Steel Reinforced
ACSS:	Aluminum Conductor, Steel Supported
ACCR:	Aluminum Conductor, Steel Supported
ADSS:	All Dielectric Self-Supporting Fiber Optic Cable
AFL:	America Fujikura Ltd.
	5
AGS:	Armor Grip Support
ASCE:	American Society of Civil Engineers
FC:	Sag Tension Limit, Final After Creep Condition
FL:	Sag Tension Limit, Final After Load Condition
Hz:	Hertz
I:	Sag Tension Limit, Initial Condition
kcmil:	1000 Circular Mills
kips:	1000 pounds
kV:	kilovolts
Manual No. 74	ASCE Manual and Report on Engineering Practice No. 74 "Guidelines for Electrical
	Transmission Line Structural Loading
N/A	Not Applicable
NESC:	National Electrical Safety Code, 2007
OHSW:	Overhead Shield Wire
OPGW:	Fiber Optic Ground Wire
ROW:	Right-of-Way
RUS:	Rural Utilities Service
TBD:	To Be Determined
TW:	Trapezoidal Shaped Conductor
	The period and the conductor

GENERAL

Project Information	
Owner's Name:	Clean Line Energy Partners ("Clean Line")
Project Name:	Grain Belt Express HVDC transmission line
Length:	Approximately 500 miles
Voltage:	+/- 600 kV DC (Bi-Pole)
Planned Energization	Approximately 2015 or 2016
Date:	

Correspondence/Project Personnel

POWER Engineers, Inc.

Project Manager		Brian Berkebile
5 6	Email:	Brian.berkebile@powereng.com
	Phone:	803-835-5902
	Fax:	803-835- 5999
	Address:	POWER Engineers, Inc.
		1057 521 Corporate Center Drive Suite 150
		Fort Mill, South Carolina 29707
Project Management		
Support		Shayne Wright
	Email:	swright@powereng.com
	Phone:	281-765-5505
	Fax:	281-765-5599
	Address:	POWER Engineers, Inc.
		509 N Sam Houston Pkwy East Suite 200
		Houston, Texas 77060
Project Engineer		
T-Line Design		Tim Kautz
6	Email:	tkautz@powereng.com
	Phone:	803-835-5901
	Fax:	803-835- 5999
	Address:	POWER Engineers, Inc.
		1057 521 Corporate Center Drive Suite 150
		Fort Mill, South Carolina 29707

Project Engineer Electrical Studies	Email: Phone: Fax: Address:	Brian FurumasuBrian.furumasu@powereng.com503-293-7124503-293-7199POWER Engineers, Inc.9320 SW Barbur Boulevard Suite 200Portland, OR 97219
Project Consultant	Email: Phone: Fax: Address:	Dave Wedelldwedell@powereng.com314-851-4024314-8514099POWER Engineers, Inc.12755 Olive Blvd, Suite 100St. Louis, MO 63141
Client		
Project Manager	Email: Phone: Fax: Address:	Wayne Galli, Ph.D., P.E. Vice President, Transmission and Technical Services wgalli@cleanlineenergy.com (832) 319-6337 (832) 310-6311 Clean Line Energy Partners, LLC 1001 McKinney, Suite 700 Houston, TX 77002

Project Description

This project involves developing a Preliminary Design and Budgetary Cost Estimate for Clean Line Energy Partner's ("Clean Line") proposed Grain Belt Express HVDC transmission line. This project is currently in the conceptual stage. The purpose of the Preliminary Design is to advance the project definition from the current conceptual level to a preliminary design level, which will serve as the basis for developing budgetary cost estimates for the transmission line. These estimates will, in turn, be used by Clean Line in their on-going project economic analyses.

Clean Line has stated that the desired operating voltage for the project is +/-600 kV. However, they are also interested in having a ball-park estimate for the project if constructed for an operating voltage of +/-500 kV. Therefore, while the preliminary design will be performed assuming +/-600 kV, enough data and analysis will be performed at the appropriate tasks to allow development of the desired estimate for a +/-500 kV project.

This preliminary design work requires creation of an initial design criterion, selection of several representative conductor configurations, conceptual design of several potential families of line structures, development of a conceptual PLS_CADD line model for the preferred line corridor, general engineering/technical support for line routing activities (by Others), field reconnaissance of potential line routes, and preparation of budgetary cost estimates for line construction. The basis for the criteria and selections included in our work plan will largely be POWER's experience in this area with reference to appropriate existing projects, and will be supplemented by analysis when appropriate.

Is desired by Clean Line, POWER can provide the value-added tasks described in Task 7 of POWER's Work Plan. These services will allow Clean Line to refine its conceptual design and better understand the cost and design limits of each corridor or route it analyzes. The value added tasks include:

• Identify Potential Locations for Ground Electrodes

CODE(S) AND LOADING CONDITIONS

Controlling Code(s)	
NESC:	NESC Heavy District
	NESC Extreme Wind, adjusted for 100-year return period
	NESC Extreme Ice with Concurrent Wind, adjusted for 100-year
	return period
Location or State	TBD in final design, if appropriate
Specific:	
Client Specific:	TBD

Case	Description	Weather Case	Ref	Cable Condition	Vert. Load Factor	Wind Load Factor	Tension Load Factor	Strength Reduction Factor
1	NESC HEAVY ALL WIRES INTACT (STEEL & CONCRETE)	0°F, 0.5" ICE, 4 PSF	NESC 253-1 / 261-1A	Initial	1.5	2.5	1.65	1
2	EXTREME WIND ALL WIRES INTACT (STEEL & CONCRETE)	60°F 97 MPH (100 YR RP) ASSUME 200' STR WITH 500' SPAN 24.3 PSF ON WIRE 26.3 PSF ON STR	NESC 253-1 / 261-1A	Initial	1.0	1.0	1.0	1
3	NESC EXTREME ICE WITH CONCURRENT WIND ALL WIRES INTACT (STEEL & CONCRETE)	15°F 1.25" ICE (100 YR) 4.1 PSF WIND	NESC 253-1 / 261-1A	Initial	1.0	1.0	1.0	1
4	F2 TORNADIC WIND ON STRUCTURE WITH NO WIRES	60°F, 157 MPH (63.1 PSF)	ASCE #74 2.7.1	Not Applicable	1.0	1.0	1.0	1
5	EVERYDAY LOADS	60°F		Initial	1.0	1.0	1.0	1
6	CONSTRUCTION, SNUB-OFF, 3:1	0°F		Initial	1.5	1.5	1.5	1
7	STRINGING/BROKEN SHIELD WIRE LOAD	0°F, 4 PSF		Initial	1.5	1.5	1.5	1
8	STRINGING/BROKEN CONDUCTOR LOAD	0°F, 4 PSF		Initial	1.5	1.5	1.5	1

Loading Conditions For Non-Deadend Structures

Notes:

- 1. Load cases 1 through 4 shall be analyzed assuming a foundation rotation of 1.72° (3%) when used with pole structures.
- 2. Load case 2 is a maximum deflection case when used with pole structures. Deflection at the pole tip shall be limited to 9% of the above ground structure height under this load condition. The total of 9% includes 1.72° (3%) due to foundation rotation.
- 3. Load case 5 is for deflection control of pole structures under every day conditions. The maximum deflection for tangent structures is one pole tip diameter. The maximum deflection for angle structures at the pole tip is 1 ½ % of the above ground height. Angle structures not meeting this requirement shall be cambered.
- 4. For structure load calculations, the vertical span will be approximately 1.5 times the horizontal span unless actual span conditions are worse.
- 5. Load Case 2 shall be analyzed with the wind in a transverse direction, at a 45° yawed angle and with a longitudinal wind.
- 6. Load Case 6, snub-off, is applied with wires snubbed off at three horizontal to one vertical. For single circuit structures, all wires shall be snubbed off. For double circuit structures, all wires on one circuit and two shield wires shall be snubbed off.
- 7. Load Case 7, stringing shield wire, accounts for a stringing block getting hung up. The longitudinal load applied to the structure at any one shield wire position shall be equal to 100% of the tension in the shield wire. All other wire loads should be assumed intact.

- 8. Load Case 8, stringing conductor, accounts for a stringing block getting hung up. The insulator string is assumed to swing longitudinally at a 45° angle. The longitudinal load to be applied at any one conductor pole position shall be equal to the stringing tension x number of sub-conductors per pole x .6 residual tension factor x 1.1 overload factor. The other conductor pole and both shield wire locations should be assumed intact.
- 9. All load cases shall include the weight of the insulators and hardware plus 800 lb. additional vertical load at the tip of each arm to account for two maintenance men and equipment.
- 10. Load Case 4 shall be for wind on structure only with no wires attached. Structure shall be analyzed with the wind in a transverse direction, at a 45° yawed angle and with a longitudinal wind.
- 11. Insulators will be designed for the following overload factors and strength reduction factors (reference RUS Bulletin 1724E-200 Paragraph 8.9.1)
 - a. Case 1: Overload Factor = 1.0, Strength Reduction Factor = 0.4
 - b. Cases 2, 3: Overload Factor = 1.0, Strength Reduction Factor = 0.5 for non-ceramic, 0.65 for ceramic and glass
- 12. All lattice structural members shall be able to hold a 350 lb load, applied vertically at their midpoint, conventionally combined with the stresses derived from Load Case 5.

Case	Description	Weather Case	Ref	Cable Condition	Vert. Load Factor	Wind Load Factor	Tension Load Factor	Strength Reduction Factor
1	NESC HEAVY ALL WIRES INTACT (STEEL & CONCRETE)	0°F, 0.5" ICE, 4 PSF	NESC 253-1 / 261-1A	Initial	1.5	2.5	1.65	1
2	EXTREME WIND ALL WIRES INTACT (STEEL & CONCRETE)	60°F 97 MPH (100 YR RP) ASSUME 200' STR WITH 500' SPAN 24.3 PSF ON WIRE 26.3 PSF ON STR	NESC 253-1 / 261-1A	Initial	1.0	1.0	1.0	1
3	NESC EXTREME ICE WITH CONCURRENT WIND ALL WIRES INTACT (STEEL & CONCRETE)	15°F 1.25" ICE (100 YR) 4.1 PSF WIND	NESC 253-1 / 261-1A	Initial	1.0	1.0	1.0	1
4	F2 TORNADIC WIND ON STRUCTURE WITH NO WIRES	60°F, 157 MPH (63.1 PSF)	ASCE #74 2.7.1	Not Applicable	1.0	1.0	1.0	1
5	EVERYDAY LOADS	60°F		Initial	1.0	1.0	1.0	1
6	NESC HEAVY DEADEND ALL WIRES REMOVED FROM ONE SPAN (STEEL & CONCRETE)	0°F, 0.5" ICE, 4 PSF	NESC 253-1 / 261-1A	Initial	1.5	2.5	1.65	1
7	EXTREME WIND DEADEND ALL WIRES REMOVED FROM ONE SPAN (STEEL & CONCRETE)	60°F 97 MPH (100 YR RP) ASSUME 200' STR WITH 500' SPAN 24.3 PSF ON WIRE 26.3 PSF ON STR	NESC 253-1 / 261-1A	Initial	1.0	1.0	1.0	1
8	NESC EXTREME ICE WITH CONCURRENT WIND; DEADEND; ALL WIRES REMOVED FROM ONE SPAN; (STEEL & CONCRETE)	15°F 1.25" ICE (100 YR) 4.1 PSF WIND	NESC 253-1 / 261-1A	Initial	1.0	1.0	1.0	1

Loading Conditions For Deadend Structures

Notes:

- 1. Load cases 1 through 4 shall be analyzed assuming a foundation rotation of 1.72° (3%) when used with pole structures.
- 2. Load case 2 is a maximum deflection case when used with pole structures. Deflection at the pole tip shall be limited to 9% of the above ground structure height under this load condition. The total of 9% includes 1.72° (3%) due to foundation rotation.
- 3. Load case 5 is for deflection control of pole structures under every day conditions. The maximum deflection for tangent structures is one pole tip diameter. The maximum deflection for angle structures at the pole tip is 1 ½ % of the above ground height. Angle structures not meeting this requirement shall be cambered.
- 4. For structure load calculations, the vertical span will be approximately 1.5 times the horizontal span unless actual span conditions are worse.
- 5. Load Cases 6, 7, 8 shall be used to verify all deadend structures are designed to carry all wires deadended on one side of the structure.
- 6. Load Case 2 shall be analyzed with the wind in a transverse direction, at a 45° yawed angle and with a longitudinal wind.
- 7. All load cases shall include the weight of the insulators and hardware plus 800 lb. additional vertical load at the tip of each arm to account for two maintenance men and equipment.
- 8. Load Case 4 shall be for wind on structure only with no wires attached. Load Case 4 shall be analyzed with the wind in a transverse direction, at a 45° yawed angle and with a longitudinal wind.
- 9. Insulators will be designed for the following overload factors and strength reduction factors (reference RUS Bulletin 1724E-200 Paragraph 8.9.1):
 - a. Case 1, 6: Overload Factor = 1.0, Strength Reduction Factor = 0.4
 - b. Cases 2, 3, 7, 8: Overload Factor = 1.0, Strength Reduction Factor = 0.5 for non-ceramic, 0.65 for ceramic and glass.
- 10. All lattice structural members shall be able to hold a 350 lb load, applied vertically at their midpoint, conventionally combined with the stresses derived from Load Case 5.

WIRE

Transmission Conductor	
Size (kcmil/AWG):	2156 kCMIL
Composition (ACSR, AAC, etc.):	ACSR
Code Word:	Bluebird
Diameter:	1.762 inches
Weight:	2.511 lbs/ft
Rated Breaking Strength:	60,300 lbs
Design Voltage:	600 kV HVDC
Typical Operating Voltage:	600 kV HVDC
Maximum Operating Voltage:	632 KV HVDC
Maximum Conductor Temperature (Temperatures calculated using IEEE 738 methodology for predicted line loadings under normal and emergency conditions):	Normal Regime: 64 Deg C (148 Deg F) Emergency Regime: 71 Deg C (160 Deg F)

For additional information, see Appendix E-Sag & Tension File, Appendix F-Ampacity Calculations, and Appendix J-Preliminary Conductors Comparison.

OPGW

There will be two OPGW, one to protect each pole.

See Appendix B-OPGW Detailed Specification, Appendix C- Lightning Algorithm: Expected Charge Calculation at Line Location, and Appendix D-OPGW Outer Layer's Wire Diameter Calculation based on Expected Lightning Charge at Line Location.

Size (kcmil/AWG):	49AY85ACS-2C
Composition (EHS, AW, etc.):	12 Aluminum Clad Steel Wires ACS20.3% IACS
	2 Aluminum Alloy Wires AY6201-T81
	2 Stainless Steel Tubes 304 containing 6-24 fibers each and gel
Diameter:	0.591 inches
Weight:	0.473 lbs/ft
Rated Breaking Strength:	25,369 lbs
Number of Fibers:	12-48, depending on final project requirements

Shield Wire	
Size (kcmil/AWG):	Not Applicable for this Project
Composition (EHS, AW, etc.):	Not Applicable for this Project
Diameter:	Not Applicable for this Project
Weight:	Not Applicable for this Project
Rated Breaking Strength:	Not Applicable for this Project

CONDUCTOR RATING CRITERIA

The following table summarizes conductor ampacity calculated using IEEE 738 methodology under normal and emergency loading conditions, using the following assumptions:

Ambient air temperature = 40 deg C (104 deg F), Wind Speed=2 ft/s, Emissivity factor = 0.5; and Solar absorptivity factor = 0.5.

See Appendix F-Ampacity Calculations, for other parameters used in these calculations, and the resulting maximum operating temperatures for the conductors analyzed.

	Voltage			Normal Ratings				Emergency Ratings (20% over Normal Ratings)			
Circuit	Conductor (kV)	Wi	inter	Summer		Winter		Summer			
			MW	Amps	MW	Amps	MW	Amps	MW	Amps	
Grain Belt Express	ACSR Bluebird 3 sub- conductors per pole	Nominal: 600 Maximum: 632	3720 At rectifier	3100 Per pole 1033.3 Per sub- conductor	3720 At rectifier	3100 Per pole 1033.3 Per sub- conductor	4464 At rectifier	3720 Per pole 1240 Per sub- conductor	4464 At rectifier	3720 Per pole 1240 Per sub- conductor	

WIRE SAG/TENSION LIMITS

Conductor Sag-Tension Limits

The following table summarizes all sag-tension limits considered. The most stringent limit will be utilized to control the sag-tension in each span, or an agreed upon control tension will be used that will also meet the requirements below. See Appendix E-Sag & Tension Files.

	Weathe	r Case			Sag or Tension Limit				
Wind (psf)	Ice (inches)	Temp (°F)	Cond.	NESC Limit	Southwire Sag10 Program Limit	Project Specific Limit			
4	1/2	0	Ι	60% RBS	50% RBS	50% RBS			
24.3	0	60	Ι			75% RBS			
4.1	1.25	15	Ι			75% RBS			
0	0	60	Ι	35% RBS					
0	0	60	F	25% RBS		-			
0	0	0	Ι		33.3% RBS	33.3% RBS			
0	0	0	F		25% RBS	25% RBS			
0	0	-20	Ι			Uplift Condition			
4	1/2	0	Ι			Slack Tension Into Substation D.E.			
						Frame.			
						5000 lbs maximum per sub-conductor.			
24.3	0	60	Ι			Max per HVDC pole = 5000 lbs x no. of sub-conductors.			
4.1	1.25	15	Ι			sub-conductors.			

OPGW Sag-Tension Limits

The following table summarizes all sag-tension limits considered. The most stringent limit will be utilized to control the sag-tension in each span, or an agreed upon control tension will be used that will also meet the requirements below. See Appendix E-Sag & Tension Files.

	Weathe	r Case		Sag or Tension Limit			
Wind (psf)	Ice (inches)	Temp (°F)	Cond.	NESC Limit Limit Southwire Sag10 Program Limit		Project Specific Limit	
4	1/2	0	Ι	60% RBS	50% RBS	50% RBS	
24.3	0	60	Ι			60% RBS	
4.1	1.25	15	Ι			60% RBS	
0	0	60	Ι	35% RBS			
0	0	60	F	25% RBS		<= 85% of the Conductor Sag at the Same Loading Condition	
0	0	0	Ι		33.3% RBS	33.3% RBS	
0	0	0	F		25% RBS	15% RBS	
0	0	-20	Ι			Uplift Condition	
4	1/2	0	Ι			Slack Tension Into Substation D.E.	
24.3	0	60	Ι			Frame.	
4.1	1.25	15	Ι			3000 lbs maximum per OPGW	

FMC 009-009 (DD-DES-01) DES CRITERIA (01/31/10) MW 121586

PAGE 8

Schedule AWG-3 Page 14 of 94 OPGW to Conductor Sag Ratios Requirements (to ensure shielding angles are maintained):

OPGW Sag @ 60 F, No Wind, No Ice, Final <= 85% Conductor Sag @ 60 F, No Wind, No Ice, Final

OPGW Sag @ 32 F, No Wind, 0.5" Ice, Final <= 95% Conductor Sag @ 32 F, No Wind, No Ice, Final

Creep-Stretch Criteria	
Condition for Final Sag after	
Load (Common Point):	NESC Heavy Rule 250 B: 0 Deg F, 4 PSF Wind, 0.5" Ice
Condition for Final Sag after	
Creep:	60 Deg F

Galloping

Double-loop galloping will be assumed for spans greater than 600 feet. Single-loop galloping will be assumed for spans less than 600 feet. Galloping ellipses will be allowed to overlap up to 10% of the elliptical major axis.

The weather case used to calculate swing angle used during galloping analyses will be 2 psf wind, 1/2" ice, 32° F final. The weather case used to calculate the ellipse size will be 0 psf wind, 1/2" ice, 32° F final.

Aluminum in Compression

It will be assumed that outer aluminum strands can go into compression under high temperature. The maximum virtual compressive stress for ACSR Bluebird conductor will be assumed to be 1.5 ksi, and for ACCR/TW Pecos conductor (used in Mississippi River Crossing Span) will be assumed to be 1.25 ksi.

STRUCTURES

Circuits

No. Circuits (Single or Double):	2-Pole Horizontal HVDC with Earth Return (preferred)						
	2-Pole Horizontal HVDC with Dedicated Metallic Ground Returns						
	(potential option to be reviewed)						
Bundled:	3 conductors per bundle (pole)						
Guyed or Self-Supporting:	Potential both guyed and self-supporting structures						
Material							
Wood (DF, WRC, preservative):	Do not consider wood						
Steel (self-weathering, painted,							
galv.):	Potential weathering steel and galvanized steel						
Concrete:	Potential concrete						
Other:							
Configuration							
Single Pole:	Potential single pole structure types:						
-	Self-supporting Steel Tubular						
	Self-supporting Concrete						
H-Frame	No						
3-Pole:	No						
Lattice:	Consider the following lattice tower types						
	Self-supporting Steel Lattice,						
	Guyed Single Mast or Vee						

FMC 009-009 (DD-DES-01) DES CRITERIA (01/31/10) MW 121586

PAGE 9

Schedule AWG-3 Page 15 of 94

Other:	Consider the following additional structure types:							
	• Cross Rope Suspension, Guyed Steel Lattice (with two foundations)							
	Cross Rope Suspension, Guyed Steel Lattice (Vee Configuration							
	with a single foundation)							
	Guyed Single Mast or Vee Tubular Steel							
Are Transposition Structures Requ								
Foundations								
Type:	Drilled Pier							
Geotechnical Data Available:	YES D NO 🗹							
Geotechnical Study Required:	YES 🗹 NO 🗆							
Geoteeninear Study Required.	Desktop geotechnical study will be performed to determine soil types							
	that may be encountered along the line and to classify them into several							
	primary groups with typical soil design parameters to allow for							
	estimated designs for budgetary purposes.							
Design Criteria for Foundations	estimated designs for oudgearly purposes.							
subject to Lateral Loads	Drilled piers and direct embed poles subject to lateral loads will be							
5	designed per POWER standard as shown in Appendix K.							
Design Criteria for Foundations	Drilled piers and direct embed poles subject to uplift/compression loads							
subject to Uplift/Compression	will be designed per POWER standard as shown in Appendix K.							
Loads								

Calculated Lightning Outages

Calculated outages from lightning will not exceed 1 outage per 100 miles per year per HVDC pole.

Distance Between Deadends

A deadend structure will be placed approximately every 5 miles.

Other

~

Shield Angle (If Required):		Inside:	Maximum 15 degrees			Outside:	Maximum 15 degrees	
Raptor Protection:	YES		NO		Distance:	TBD		
Maximum or Minimu								
Height Limitations (specify):		TBD						
Annodes Required:	YES		NO		TBD			

GUYS AND ANCHORS

Guys	
Guy Strand (size, material):	TBD
Guy to Pole Attachment:	
Pole Eye Plate:	TBD
Pole Band:	TBD
Guy Hook:	TBD
Other:	
Guy Connection	
Pole Attachment:	
Preformed:	TBD

FMC 009-009 (DD-DES-01) DES CRITERIA (01/31/10) MW 121586

PAGE 10

Schedule AWG-3 Page 16 of 94

_			
3-Bolt:	TBD		
Automatic:	TBD		
Other:			
@ Anchor:			
Preformed:	TBD		
3-Bolt:	TBD		
Automatic:	TBD		
Other:			
-			
Guy Strain Insulators			
Type: TBD			
Guy Guards			
Locations Required: TBD			
Plastic: TBD	Metal:	TBD	
Color: TBD	Cattle Stub:	TBD	
Other (describe):			
· · · · · ·			
Anchors			
Туре:			
Plate: N/A		Size:	N/A
Screw: TBD		Size:	TBD
Log: N/A		Size:	N/A
Concrete (describe): TBI)		
Other (describe): TBI)		
Rod: Length: TB	D		Diameter: TBD
Anodes Required: YES	\Box NO \Box	TBD	

HARDWARE

Deadend Attachment

Description	Bolted		C	compression	n Other (describe)
Transmission Conductor ⁽¹⁾				Х	
Shield Wire				N/A	
OPGW	Х				Preformed
⁽¹⁾ Corona free hardware require	ed: YES	\checkmark	NO		

Suspension Attachment

Description	Formed Tie	Trunion Clamp	Suspension Clamp	Armor Rod	Line Guard	AGS	Other (Describe		
Transmission Conductor ⁽¹⁾	N/A	N/A	TBD	TBD	N/A	TBD			
Shield Wire	N/A	N/A	N/A	N/A	N/A	N/A	N/A		
OPGW	N/A	N/A	TBD	TBD	N/A	TBD			
⁽¹⁾ Corona free h	⁽¹⁾ Corona free hardware required: YES \square NO \square								

Corona free hardware required: YES

Bracing Transmission:

Wood:	N/A	Steel:	TBD
Other (describe):			

Vibration Analysis

For preliminary cost estimating, vibration analysis will be performed using Vibrec software. For final design, vibration analysis would be performed by the damper supplier.

Spacer Requirements

Spacer dampers will be utilized on conductors and will be installed such that:

- The spacer dampers will be spaced symmetrically in each span with a maximum spacing of 200 ft, or asymmetrically, with 10-15% detuning, with maximum spacing of 272 ft, per CIGRE rules.
- Number of spacer dampers that will be installed in jumper strings: three (if 2 jumper strings are used-rectangle cross arm) or two (if 1 jumper string is used-triangle cross arm); two spacer dampers will be used in the jumper loop. The spacer dampers will be equally spaced between the deadends.

INSULATION

. .

Type-Transmission	
I-String:	To Be Considered
V-String:	To Be Considered; Currently Preferred Configuration.
Horizontal Post:	N/A
Horizontal Vee:	N/A
Horizontal Jumper Post:	N/A
Vertical Jumper Post:	N/A

Material Transmission	
Porcelain:	To Be Considered
Glass:	To Be Considered; Currently Preferred Material
Polymer:	To Be Considered
Other (fog, etc.):	To Be Considered
Corona Rings:	To Be Considered
End Fittings:	To Be Considered

Ratings-Transmission

						Electrical (Characteristic	28 *	
			Insulator	Total		thstand age*	Dry		
Structure Type	Impact Strength (in*lbs)	No. Bells/Sheds & Size	Weight (lbs) with hardware	Minimum Length (ft)	Dry one minute (kV)	Wet One minute (kV)	lightning impulse withstand (kV)	Structure Type	Impact Strength (in*lbs)
Light Suspension Line Angle= 0-2 deg V-String Angles: 45 deg (L) 45 deg (R)	400 in.lbs	Single V- String: Each String: (41) 6-3/4"x13"	Each String: 1150 lbs Single V- String: 2x 1150= 2300 lbs	Each String: 23' (w/o hardware) 25' (with hardware)	150	65	140	225	1x50=50 kips
Basic Suspension Line Angle= 0-2 deg V-String Angles: 45 deg (L) 45 deg (R)	400 in.lbs	Single V- String: Each String: (37) 7-5/8"x 14-1/8"	Each String: 1450 lbs Single V- String: 2x 1450= 2900 lbs	Each String: 23' (w/o hardware) 25' (with hardware)	170	75	150	255	1x66=66 kips
Medium Suspension Line Angle= 0-2 deg V-String Angles: 45 deg (L) 45 deg (R)	400 in.lbs	Double V- String: Each String: (41) 6-3/4"x13"	Each String: 1150 lbs Double V- String: 4x 1150= 4600 lbs	Each String: 23' (w/o hardware) 25' (with hardware)	150	65	140	225	2x50=100 kips
							Characteristic	cs *	
Structure Type	Impact Strength (in*lbs)	No. Bells/Sheds & Size	Insulator Weight (lbs) with hardware	Total Minimum Length (ft)		thstand age* Wet One minute (kV)	Dry lightning impulse withstand (kV)	Structure Type	Impact Strength (in*lbs)
Heavy Suspension Line Angle= 0-2 deg V-String Angles: 45 deg (L) 45 deg (R)	400 in.lbs	Double V- String: Each String: (37) 7-5/8"x 14-1/8"	Each String: 1450 lbs Double V- String: 4x 1450= 5800 lbs	Each String: 23' (w/o hardware) 25' (with hardware)	170	75	150	255	2x66=132 kips
River Crossing Heavy Suspension Line Angle= 0-2 deg V-String	400 in.lbs	Double V- String: Each String: (37) 7-5/8"x 14-1/8"	Each String: 1450 lbs Double V- String: 4x 1450= 5800 lbs	Each String: 23' (w/o hardware) 25' (with	170	75	150	255	2x66=132 kips

FMC 009-009 (DD-DES-01) DES CRITERIA (01/31/10) MW 121586

PAGE 13 Schedule AWG-3 Page 19 of 94

r					1				
Angles: 45 deg (L) 45 deg (R)				hardware)					
Small Angle Suspension Line Angle= 2-10 deg V-String Angles: 20 deg (L) 35 deg (R)	400 in.lbs	Double V- String: Each String: (37) 7-5/8"x 14-1/8"	Each String: 1450 lbs Double V- String: 4x 1450= 5800 lbs	Each String: 23' (w/o hardware) 25' (with hardware)	170	75	150	255	2x66=132 kips
Medium Angle Suspension Line Angle= 10-30 deg V-String Angles: 12 deg (L) 65 deg (R)	400 in.lbs	Triple V-String: Each String: (41) 6-3/4"x13"	Each String: 1150 lbs Triple V- String: 6x 1150= 6900 lbs	Each String: 23' (w/o hardware) 25' (with hardware)	150	65	140	225	3x50=150 kips
Deadend Line Angle= 0-45 deg & Deadend Line Angle= 45-90 deg	400 in.lbs	Quadruple DE String: Each String: (50) 6-3/4"x13" I Jumper String: Single I-String (41) 6-3/4"x13"	Each String: 1455 lbs 1 Jumper: 1150 lbs Quadruple DE String: 4x 1455 =5820 lbs Both sides of structure: 2x 5820+ 1x1150= 12790 lbs	Dead end Insulator: 28' (w/o hardware) 33' (with hardware) Jumper: 23' (w/o hardware) 25' (with hardware)	150	65	140	225	4x50=200 kips (each side of structure) 2x200=400 kips (both sides of structure)

Data based on toughened glass, ball & socket coupling, Sediver's DC fog type: 50 kips (N220P/C-171DR) and 66 kips (F300PU/C-195DR). *Electrical characteristics in accordance with IEC 61325.

RIGHT-OF-WAY

Description

Location of Line in ROW:	Assumed center
ROW Width:	Assumed 175' based on 1500' typical spans.

Right-of-Way Width Calculations for Blowout

Load Case 1:	0 PSF, No Ice, All Temperatures, Final (NESC 234 A.1)
Load Case 2:	6 PSF, No Ice, 60°F, Final (NESC 234 A.2)
Load Case 3:	Extreme Wind 24.3 psf, No Ice, 60°F, Final

Minimum clearances to be maintained from the blown out conductor to the edge of right-of way shall be as follows. Load Cases 1 and 2 are based on maintaining NESC clearance to buildings. See NESC 234 B. Clearances for Load Case 3 are not governed by NESC. This case is a criteria designed to keep the

FMC 009-009 (DD-DES-01) DES CRITERIA (01/31/10) MW 121586

PAGE 14

Schedule AWG-3 Page 20 of 94 conductors on the right-of-way under an extreme wind. These clearances include a 3' buffer to accommodate survey and construction tolerances.

For clearances to the ROW, see also Appendix A- Clearances Calculation Tables.

	Clearance for ±600 kV nominal & ±632 kV maximum
Load Case 1	25 ft*
Load Case 2	22 ft*
Load Case 3	0 ft – May vary by location

*See Appendix A- Clearances Calculation Tables.

The maximum structure deflection, including foundation rotation, for single shaft steel structures will be assumed at 9% of structure above ground height for Load Case 3 and 5% for Load Case 2. For lattice towers the maximum structure deflection will be assumed at 1% of the structure above ground height.

Electric Field Affects

Electric field calculations will be prepared using the Corona and Field Affects Program (CAFEP) developed by the Bonneville Power Administration. The calculations will be based on a maximum line to line voltage of the nominal 600 kV plus 5% (or 632 kV) at the sending end. Typical approximate structure configurations will be used along with a sample of the possible conductor bundling scenarios. Calculated values will be compared to the limits listed below as a reference. Note that Kansas and Missouri do not have any published limits.

IEEE Standard C95.6-2002 Limits

- Maximum E-field at edge of right-of-way: 5 kV/m
- Maximum E-field on the right-of-way: 20 kV/m

Corona

POWER will prepare corona effects calculations using the CAFEP software and the same scenarios as the electric field calculations. Clean Line Energy will provide the audible noise (AN) and AM radio interference (RI) limits to be maintained at the edge of right-of-way. If no values are provided, the typical industry guidance of 40 dB μ V/m will be used for RI and the EPA recommendation of no greater than 55 dBA will be used for AN. All values are calculated at the edge of the right-of-way.

In addition, the corona losses along the line will be calculated manually for the same scenarios as above. The calculations will assume a line length of 800 miles as the specific line length is yet to be determined.

CLEARANCES

All clearances will be determined using 600 kV DC, nominal, pole-to-ground, and 632 kV DC, maximum, pole-to-ground.

Also, for comparison purposes, clearances were calculated using an "AC equivalent" voltage (600 kV DC = 735 kV AC).

See Appendix A-Clearances Calculation Tables.

Voltage System

All systems are considered effectively grounded or systems where ground faults are cleared by promptly deenergizing the faulted section, both initially and following subsequent breaker operations. The maximum operating voltage is the normal voltage plus 5%.

Clearance to Structure/Insulator Swing

The maximum and minimum insulator swings will be limited by minimum clearances required to the structure. This clearance will be to the arm, tower body, or to the pole. The load cases considered for insulator swing as it relates to clearance to structure will be as follows:

Load Case 1:	0 PSF Wind, No Ice, All Temperatures, Final
Load Case 2:	6 PSF, No Ice, 60°F, Final (NESC 235 E.2)
Load Case 3:	Extreme Wind, No Ice, 60°F, Final

Minimum clearances to be maintained from the closest line conductor or other hot element to the face of the metal structures shall be as follows:

	Clearance for ±600 kV nominal & ±632 kV maximum
Load Case 1	17.33 ft
Load Case 2	17.33 ft
Load Case 3	5 ft

Load Case 1 required clearance based on air gap equivalent (dry arc distance) of tangent insulator. Load Case 2 clearance based on NESC Table 235-6. Load Case 1 and 2 minimum clearances increased to 17.33' to meet IEEE 516-2009 MAD (Minimum Approach Distance) for tools (12.33') and the Working Space (4.5').

Load Case 3 based on EPRI T/L Reference Book +/ -600 KV HVDC Lines where the mechanical case Extreme Wind corresponds to the electrical case Steady State , normal regime, Figure 10-3 page 145 and Fig.10-4, Page 146: 4.1', to which it was added a buffer of 0.9'.

See Appendix A-Clearances Calculation Tables.

Ground Clearance

NESC:	34' (w/3' buffer) (See Appendix A-Clearances Calculation Tables).
REA:	N/A
Other:	N/A

Water Clearance for River Crossing Spans

NESC:	55' (w/3' buffer) (See Appendix A- Water Clearances Calculation Tables).
REA:	N/A
Other:	N/A

The water clearance was determined based on NESC Rule 232D, Table 232-3, f (DC Calculation) and NESC Rule 232, Table 232-1, 7 (AC Equivalent Calculation). It might change, based future requirements from the Corps of Engineers, or other regulators.

5 milli Amp Rule

This rule, NESC Rule 232.C.1.c, does not apply to HVDC lines because a DC line will not create a steadystate current as occurs with AC lines.

Clearance Between Wires on Different Supporting Structures

NESC: Horizontal: 35 ft (w/3 ft buffer); Vertical: 28 ft(w/ 3 ft buffer) (Reference NESC Rule 233)

FMC 009-009 (DD-DES-01) DES CRITERIA (01/31/10) MW 121586

PAGE 16

Schedule AWG-3 Page 22 of 94

REA:	N/A	
Other:	N/A	

Clearance to Structures of Another Line

NESC:	22 ft (w/3 ft buffer) (Reference NESC Rule 234B)
REA:	N/A
Other:	N/A

Horizontal Clearance Between Line Conductors at Fixed Supports

CASE 1: The Horizontal clearance at the structure, of the same or different circuits, shall be per NESC 235B.3.a Alternate Clearance: Pole-to-Pole (horizontal configuration): 34.8' (w/3 ' buffer).

CASE 2: The Horizontal clearance at the supports, of the same or different circuits, shall also meet requirements according to sags per NESC 235B.1.b(2) :Pole-to-Pole (horizontal configuration): 27' (w/3' buffer).

CASE 3: Galloping

Refer to section titled "Galloping".

Vertical Clearance Between Line Conductors

Note: the poles (conductors) of the DC lines will be located horizontally, so these vertical clearances are just theoretical. Only the distance pole (conductor) to OPGW will be a vertical clearance.

CASE 1: Pole-to-Pole (if they are located in vertical configuration): 30 ft (w/3 ' buffer). Pole-to-OPGW: 19 ft (w/3' buffer). The Vertical clearance at the structure shall be per NESC 235C. Reference NESC Table 235-5.

CASE 2: Pole-to-Pole (if they are located in vertical configuration): 30 ft (w/3' buffer). Pole-to-OPGW: 19 ft (w/3' buffer). Vertical clearances at the structure shall be adjusted to provide sagrelated clearances at any point in the span per NESC 235C.2.b. The sag-related clearances in the span are considered as diagonal clearances.

CASE 3: Galloping

Refer to section titled "Galloping".

Radial Clearance from Line Conductors to Supports, and to Vertical or Lateral Conductors, Span or Guy Wires Attached to the Same Support

NESC:	To supports: 17.33' (MAD for Tools''12.33 per IEEE 516-2009+Working Space: 4.5' per NESC Rule 236&237)
	To anchor guys: 19.4' (w/3 ft buffer) per NESC235E, 4 b., where 600 kV, dc equivalent to
	735 kV ac.
	The NESC Rule 235E3b (Alternative Clerances-600 kV DC): 16' and Rule 235E, 4b (600 kV
	dc equivalent to 735 KV ac): 16' do not control, it is the MAD for tools+WS:17.33' that
	controls this clearance case.
REA:	N/A
Other:	N/A

PAGE 17

Schedule AWG-3 Page 23 of 94

MISCELLANEOUS

Grounding Requirements (type and frequency of grounding required) Ground Type:

Butt Plate:	N/A
Butt Wrap:	N/A
Ground Rod:	To be used.
Other:	
Frequency of Grounding:	
All Structures:	Yes
No. Per Mile:	TBD
Maximum Resistance per	10
Structure (ohms):	
Other:	

Special Equipment

Describe any special equipment requirements (switches, fiber optic materials, distribution underbuild, reclosers, etc.):

Splice boxes for the OPGW fibers will be used at the splice structures where an OPGW reel will finish, and at certain dead-end structures. Underground loose tube (LT) type fiber optic cable will be used from the last structure to the substation. The fibers from this underground fiber optic cable will be spliced to the fibers from the OPGW inside the splice box located on the last structure before the substation.

Material

Describe Owner supplied material (attach additional sheets if necessary):

Does the utility have a standard material list it uses:	YES		NO	
---	-----	--	----	--

Describe Contractor supplied material (attach additional sheets if necessary) :

Environmental Protection

State any measures required or agencies to be contacted for wildlife protection requirements:

Describe any known industrial, salt-water contamination or other environment that may impact or has been known to impact electrical insulation:

FMC 009-009 (DD-DES-01) DES CRITERIA (01/31/10) MW 121586

PAGE 18 Schedule AWG-3 Page 24 of 94 State any measures required for airborne contamination protection (dust control):

Describe any known caustic or corrosive soil conditions:

DRAWINGS AND MAPS

Maps

Existing facility maps	, P&P's available:	YES	NO	

List foreign utilities to be considered for project, if maps are available:

Power: Phone: Sewer: Highways: Other:	Gas: TV: Water: Railroad:		
Separate access road maps required:	YES 🗆 NO 🗆		
Describe ROW/Environmental or Ease			
Drawing Requirements			
Map and Plan and Profile Scales:			
Key Map	horiz.		
Scale:			
Plan Scale:	horiz.	-	
Profile Scale:	vert.	Size:	horiz.
Plan Type:			
Planimetric:			
Topographic:			
Other:			
POWER Standard:			
Other:			
Drawing Numbers:			
POWER Generated:			
Owner Generated			
(describe):			
Final Drawings:			

FMC 009-009 (DD-DES-01) DES CRITERIA (01/31/10) MW 121586

PAGE 19

Schedule AWG-3 Page 25 of 94 Describe structure numbering sequence:

D '1	. 11*	•	· c· , ·
Describe any	controlling	manning	snecifications.
Deserroe any	controning	mapping	specifications:

All coordinates will be based on various State Plane systems, as required. Vertical datum is based on NAVD 88.

SUSTATION/SWITCHYARD INTERFACE

Terminate at existing substation entry structure:	YES	NO
Comments:		

Maximum allowable tensions f	Maximum allowable tensions for substation deadend:					
Conductor: 5000 lbs (assumed, no station data available)						
OPGW/OHGW:	3000 lbs (assumed, no station data available)					
Attachment height above ground	Attachment height above ground substation deadend:					
Conductor: TBD (no station data available)						
OPGW/OHGW: TBD (no station data available)						

Are substation drawings available? YES \Box NO \Box , (if so, include)

OTHER

Describe any other items the engineer/designer may need to know to complete this project (attach additional sheets if necessary):

Case	NESC- DC	NESC- AC Equivalent	EPRI	MAD* for Tools	Conclusion:
	V nom=600 KV peak, pole-ground	600 KV V nom=735 KV	T/L Reference Book HVDC Lines	(IEEE 516-2009) + Working Space (NESC Rule 236& 237)	Minimum possible value that can be used
	V max=632 KV (5% over V nom)	V max=772 KV (5% over V nom)			
Conductor to Ground:	Rule 232 D.3:	Rule 232 B and 232 C:	Not addressed.	N/A	
a. Track rails of railroads	38.68' (bare) 39' (rounded) 42' (w/3' buffer)	40.6' (bare) 41' (rounded) 44' (w/3' buffer)			42'
b. Streets, Alleys, roads, driveways, and parking lots	30.68' (bare) 31' (rounded) 34' (w/3' buffer)	32.6' (bare) 33' (rounded) 36' (w/3' buffer)			34'
c. Spaces and ways subject to pedestrians or restricted traffic:	26.68' (bare) 27' (rounded) 30' (w/3' buffer)	28.6' (bare) 29' (rounded) 32' (w/3' buffer)			30'
d. Vehicular areas	30.68' (bare) 31' (rounded) 34' (w/3' buffer)	32.6' (bare) 33' (rounded) 36' (w/3' buffer)			34'
Conductor to Water:	Rule 232 D, Table 232-3:	Rule 232, Table 232-1:	Not addressed.	N/A	
e. Water areas not suitable for sail boating or where sail boating is prohibited	28.46' (bare) 29' (rounded) 32' (w/3' buffer)	31.1' (bare) 32' (rounded) 35' (w/3' buffer)			32'
Water areas uitable for sail ooating, including ivers, lakes, oonds, canals with unobstructed uurface area:					
1) less than 0.08 km^2 (20 acres)	31.96' (bare) 32' (rounded) 35' (w/3' buffer)	34.6' (bare) 35' (rounded) 38' (w/3' buffer)			35'
(2) over 0.08 to 0.8 km ² (20 to 200 acres)	39.96' (bare) 40' (rounded) 43' (w/3' buffer)	42.6' (bare) 43' (rounded) 46' (w/3' buffer)			43'
3) over 0.8 to 8 km^2 (200 to 2000 acres)	45.96' (bare) 46' (rounded) 49' (w/3' buffer)	48.6' (bare) 49' (rounded) 52' (w/3' buffer)			49'
(4) over 8 km^2 (2000 acres) Mississippi River Crossing	51.96' (bare) 52' (rounded) 55' (w/3' buffer)	54.6' (bare) 55' (rounded) 58' (w/3' buffer)			55'

FMC 009-009 (DD-DES-01) DES CRITERIA (01/31/10) MW 121586

PAGE 21 Schedule AWG-3 Page 27 of 94

Case	NESC- DC V nom=600 KV peak, pole-ground	NESC- AC Equivalent V nom=735 KV rms, phase-to-phase 735=600*sqrt(3)/sqrt(2) Rule 230 H	EPRI T/L Reference Book HVDC Lines	MAD* for Tools (IEEE 516-2009) + Working Space (NESC Rule 236& 237)	Conclusion: Minimum possible value that can be used
	V max=632 KV (5% over V nom)	V max=772 KV (5% over V nom)			
Conductor to Structure No Wind	12.96' (bare) 13' (rounded) 16' (w/3 ' buffer)	12.95' (bare) 13' (rounded) 16' (w/3' buffer)	16.4'	12.83'+4.5'=17.33' MAD+WS	17.33'
	Rule 235 E.3b	Rule 235E, Table 235-6, item 4b	No Wind Case corresponds to Lightning Impulse, required clearance from Figure 10-13, page 150. Lightning Surge will be at least 30% higher than Switching Surge: 1080*1.3=1404 kV Surge Factor: Ti=1.8		
Conductor to Structure Medium Wind 6 psf	12.96' (bare) 13' (rounded) 16' (w/3' buffer) Rule 235 E.3b	12.95' (bare) 13' (rounded) 16' (w/3' buffer) Rule 235E, Table 235-6, item	9.8 '	12.83'+4.5'=17.33' MAD+WS	17.33'
	Kule 233 E.30	4b	Case corresponds to Switching Impulse, required clearance from Figure 10-13, page 150 Switching Surge=1.8*600 =1080 kV Surge Factor: Ti=1.8		
Conductor to Structure Extreme Wind 24.3 psf	Not addressed	Not addressed	4.1' (no buffer) 5' (w/0.9' buffer)	Not addressed	5'
			Extreme Wind corresponds to Steady State required clearance from Fig.10-3, Page 145 and Fig.10-4, Page 146.		

*MAD=Minimum Approach Distance.

	or to Ground calculation:		
NESC- DC:	NESC- AC Equiv		
V nom=600 KV	V nom=735 KV		
peak, pole-ground	rms, phase-to-phase		
	735=600*sqrt(3)/sqrt(2)		
	Rule 230 H		
V max=632 KV	V max=772 KV		
(5% over V nom)	(5% over V nom)		
Rule 232D, table 232-3:	Equivalent max ac system voltage=735*1.05=772 KV		
Kulo 2520, uoto 252 5.	Equivalent max ac system voltage, phase-to-ground=772/sqrt(3)=446 kV NESC Rule 232, Table 232-1, open supply conductor up to 22 kv:		
. Track rails of railroads: H ref=22'	a. Track rails of railroads: H basic=26.5'		
. Streets, Alleys, roads, driveways, and parking lots: H ref=14'	b. Streets, Alleys, roads, driveways, and parking lots: H basic=18.5'		
. Spaces and ways subject to pedestrians or restricted traffic: H ref=10' l. Vehicular areas: H ref=14'	c. Spaces and ways subject to pedestrians or restricted traffic: H basic=14.5' d. Vehicular areas: H basic=18.5'		
For Ref Altitude < 1500 ft:			
V max=1.05*V nom=632 kV C ref=3.28*(632*1.8*1.15/(500*1.15)^1.667*1.03*1.2=15.96'	Voltage Adder: C adder=(446-22)*0.4"/12=14.1'		
For assumed maximum altitude for this line (worst case scenario): 3000 ft: Altitude Adder: (3000'-1500')/1000'*3%=4.5% C alt=C ref*1.045=15.96'*1.045=16.68'	Altitude adder : zero		
a. Track rails of railroads:	a. Track rails of railroads:		
C total=H ref + C alt=22' + 16.68'= 38.68' (bare)	C total=H basic + C adder= 26.5' + 14.1'=40.6' (bare)		
39' (rounded)	41' (rounded)		
42' (w/3' buffer)	44' (w/3' buffer)		
CHOSEN			
b. Streets, Alleys, roads, driveways, and parking lots:	b. Streets, Alleys, roads, driveways, and parking lots:		
C total=H ref + C alt=14' + 16.68'= 30.68' (bare)	C total=H basic + C adder= 18.5' + 14.1'= 32.6' (bare)		
31' (rounded)	33' (rounded)		
<u>34' (w/3' buffer)</u> <u>CHOSEN</u>	<u>36' (w/3' buffer)</u>		
c. Spaces and ways subject to pedestrians or restricted traffic:	c. Spaces and ways subject to pedestrians or restricted traffic :		
C total=H ref + C alt=10' + 16.68'=26.68' (bare)	C total=H basic + C adder= 14.5' + 14.1'= 28.6' (bare)		
27' (rounded)	29' (rounded)		
30' (w/3' buffer)	32' (w/3' buffer)		
CHOSEN			
d. Vehicular Areas:	d. Vehicular Areas:		
C total=H ref + C alt=14' + 16.68'= 30.68' (bare)	C total=H basic + C adder= 18.5' + 14.1'= 32.6' (bare)		
31' (rounded)	<u>33' (rounded)</u>		
<u>34' (w/3' buffer)</u>	<u>36' (w/3' buffer)</u>		
CHOSEN			

NESC- Clearance Conductor-to-Structure calculation for Cases: Medium Wind (6 psf) and No Wind: NESC-DC: **NESC- AC Equiv** V nom=600 KV V nom=735 KV rms, phase-to-phase peak, pole-ground 735=600*sqrt(3)/sqrt(2) Rule 230H V max=632 KV V max=772 KV (5% over V nom) (5% over V nom) Rule 235E3b Equivalent max ac system voltage=735*1.05=772 KV For Ref Altitude < 1500 ft: Equivalent max ac system voltage, phase-to-V max=1.05*V nom=632 kV ground=772/sqrt(3)=446 kV NESC Rule 235 E, 4b, open supply conductor up to 50 kv: H basic=11"=0.917' C ref=39.37*(632*1.8*1.15/(500*1.2)^1.667*1.03=148.7"=12.4" For assumed maximum altitude for this line (worst case scenario): 3000 ft: Altitude Adder: (3000'-1500')/1000'*3%=4.5% Voltage Adder: C adder=(772-50)*0.2"/12=12.033' Altitude adder : zero C total=H basic + C adder= 0.917' + 12.033'=<u>12.95' (bare)</u> C alt=C ref*1.045=12.4'*1.045=12.96' C alt=12.96' (bare) 13' (rounded) 13' (rounded) 16' (w/3' buffer) 16' (w/3' buffer) **CHOSEN NESC- Clearance to Anchor Guys calculation:** for Cases: Medium Wind (6 psf) and No Wind: NESC- AC Equiv V nom=735 KV rms, phase-to-phase 735=600*sqrt(3)/sqrt(2) Rule 230H V max=772 KV (5% over V nom) Equivalent max ac system voltage=735*1.05=772 KV Equivalent max ac system voltage, phase-to-ground=772/sqrt(3)=446 kV NESC Rule 235 E, 4b, open supply conductor up to 50 kv: H basic=16"=1.333' Voltage Adder: C adder=(772-50)*0.25"/12=15.041' Altitude adder : zero C total=H basic + C adder= 1.333' + 15.041'=16.374' (bare) 16.4' (rounded) 19.4 ' (w/3' buffer) **CHOSEN**

NESC-Clearance to Right –of-Way (Blowout): for Cases: Medium Wind (6 psf) and No Wind:

NESC- AC Equiv V nom=735 KV rms, phase-to-phase 735=600*sqrt(3)/sqrt(2) Rule 230H V max=772 KV (5% over V nom)

Equivalent max ac system voltage=735*1.05=772 KV Equivalent max ac system voltage, phase-to-ground=772/sqrt(3)=446 kV NESC Rule 234B, clearance to buildings, open supply conductor up to 22 kv: H basic=4.5' (with 6 psf wind) H basic=7.5' (with no wind)

> Voltage Adder: C adder=(446-22)*0.4"/12=14.133' Altitude adder : zero

 Medium Wind (6 psf):

 C total=H basic + C adder= 4.5' + 14.133'=18.633' (bare)

 19' (rounded)

 22' (w/3' buffer)

 CHOSEN

 No Wind (0 psf):

 C total=H basic + C adder= 7.5' + 14.133'=21.633' (bare)

 22' (rounded)

 25' (w/3' buffer)

 CHOSEN

NESC- DC:	nter calculation NESC- AC Equiv		
V nom=600 KV	V nom=735 KV		
peak, pole-ground	rms, phase-to-phase		
	735=600*sqrt(3)/sqrt(2)		
	Rule 230H		
V max=632 KV	V max=772 KV		
(5% over V nom)	(5% over V nom)		
Rule 232D, Table 232-3 item:	Equivalent max ac system voltage=735*1.05=772 KV		
	Equivalent max ac system voltage, phase-to- ground=772/sqrt(3)=446 kV		
	NESC Rule 232, Table 232-1, open supply conductor up to 22 k ³		
	NESC Rule 252, Table 252-1, open supply conductor up to 22 k		
e. Water areas not suitable for sail boating or where sail boating is prohibited:	6. Water areas not suitable for sail boating or where sail boating		
H ref=12.5'	prohibited: H basic=17'		
. Water areas suitable for sail boating, including rivers, lakes, ponds, canals with	7. Water areas suitable for sail boating, including rivers, lakes,		
nobstructed surface area:	ponds, canals with unobstructed surface area:		
) less than 0.08 km ² (20 acres): H ref=16'	(1) less than 0.08 km^2 (20 acres): H basic=20.5'		
2) over 0.08 to 0.8 km ² (20 to 200 acres): H ref=24'	(1) less than 0.08 km 2 (20 acres). It basic=20.5 (2) over 0.08 to 0.8 km ² 2 (20 to 200 acres): H basic=28.5'		
B) over 0.8 to 8 km ² (200 to 200 acres): H ref=30'	(2) over 0.08 to 0.8 km ² (20 to 200 acres): H basic= 28.5° (3) over 0.8 to 8 km ² (200 to 2000 acres): H ref= 34.5°		
1) over 8 km ² (2000 acres): Mississippi River Crossing: H ref=36'	(4) over 8 km ^{2} (2000 acres): Mississippi River Crossing: H		
over o knr 2 (2000 acres). Wississippi Kiver Crossing: H rer=30	(4) over 8 km ² (2000 acres): Mississippi River Crossing: H		
For Ref Altitude < 1500 ft:			
V max= $1.05*V$ nom= 632 kV	Voltage Adder: C adder=(446-22)*0.4"/12=14.1'		
C ref= $3.28*(632*1.8*1.15/(500*1.15)^{1.667*1.03*1.2=15.96})$	Altitude at Mississippi River Crossing location:		
C.CS.20 (052 1.0 1.15/(000 1.15) 1.00/ 1.05 1.2=15.70	Alt=300' from PLS-CADD Model		
PU=1.8-maximum switching surge factor for +/- 600 kV DC	00' < 1500' results: Altitude Adder=0, results: C alt=C adder=14.		
Altitude at Mississippi River Crossing location:			
Alt=300' from PLS-CADD Model			
300' < 1500' results: Altitude Adder=0, results: C alt=C ref=15.96'			
e. Water areas not suitable for sail boating or where sail boating is prohibited:	e. Water areas not suitable for sail boating or where sail boating		
	prohibited:		
C total=H ref+C alt=12.5'+15.96'= 28.46<u>' (bare)</u>	C total=H basic + C adder= $17' + 14.1'=31.1'$ (bare)		
<u>C total=29' (rounded)</u>	<u>C total=32' (rounded)</u>		
<u>C total=32' (w/3' buffer)</u> CHOSEN	<u>C total=35' (w/3' buffer)</u>		
CHOSEN			
f. Water areas suitable for sail boating, including rivers, lakes, ponds, canals with	f. Water areas suitable for sail boating, including rivers, lakes,		
unobstructed surface area:	ponds, canals with unobstructed surface area:		
(1) less than 0.08 km ² (20 acres):	(1) less than 0.08 km ² (20 acres):		
C total=H ref+C alt=16'+15.96'= 31.96' (bare)	C total=H basic + C adder= 20.5' + 14.1'= 34.6' (bare)		
C total=32' (rounded)	C total=35' (rounded)		
C total=35' (w/3' buffer)	C total=38' (w/3' buffer)		
CHOSEN			
(2) over 0.08 to 0.8 km ² (20 to 200 acres):	(2) over 0.08 to 0.8 km ² (20 to 200 acres):		
C total=H ref+C alt=24'+15.96'= <u>39.96' (bare)</u>	C total=H basic + C adder= 28.5' + 14.1'= <u>42.6' (bare)</u>		
<u>C total=40' (rounded)</u>	<u>C total=43' (rounded)</u>		
<u>43' (w/3' buffer)</u>	<u>C total=46' (w/3' buffer)</u>		
CHOSEN			
(3) over 0.8 to 8 km ² (200 to 2000 acres):	(3) over 0.8 to 8 km ² (200 to 2000 acres):		
(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
C total=H ref+C alt=30'+15.96'=45.96' (bare)	C total=H basic + C adder= 34.5' + 14.1'=48.6' (bare)		
C total=46' (rounded)	C total=49' (rounded)		
49' (w/3' buffer)	C total=52' (w/3' buffer)		
CHOSEN	<u></u>		
CHOSEN			
	1) over 8 km/2 (2000 general) Mississinni Diver Creasing		
(4) over 8 km ² (2000 acres): Mississippi River Crossing:	4) over 8 km ² (2000 acres): Mississippi River Crossing:		

Schedule AWG-3 Page 32 of 94

C total=52' (rounded)	C total=55' (rounded)
55' (w/3' buffer)	C total=58' (w/3' buffer)
CHOSEN	

Appendix B-OPGW Detailed Specification:

This +/-600 kV DC line will go through Kansas and Missouri, and according to the Visalia public domain Ground Flash Density (GFD) Map (http://www.weather.gov/os/lightning/images/Vaisala_96-05_Flash_Map.gif), the expected average maximum GFD in these regions is about GFD max= 6 [strokes/sqkm/year]. This is a significant value, enough to require a lower maximum allowable shielding angle. For this project, we have selected 15 degrees.

For an GFD=6 [strokes/sqkm/year], and considering, at this preliminary design criteria stage, an average tower height of 42 m=140 ft, and a distance between the 2 OPGWs of about 8.8 m = 29 ft, and assuming the average ruling span at 460 m=1500 ft, for an exposure interval of 30 years, and assuming 95% of the lightning strikes are negative and 5% are positive (which is a typical case) results the worst lightning charge to be **Q=121 Coulombs (negative polarity)**, using IEEE 1243 method.

That will require the OPGW to have in the outer layer a wire diameter of minimum **3.1 mm (ACS 20.3%IACS wire material).** Calculations of required outer wire diameter based on formulas developed empirically from test data developed by AFL.

This minimum size of wire in the outer layer: **3.1 mm** is necessary to ensure that after lightning strike, the remaining strength in the OPGW will be at least 75% of the original OPGW RBS, per IEEE 1138 OPGW lightning test method.

See attached calculations prepared by Power Engineers in "Lightning Algorithm-Clean Line-Expected Charge .xlsx" Spreadsheet, that is attached as Appendix C to this Preliminary Design Criteria.

Also, because this line will be in a region with 1.25" ice with concurrent wind of 4.1 psf (NESC), a good assumption is that the OPGW maximum working tension will be at about 60%RBS under 1.25" ice+4.1 psf wind, in order for the OPGW sag to be at 85% of the conductor sag at 60 F, Final, bare cable.

Therefore, the OPGW must have **Cable Tension for Zero Fiber Strain (CTZFS) of at least 85%RBS**. Due to this requirement any OPGW with <u>central tube design</u> (i.e. fibers in central stainless steel tube, or fibers in central stainless steel tube inside an aluminum pipe), are not recommended.

These types of designs do not meet CTZFS=85%RBS.

At this level of high tension, in this type of design, there will be some allowable fiber strain, about 0.20%-0.33%, which can result in fiber attenuation [dB/km].

The only OPGW design that will meet Cable Tension for Zero Fiber Strain (CTZFS)=85%RBS is a stranded stainless steel tube design, where the fibers are located inside stranded stainless steel tubes. The fibers need to be in an element that has a lay length (pitch), because the EFL (Excess Fiber Length) itself inside the tube is not sufficient to provide CTZFS=85%RBS.

Minimum EFL (Excess Fiber Length) in the stainless steel tube must be 0.5%, and the lay length (pitch) of the inner layer, containing the stainless steel tubes, must be tight enough to obtain enough fiber free elongation in tension to reach CTZFS=85%RBS.

Therefore, it is recommended that the inner layer lay ratio be in the range of 10-13. This means that the inner layer lay length (pitch) must be 10 to 13 times the diameter over the inner layer.

FMC 009-009 (DD-DES-01) DES CRITERIA (01/31/10) MW 121586

Schedule AWG-3 Page 33 of 94 The preferred design, for maximum 48 fibers, will be a design with 2 stainless steel tubes in the inner layer, each with a maximum of 24 fibers.

If more than 12 fibers per tube are used, the fibers will be grouped in 12 fibers, each group of 12 fibers should be differentiated using stripes, not string binders.

Note that while an OPGW design with fibers inside stranded plastic buffer tubes inside an AL Pipe will also meet the requirement of CTZFS = 85% RBS. However, an OPGW designed in this manner will be much larger (with a resulting increase in structure loads) than an equivalent design using stranded stainless steel tubes designs.

The OPGW Rated breaking Strength (RBS) will be calculated as 90% of the OPGW UTS (Ultimate Tensile Strength), as defined in IEEE 1138 standard for OPGW.

The hollow stainless steel tubes will not be considered in the calculation of the OPGW RBS, only the wires.

The type of fiber to be used, due to the line length: 800 miles, must be G.655C (NZDSF=Non-Zero Dispersion Shifted Fiber, large Core Area), and not SMF G.652D (Low Water Peak).

Using G.655C type of fibers allows an increased spacing between repeaters (amplifiers) to reduce the nonlinear effects, which determines fiber losses (fiber attenuation, in dB/km).

The G.655 fibers attenuation limits should be:

- 0.22 db/km @ 1550 nm
- 0.25 dB/km @ 1625 nm

Important Note: these will be the "cabled" fiber maximum allowed attenuation values, not the "uncabled" fibers value (incoming fiber from fiber's manufacturer).

Based on the above, the preliminary OPGW design characteristics/specifications are as follows: Maximum Cable Diameter: D c=0.591 inches

- Minimum Wire Diameter in the Outer Layer: D wire=3.00 mm
- Maximum Weight: W=0.475 lbs/ft
- Minimum Rated Breaking Strength: RBS=25369 lbs
- Minimum Cable Tension for Zero Fiber Strain=85% RBS
- Minimum Total Cross-Sectional Area: A=0.19 sq in
- Minimum Fault Current Rating: I²*t=98 kA²*sec; which corresponds to the following assumed fault magnitude and clearing time scenarios:
 - I=14.0 kA; t=0.50 sec (worst case scenario: longest fault current duration: 30 cycles)
 - I=31.3 kA; t=0.10 sec (best case scenario: shortest fault current duration: 10 cycles) (fault current: initial temperature=40 C; final temperature=210 C)
- Maximum DC Resistance at 20 deg C: R dc=0.7945 Ohm/mile
- Outer Layer of Wire Lay Direction: Left
- Fiber Type: G.655C: fiber attenuation limits: 0.22 dB/km @ 1550 nm; 0.25 dB/km @ 1625 nm.
- Fiber Count: Minimum: 12; Maximum 48
- PLS-CADD .wir file: polynomial coefficients from SAG10 chart 1-1427

Power Engineers-Appendix C

Calculated Charge

Algorithm To Establish Calculated Lightning Charge Levels at Customer Location:

This spreadsheet to be used ONLY when customer DID NOT provide lightning charge level in his technical specifications, and that lightning charge level must be established at customer location.

Line Geometry Input:

1. Tower Height: h_t 42[m]Note:"h t" should be provided by customer.ONLY if the customer does not know the tower height: ht, it can be assumed: for Distribution Lines, 0 kV < V <= 69 kV:h_t =25[m]for Transmission Lines, 69 kV < V <= 115 kV:h_t =30[m]for Transmission Lines, 115 kV < V <= 230 kV:h_t =35[m]for Transmission Lines, 230 kV < V <= 345 kV:h_t =40[m]for Transmission Lines, 345 kV < V <= 1000 kV:h_t =45[m]2. Number of Groundwires: N_{GW} 2[-]Note:"N GW" should be provided by customer.	
for Distribution Lines, 0 kV < V <= 69 kV: $h_t = 25$ [m] for Transmission Lines, 69 kV < V <= 115 kV: $h_t = 30$ [m] for Transmission Lines, 115 kV < V <= 230 kV: $h_t = 35$ [m] for Transmission Lines, 230 kV < V <= 345 kV: $h_t = 40$ [m] for Transmission Lines, 345 kV < V <= 1000 kV: $h_t = 45$ [m]	
for Transmission Lines, $69 \text{ kV} < \text{V} <= 115 \text{ kV}$: $h_t = 30 \text{ [m]}$ for Transmission Lines, $115 \text{ kV} < \text{V} <= 230 \text{ kV}$: $h_t = 35 \text{ [m]}$ for Transmission Lines, $230 \text{ kV} < \text{V} <= 345 \text{ kV}$: $h_t = 40 \text{ [m]}$ for Transmission Lines, $345 \text{ kV} < \text{V} <= 1000 \text{ kV}$: $h_t = 45 \text{ [m]}$	
for Transmission Lines, 115 kV < V <= 230 kV:	
for Transmission Lines, 230 kV < V <= 345 kV: $h_t = 40$ [m] for Transmission Lines, 345 kV < V <= 1000 kV: $h_t = 45$ [m]	
for Transmission Lines, $345 \text{ kV} < \text{V} <= 1000 \text{ kV}$: $h_t = 45 \text{ [m]}$	
2. Number of Groundwires: N _{GW} 2 [-] <u>Note</u> : "N _{GW} " should be provided by customer.	
3. Groundwires Spacing: b 8.8 [m] <u>Note</u> : "b" should be provided by customer.	
if 2 groundwires: N _{GW} = 2, then "b" has a value	
if 1 groundwire: $N_{GW} = 1$, then "b" = 0	
ONLY if the customer does not know the spacing between the 2 groundwires: b, it can be assumed:	
for Distribution Lines, $0 \text{ kV} < V \le 69 \text{ kV}$: $b = 2 \text{ [m]}$	
for Transmission Lines, 69 kV < V <= 115 kV: b = 3 [m]	
for Transmission Lines, $115 \text{ kV} < V \le 230 \text{ kV}$: b = 4 [m]	
for Transmission Lines, 230 kV < V <= 345 kV: b = 5 [m]	
for Transmission Lines, 345 kV < V <= 1000 kV: b = 6 [m]	
4. Average Span: S 457 [m] Note: "S" should be provided by customer.	
ONLY if the customer does not know the average span: S, of that line, it can be assumed:	
for Distribution Lines, 0 kV < V <= 69 kV: S = 100 [m]	
for Transmission Lines, 69 kV < V <= 115 kV: S = 225 [m]	
for Transmission Lines, 115 kV < V <= 230 kV: S = 275 [m]	
for Transmission Lines, 230 kV < V <= 345 kV: S = 300 [m]	
for Transmission Lines, 345 kV < V <= 1000 kV: S = 325 [m]	
5. Line Length: [km] Note: "L" should be provided by customer.	

Prepared By: Cristian Militaru

Page 1

Date: 1/27/2011

Schedule AWG-3 Page 35 of 94

Po	wer	Engineer	s-Appe	endix	С

Calculated Charge

1. Ground Flash Density: N g [1.15 [strokes/km²/year] (also called : GFD) ; GFDline=GFD^0.078=6^0.078=1.15
Notes:
1. For USA: use the GFD map from spreadsheets: "Vidalia" OR "USA GFD Map- Global Atmospherics" (this one is more detailed)
2. For Canada: use the GFD map from spreadsheet "Canada GFD Map-CEA".
3. For South Africa: use the GFD map from spreadsheet "South Africa GFD Map-CSIR".
4. For the rest of the world: use 10% of the total OTD data from the the web site provided in the spreadsheet "Rest of the World".
Reason:
OTD data: only 10% are flashes cloud -to- ground (the one you are interested in: GFD)
the rest 90% are flashes cloud-to-cloud or intracloud (you are not interested in these data)
2. Precent Negative Flashes (PNF) in the total number of flashes:
PNF= 0.95 [probability, absolute value]
Note: if not known from OTD data, it can be used as default: PNF= 0.95 (95%).
<u>Note.</u> Il not known from OTD data, it can be used as delauit. PNF- 0.95 (95%).
3. Precent Positive Flashes (PPF) in the total number of flashes:
PPF= 0.05 [probability, absolute value]
<u>Note:</u> if not known from OTD data, it can be used as default: PNF= 0.05 (5%).
Probability Input:
Exposure Interval: Y 30 [years]
Important Check: $Y \cdot L \cdot N_g$ [strokes/km] O.K.
Note: The product: "Y*L*Ng" MUST be MAXIMUM 4000 [strokes/km]
Reason for the product "Y*L*Ng" limitation: for long lines cases, to avoid level of charges too high, resulting in OPGW design cost prohibitive.

Prepared By: Cristian Militaru

Page 2

Date: 1/27/2011

Schedule AWG-3 Page 36 of 94

Prepared By: Cristian Militaru

Date: 1/27/2011

Schedule AWG-3 Page 37 of 94 Power Engineers-Appendix C

5. Probability Design Level for Negative First Stroke Flashes: D neg
5. <u>Probability Design Level for Negative First Stroke Flashes:</u> IEEE proposed formula: $P_{first}^{neg} = \frac{P}{PNF}$ [probability, absolute value]
$P_{first}^{neg} =$ 0.0078 [probability, absolute value]
0.78 [probability, precent]
6. Corresponding Number of Negative Flashes to this Probability Design Level: NNF:
IEEE proposed formula: $NNF = \frac{1}{P_{first}^{neg}}$ [negative flashes]
5. <u>Probability Design Level for Positive First Stroke Flashes:</u>
IEEE proposed formula: $P_{first}^{pos} = \frac{P}{PPF}$ [probability, absolute value]
$P_{first}^{pos} =$ 0.1481 [probability, absolute value]
14.81 [probability, precent]
6. Corresponding Number of Positive Flashes to this Probability Design Level: NPF:
IEEE proposed formula: $NPF = \frac{1}{P_{first}^{pos}}$ [positive flashes]
7. Negative First Stroke Peak Amplitude: $I_{first}^{neg}*$
probabilistic function: log normal:
IEEE formula: $P_{(I>I^*)} = \frac{1}{1 + \left(\frac{I^*}{31}\right)^{2.6}}$ where: $I_m = 31 [kA]$ median current for negative first stroke
$I_{first}^{neg^*} = 31 \cdot \left(\left(P_{first}^{neg} \right)^{-1} - 1 \right)^{\frac{1}{2.6}} $ [kA]
$I_{first}^{neg *} =$ 200 [kA]

Prepared By: Cristian Militaru

Page 4

Date: 1/27/2011

Schedule AWG-3 Page 38 of 94

Prepared By: Cristian Militaru

Page 5

Date: 1/27/2011 Schedule AWG-3 Page 39 of 94

Prepared By: Cristian Militaru

Page 6

Date: 1/27/2011 Schedule AWG-3 Page 40 of 94

Note: Qpositive<2*Qnegative, TEST WILL BE DONE ONLY FOR Qnegative

Prepared By: Cristian Militaru

Page 8

Date: 1/27/2011 Schedule AWG-3 Page 42 of 94

Prepared By: Cristian Militaru

Page 9

Date: 1/27/2011 Schedule AWG-3 Page 43 of 94

P	ower Enginee	rs- Appendix	D		All AW20.3			Lightning Algorithm.xls
Wire Ty	oe:	AW20.3%	(all wires)	Tensile Strength: TS:	195	[kpsi]	Conductivity: λ:	20.3 [%]
Gap:	5	[cm]	Tolerance:	+ / - 1 cm	-			

Input below Total Charge from Customer Technical Specifications.

If is not provided, please follow the algorithm from spreadsheet "Calculated Charge" to determine the total charge at customer location, and then input below. Note: only if positive charge is twice as large as the negative charge, there will be a test also for the positive charge, and you input the positive charge below.

Positive polarity: Q

Wire Diameter: D

Remnant Strength: Negative polarity: Q

Wire Diameter: D

[%] RBS 75 121

3.12

[C]

[mm]

242 3.12

[C]

[mm]

Otherwise, positive charge does not matter.

RBS= Rated Breaking Strength of the cable, NOT of the individual wire **Negative Polarity:**

veyativ	e Folanty.			
Q	D (90%RBS)	D (85%RBS)	D (80%RBS)	D (75%RBS)
[C]	[mm]	[mm]	[mm]	[mm]
50	2.14	2.06	1.98	1.90
60	2.39	2.31	2.23	2.15
70	2.60	2.52	2.44	2.36
80	2.79	2.71	2.63	2.55
90	2.95	2.87	2.79	2.71
100	3.10	3.02	2.94	2.86
110	3.23	3.15	3.07	2.99
120	3.35	3.27	3.19	3.11
130	3.46	3.38	3.30	3.22
140	3.57	3.49	3.41	3.33
150	3.66	3.58	3.50	3.42
160	3.75	3.67	3.59	3.51
170	3.84	3.76	3.68	3.60
180	3.92	3.84	3.76	3.68
190	3.99	3.91	3.83	3.75
200	4.06	3.98	3.90	3.82
210	4.13	4.05	3.97	3.89
220	4.20	4.12	4.04	3.96
230	4.26	4.18	4.10	4.02
240	4.32	4.24	4.16	4.08
250	4.37	4.29	4.21	4.13
260	4.43	4.35	4.27	4.19
270	4.48	4.40	4.32	4.24
280	4.53	4.45	4.37	4.29
290	4.58	4.50	4.42	4.34
300	4.63	4.55	4.47	4.39
310	4.67	4.59	4.51	4.43
320	4.72	4.64	4.56	4.48
330	4.76	4.68	4.60	4.52
340	4.80	4.72	4.64	4.56
350	4.84	4.76	4.68	4.60

Q	D (90%RBS)	D (85%RBS)	D (80%RBS)	D (75%RBS)
[C]	[mm]	[mm]	[mm]	[mm]
100	2.14	2.06	1.98	1.90
120	2.39	2.31	2.23	2.15
140	2.60	2.52	2.44	2.36
160	2.79	2.71	2.63	2.55
180	2.95	2.87	2.79	2.71
200	3.10	3.02	2.94	2.86
220	3.23	3.15	3.07	2.99
240	3.35	3.27	3.19	3.11
260	3.46	3.38	3.30	3.22
280	3.57	3.49	3.41	3.33
300	3.66	3.58	3.50	3.42
320	3.75	3.67	3.59	3.51
340	3.84	3.76	3.68	3.60
360	3.92	3.84	3.76	3.68
380	3.99	3.91	3.83	3.75
400	4.06	3.98	3.90	3.82
420	4.13	4.05	3.97	3.89
440	4.20	4.12	4.04	3.96
460	4.26	4.18	4.10	4.02
480	4.32	4.24	4.16	4.08
500	4.37	4.29	4.21	4.13
520	4.43	4.35	4.27	4.19
540	4.48	4.40	4.32	4.24
560	4.53	4.45	4.37	4.29
580	4.58	4.50	4.42	4.34
600	4.63	4.55	4.47	4.39
620	4.67	4.59	4.51	4.43
640	4.72	4.64	4.56	4.48
660	4.76	4.68	4.60	4.52
680	4.80	4.72	4.64	4.56
700	4.84	4.76	4.68	4.60

Prepared by: Cristian Militaru

Date: 1/27/2011

Schedule AWG-3 Page 44 of 94

Prepared by: Cristian Militaru

Date: 1/27/2011 Schedule AWG-3 Page 45 of 94

All AW20.3

All AW20.3

Prepared by: Cristian Militaru

Date: 1/27/2011

Schedule AWG-3 Page 46 of 94

Formulas:

RBS= Rated Breaking Strength of the cable, NOT of the individual wire

Negative Polarity:

For Remanent Strength=90% RBS:

$$D = 0.144702564 \frac{TS}{\lambda} \cdot \ln \left(0.001041026 \frac{TS}{\lambda} \cdot Q \right) + 3.10$$
$$D = 1.39 \ln \left(0.01 \cdot Q \right) + 3.10$$

For Remanent Strength=85% RBS:

$$D = 0.144702564 \frac{TS}{\lambda} \cdot \ln\left(0.001041026 \frac{TS}{\lambda} \cdot Q\right) + 3.02$$
$$D = 1.39 \ln(0.01 \cdot Q) + 3.02$$

For Remanent Strength=80% RBS:

$$D = 0.144702564 \frac{TS}{\lambda} \cdot \ln\left(0.001041026 \frac{TS}{\lambda} \cdot Q\right) + 2.94$$
$$D = 1.39 \ln(0.01 \cdot Q) + 2.94$$

For Remanent Strength=75% RBS:

$$D = 0.144702564 \frac{TS}{\lambda} \cdot \ln\left(0.001041026 \frac{TS}{\lambda} \cdot Q\right) + 2.86$$

$$D = 1.39 \ln(0.01 \cdot Q) + 2.86$$

Positive Polarity:

For Remanent Strength=90% RBS:

$$D = 0.14470256\frac{TS}{\lambda} \cdot \ln\left(0.00104102\frac{TS}{\lambda} \cdot Q/2\right) + 3.10$$
$$D = 1.39 \ln(0.01 Q/2) + 3.10$$

For Remanent Strength=85% RBS:

$$D = 0.14470256\frac{TS}{\lambda} \cdot \ln\left(0.00104102\frac{TS}{\lambda} \cdot Q/2\right) + 3.02$$
$$D = 1.39\ln(0.01Q/2) + 3.02$$

For Remanent Strength=80% RBS:

$$D = 0.14470256\frac{TS}{\lambda} \cdot \ln\left(0.00104102\frac{TS}{\lambda} \cdot Q/2\right) + 2.94$$
$$D = 1.39 \ln(0.01 Q/2) + 2.94$$

For Remanent Strength=75% RBS:

$$D = 0.14470256\frac{TS}{\lambda} \cdot \ln\left(0.00104102\frac{TS}{\lambda} \cdot Q/2\right) + 2.86$$
$$D = 1.39\ln(0.01Q/2) + 2.86$$

Prepared by: Cristian Militaru

Date: 1/27/2011 Schedule AWG-3 Page 47 of 94 Power Engineers- Appendix D

- 4 1 90
- 2 85
- 3 80
- 4 75

Date: 1/27/2011 Schedule AWG-3 Page 48 of 94

APPENDIX

PLS-CADD Version 10.64x64 3:38:35 PM Friday, November 19, 2010 Power Engineers Project Name: 'r:\pls\pls_cadd\projects\119990 clean line\clean line_span comparison_bluebird_1500 ft.LOA'

Criteria notes: Clean Line Structure Load Trees NESC Heavy Common Point HS=VS=1500ft 0° Final After Load @25% Controls (Conductor) 0° Final After Creep @15% Controls OPGW

Section #6 '3:1:Ahead'

Cable 'r:\pls\pls_cadd\projects\119990 clean line\cables\bluebird_acsr.wir', Ruling span (ft) 1500 Sagging data: Catenary (ft) 5542.19, Horiz. Tension (lbs) 13916.4 Condition I Temperature (deg F) 60.0001 Note: Temperature and condition above are program supplied defaults used for automatic sagging. Weather case for final after creep 60, Equivalent to 78.9 (deg F) temperature increase Weather case for final after load NESC Heavy-Rule 250B, Equivalent to 24.1 (deg F) temperature increase

Ruling Span Sag Tension Report

Weather Case	Cable Load	R.S. Initia	al Cond	R.S. Final After Cr		R.S. Final Cond After Load
# Description	Hor. Vert Res.	Max. Hori. Max Tens. Tens. Ten	C Sag	Max. Hori. Max Tens. Tens. Ten	R.S. C Sag	Max. Hori. Max R.S. Tens. Tens. Ten C Sag
	(lbs/ft)	(lbs) (lbs) %UL 	(ft) (ft)	(lbs) (lbs) %UL	(ft) (ft)	(lbs) (lbs) %UL (ft) (ft)
1 NESC Heavy-Rule 250B	0.92 3.92 4.32	23767 23344 39	5399 52.18	22085 21630 37	5002 56.33	23767 23344 39 5399 52.18
2 NESC Rule 250D	1.46 7.19 7.34	34530 33551 57	4572 61.66	33973 32977 56	4494 62.74	34530 33551 57 4572 61.66
3 32deg, .5", 0psf	0.00 3.92 3.92	21258 20796 35	5309 53.07	19576 19074 32	4869 57.88	21010 20542 35 5244 53.73
4 60deg, 0", 97mph	3.57 2.51 4.36	22217 21874 37	5013 56.20	20618 20248 34	4641 60.74	22010 21664 37 4965 56.75
5 60deg, 0", 157mph	9.27 2.51 9.60	39677 38961 66	4059 69.49	39677 38961 66	4059 69.49	39677 38961 66 4059 69.49
6 60deg, 0", 12.2 psf	1.79 2.51 3.08	16823 16530 28	5359 52.57	15232 14907 25	4833 58.31	16367 16065 27 5208 54.09
7 Odeg, O", 4psf	0.59 2.51 2.58	15940 15681 26	6081 46.31	14117 13825 23	5361 52.55	15414 15147 26 5874 47.95
8 60deg, 0", 6psf	0.88 2.51 2.66	14901 14616 25	5493 51.28	13370 13051 22	4905 57.46	14402 14107 24 5301 53.14
9 0	0.00 2.51 2.51	15607 15349 26	6113 46.07	13795 13503 23	5378 52.39	15073 14806 25 5896 47.76
10 32	0.00 2.51 2.51	14815 14544 25	5792 48.63	13179 12872 22	5126 54.96	14295 14013 24 5580 50.47
11 60	0.00 2.51 2.51	14200 13916 24	5542 50.83	12700 12382 21	4931 57.15	13694 13399 23 5336 52.79
12 90	0.00 2.51 2.51	13605 13309 23	5300 53.15	12236 11905 20	4741 59.45	13126 12819 22 5105 55.19
13 120	0.00 2.51 2.51	13076 12767 22	5084 55.42	11817 11474 20	4570 61.69	12621 12300 21 4899 57.53
14 148	0.00 2.51 2.51	12625 12305 21	4900 57.51	11461 11107 19	4423 63.73	12194 11862 20 4724 59.66
15 160	0.00 2.51 2.51	12446 12121 21	4827 58.38	11319 10960 19	4365 64.59	12024 11688 20 4655 60.55
16 284	0.00 2.51 2.51	10929 10558 18	4205 67.07	10110 9707 17	3866 72.98	10598 10214 18 4068 69.34

Power Engineers

Page 1/1

Schedule AWG-3 Page 49 of 94

PLS-CADD Version 10.60 11:52:49 AM Tuesday, October 05, 2010 Power Engineers Project Name: 'r:\pls\pls_cadd\projects\119990 clean line\clean line str. analysis_bluebird_sag.LOA'

Criteria notes: Clean Line Structure Load Trees NESC Heavy Common Point HS=VS=1500ft 0° Final After Load @25% Controls (Cond.) 0° Final After Creep @15% Controls (opgw)

Section #1 '1:1:Back'

Cable 'r:\pls\pls_cadd\projects\l19990 clean line\cables\49ay85acs-2c 1-1427.wir', Ruling span (ft) 1500 Sagging data: Catenary (ft) 7672.59, Horiz. Tension (lbs) 3629.14 Condition I Temperature (deg F) 60.0001 Note: Temperature and condition above are program supplied defaults used for automatic sagging. Weather case for final after creep 60, Equivalent to 37.8 (deg F) temperature increase Weather case for final after load NESC Heavy-Rule 250B, Equivalent to 46.6 (deg F) temperature increase

Ruling Span Sag Tension Report

Weather Case	Cable Load	1	R.S. II	nitia	l Cond	•				Cond. eep			-R.S. 1			
# Description	Hor. Vert Res. Load (lbs/ft)	Tens.	Hori. Tens. (lbs)	Ten	C (ft)	R.S. Sag (ft)	Tens.	Hori.	Max Ten	C (ft)	R.S. Sag (ft)	Max. Tens.	Hori.	Max Ten	C (ft)	R.S. Sag (ft)
1 NESC Heavy-Rule 250B	0.53 1.15 1.57	8826	8774	35	5597		8826	8774			50.32	8826		35		50.32
2 NESC Rule 250D	1.06 3.33 3.50		14415	58	4121			14415			68.44		14415	58		68.44
3 32deg, .5", 0psf	0.00 1.15 1.15	7020	6967	28	6051		6935	6881	27		47.12	6871	6817	27		47.57
4 60deg, 0", 97mph	1.20 0.47 1.29	7366	7302	29	5674		7310	7246			50.02	7248	7184	29		50.46
5 60deg, 0", 12.2 psf	0.60 0.47 0.76	5133	5101	20	6671		4946	4912			43.83	4889	4856	19		44.34
6 Odeg, O", 4psf	0.20 0.47 0.51	4305	4288	17	8368	33.63	4032	4014	16	7833	35.93	3969	3950	16	7710	36.51
7 60deg, 0", 6psf	0.30 0.47 0.56	4105	4083	16	7322	38.45	3878	3855	15	6913	40.73	3826	3803	15	6819	41.29
8 0	0.00 0.47 0.47	4089	4074	16	8613	32.67	3804	3788	15	8008	35.15	3743	3726	15	7877	35.73
9 32	0.00 0.47 0.47	3839	3823	15	8082	34.82	3581	3563	14	7533	37.36	3526	3508	14	7417	37.95
10 60	0.00 0.47 0.47	3646	3629	14	7673	36.69	3408	3389	13	7165	39.29	3358	3339	13	7060	39.88
11 90	0.00 0.47 0.47	3460	3442	14	7277	38.68	3243	3224	13	6816	41.31	3199	3179	13	6722	41.89
12 120	0.00 0.47 0.47	3295	3276	13	6926	40.65	3096	3076	12	6503	43.30	3057	3037	12	6420	43.86
13 284	0.00 0.47 0.47	2646	2622	10	5544	50.81	2522	2497	10	5278	53.38	2499	2474	10	5231	53.86

PLS-CADD Version 10.64x64 3:03:14 PM Friday, December 10, 2010 Power Engineers Project Name: 'r:\pls\pls_cadd\projects\119990 clean line\clean line_river crossing=4000 ft-accr_tw cumberland.LOA'

Criteria notes:

River Crossing Span=4000 ft 0 deg F Final @25% Controls (Conductor ACCR/TW Cumberland)

Section #1 '1:Back'

Cable 'r:\pls\pls_cadd\projects\119990 clean line\cables\cumberland_accr_tw_dc.wir', Ruling span (ft) 4000 Sagging data: Catenary (ft) 7437.05, Horiz. Tension (lbs) 15655 Condition I Temperature (deg F) 60.0001 Weather case for final after creep 60, Equivalent to 47.3 (deg F) temperature increase Weather case for final after load NESC Heavy-Rule 250B, Equivalent to 40.3 (deg F) temperature increase

Ruling Span Sag Tension Report

Weather Case	Cable Load 	R.S. Initi	al Cond	R.S. Fina After		R.S. Final Co After Load	
# Description	Hor. Vert Res.	Max. Hori. Max	R.S.	Max. Hori. Max	R.S.	Max. Hori. Max	R.S.
	Load (lbs/ft)	Tens. Tens. Ter (lbs) (lbs) %UI		Tens. Tens. Ten (lbs) (lbs) %UL		Tens. Tens. Ten (lbs) (lbs) %UL (f	C Sag ft) (ft)
	(1DS/1C)	10% (adr) (adr)		(IDS) (IDS) %0L			-c) (IC)
1 NESC Heavy-Rule 250B	0.85 3.38 3.78	28649 27607 44	7303 275.57	28579 27534 44	7284 276.30	28649 27607 44 73	303 275.57
2 NESC Rule 250D	1.38 6.45 6.59	47068 45128 72	6845 294.27	47068 45128 72	6845 294.27	47068 45128 72 68	845 294.27
3 32deg, .5", 0psf	0.00 3.38 3.38	25568 24637 39	7299 275.72	25386 24448 39	7243 277.88	25447 24511 39 72	262 277.15
4 60deg, 0", 97mph	3.12 2.11 3.77	28106 27049 43	7180 280.37	27929 26865 43	7131 282.31	27995 26935 43 71	149 281.58
5 60deg, 0", 12.2 psf	1.57 2.11 2.63	20025 19307 31	7354 273.63	19759 19030 30	7249 277.66	19807 19080 30 72	268 276.92
6 Odeg, 0", 4psf	0.51 2.11 2.17	16991 16415 26	7575 265.55	16764 16180 26	7467 269.46	16805 16223 26 74	487 268.74
7 60deg, 0", 6psf	0.77 2.11 2.24	17232 16624 26	7415 271.36	16964 16345 26	7291 276.05	17004 16387 26 73	309 275.33
8 0	0.00 2.11 2.11	16528 15970 25	7587 265.15	16300 15733 25	7474 269.19	16341 15776 25 74	494 268.45
9 32	0.00 2.11 2.11	16365 15801 25	7506 268.03	16114 15541 25	7383 272.56	16156 15583 25 74	403 271.81
10 60	0.00 2.11 2.11	16224 15654 25	7437 270.56	15958 15379 24	7306 275.47	15998 15419 24 73	325 274.73
11 90	0.00 2.11 2.11	16077 15502 25	7364 273.25	15795 15208 24	7225 278.59	15832 15247 24 72	243 277.88
12 120	0.00 2.11 2.11	15933 15352 24	7293 275.95	15637 15044 24	7147 281.67	15676 15084 24 71	166 280.92
13 152	0.00 2.11 2.11	15783 15196 24	7219 278.82	15474 14874 24	7066 284.93	15509 14911 24 70	084 284.22
14 166	0.00 2.11 2.11	15718 15128 24	7187 280.09	15403 14800 24	7031 286.39	15438 14837 24 70	048 285.67

Power Engineers

Page 1/1

PLS-CADD Version 10.64x64 8:42:50 AM Wednesday, December 15, 2010 Power Engineers Project Name: 'r:\pls\pls_cadd\projects\119990 clean line\clean line_river crossing=4000 ft-opgw 161acs-2c.loa'

Criteria notes: River Crossing Span=4000 ft NESC -Rule 250D- Extreme ice with Concurrent Wind-Initial @75% Controls (OPGW)

Section #1 '1:Back'

Cable 'r:\pls\pls_cadd\projects\119990 clean line\cables\mississippi river crossing-conductor selection\brugg_161acs-2c 1-1140.wir', Ruling span (ft) 4000 Sagging data: Catenary (ft) 9262.54, Horiz. Tension (lbs) 6280 Condition I Temperature (deg F) 60.0001 Weather case for final after creep 60, Equivalent to 47.3 (deg F) temperature increase Weather case for final after load NESC Heavy-Rule 250B, Equivalent to 26.5 (deg F) temperature increase

Ruling Span Sag Tension Report

Weather Case	Cable Load 	R.S. In	itial (Cond	!			Cond						•	
# Description	Hor. Vert Res.	Max. Hori.		R.S.	Max.			- 1	R.S.		Hori.			R.S.	į
	Load	Tens. Tens.		C Sag	Tens.			C	Sag	Tens.			C		
	(lbs/ft)	(1bs) (1bs)	*UL (:	ft) (ft) 	(1bs)	(105)	≈оц 	(ft)	(ft)	(1bs)	(105)	≈оц 	(ft)	(ft)	-
1 NESC Heavy-Rule 250B	0.55 1.39 1.79	15580 15153	41 8	442 238.01	15480	15050	41	8385 239	9.66	15580	15153	41	8442	238.01	
2 NESC Rule 250D	1.07 3.63 3.78	28550 27504	75 73	274 276.70	28550	27504	75	7274 27	6.70	28550	27504	75	7274	276.70	
3 32deg, .5", 0psf	0.00 1.39 1.39	12384 12062	33 8	674 231.59	12248	11922	32	8574 23	4.34	12333	12010	32	8637	232.61	
4 60deg, 0", 97mph	1.31 0.68 1.47	12905 12558	34 8	523 235.74	12775	12424	34	8432 23	8.31	12860	12511	34	8492	236.62	
5 60deg, 0", 12.2 psf	0.66 0.68 0.94	8694 8483	23 8	987 223.47	8556	8341	22	8837 22	7.29	8621	8409	23	8908	225.46	
6 Odeg, 0", 4psf	0.22 0.68 0.71	6887 6736	18 9	469 211.99	6754	6600	18	9278 21	6.41	6812	6659	18	9361	214.46	
7 60deg, 0", 6psf	0.32 0.68 0.75	7062 6897	19 93	184 218.63	6934	6766	18	9010 222	2.90	6990	6824	18	9086	221.01	
8 0	0.00 0.68 0.68	6591 6448	17 9	510 211.08	6460	6314	17	9313 21	5.59	6516	6371	17	9397	213.63	
9 32	0.00 0.68 0.68	6502 6357	17 93	376 214.13	6376	6228	17	9186 21	8.59	6430	6283	17	9268	216.64	
10 60	0.00 0.68 0.68	6427 6280	17 93	262 216.77	6305	6155	17	9078 223	1.20	6357	6209	17	9157	219.27	
11 90	0.00 0.68 0.68	6350 6201	17 93	146 219.55	6232	6080	16	8968 223	3.95	6282	6132	16	9044	222.05	
12 120	0.00 0.68 0.68	6275 6125	16 9	033 222.31	6161	6007	16	8860 22	6.70	6209	6057	16	8933	224.83	MOT-OPGW
13 152	0.00 0.68 0.68	6198 6045	16 8	916 225.26	6088	5932	16	8749 229	9.59	6135	5980	16	8820	227.72	MOT-Normal-Con
14 166	0.00 0.68 0.68	6165 6012	16 8	867 226.52	6056	5900	16	8702 23	0.85	6102	5947	16	8772	229.00	MOT-Emergency

(OPGW Sag @ 60 F, No Ice , No Wind, Final)/(Conductor ACCR/TW Cumberland Sag @ 60 F, No Ice, No Wind, Final)x100= 221.20/275.47x100=80.3% <=85%, OK (OPGW Sag @ 32 F, 0.5" Ice, No Wind, Final)/(Conductor ACCR/TW Cumberland Sag @ 32 F, No Ice, No Wind, Final)x100= 234.34/272.56x100=85.9% <=95%, OK

Power Engineers

Page 1/1

Schedule AWG-3 Page 52 of 94

APPENDIX PLS-CADD Version 10.64x64 3:16:39 PM Friday, November 19, 2010 Power Engineers Project Name: 'r:\pls\pls_cadd\projects\119990 clean line\clean line_plains & eastern 600kv dc_segment 3.DON' IEEE Std. 738-2006 method of calculation NRMAL REGIME: I pole=3100 A; I conductor=I pole/3=1033.3 A Air temperature is 104.00 (deg F)=40 (deg C)Wind speed is 2.00 (ft/s) Angle between wind and conductor is 90 (deg) Conductor elevation above sea level is 1000 (ft) Conductor bearing is -16 (deg) (perpendicular to solar azimuth for maximum solar heating) Sun time is 14 hours (solar altitude is 62 deg. and solar azimuth is -106 deg.) Conductor latitude is 35.0 (deg) Atmosphere is CLEAR Day of year is 172 (corresponds to June 21 in year 2010) (day of the year with most solar heating) Conductor description: 2156 kcmil 84/19 Strands BLUEBIRD ACSR - Adapted from 1970's Publicly Available Data Conductor diameter is 1.762 (in) Conductor resistance is 0.0423 (Ohm/mile) at 68.0 (deg F) and 0.0499 (Ohm/mile) at 167.0 (deg F) Emissivity is 0.5 and solar absorptivity is 0.5 7.088 (Watt/ft) (corresponds to Global Solar Radiation of 96.549 (Watt/ft^2) - which was Solar heat input is calculated) Radiation cooling is 4.120 (Watt/ft) Convective cooling is 12.764 (Watt/ft)

Given a constant ac current of 1033.3 amperes, The conductor temperature is 148.2 (deg F)=64 (deg C)

Power Engineers

Page 1/2

Schedule AWG-3 Page 53 of 94

Current in Amps

Power Engineers

Page 2/2

Schedule AWG-3 Page 54 of 94

PLS-CADD Version 10.64x64 2:58:27 PM Friday, November 19, 2010 Power Engineers Project Name: 'r:\pls\pls_cadd\projects\119990 clean line\clean line plains & eastern 600kv dc_segment 3.DON' IEEE Std. 738-2006 method of calculation EMERGENCY REGIME: I pole=3720 A; I conductor=I pole/3=1240 A (20% over Normal Regime: I pole=3100 A; I conductor=I pole/3=1033.3 A) Air temperature is 104.00 (deg F) Wind speed is 2.00 (ft/s) Angle between wind and conductor is 90 (deg) Conductor elevation above sea level is 1000 (ft) Conductor bearing is -16 (deg) (perpendicular to solar azimuth for maximum solar heating) Sun time is 14 hours (solar altitude is 62 deg. and solar azimuth is -106 deg.) Conductor latitude is 35.0 (deg) Atmosphere is CLEAR Day of year is 172 (corresponds to June 21 in year 2010) (day of the year with most solar heating) Conductor description: 2156 kcmil 84/19 Strands BLUEBIRD ACSR - Adapted from 1970's Publicly Available Data Conductor diameter is 1.762 (in) Conductor resistance is 0.0423 (Ohm/mile) at 68.0 (deg F) 0.0499 (Ohm/mile) at 167.0 (deg F) and Emissivity is 0.5 and solar absorptivity is 0.5 Solar heat input is 7.088 (Watt/ft) (corresponds to Global Solar Radiation of 96.549 (Watt/ft²) - which was calculated) Radiation cooling is 5.359 (Watt/ft) Convective cooling is 16.099 (Watt/ft) Given a constant ac current of 1240.0 amperes, The conductor temperature is 159.8 (deg F)=71 (deg C)

Power Engineers

Page 1/2

Schedule AWG-3 Page 55 of 94

Current in Amps

Power Engineers

Page 2/2

Schedule AWG-3 Page 56 of 94 PLS-CADD Version 10.64x64 2:00:48 PM Friday, December 10, 2010 Power Engineers Project Name: 'r:\pls\pls_cadd\projects\119990 clean line\clean line_plains & eastern 600kv dc_segment 7.DON'

IEEE Std. 738-2006 method of calculation NORMAL REGIME: I pole=3100 A; I conductor=I pole/3=1033.3 A Air temperature is 104.00 (deg F)=40 (deg C)Wind speed is 2.00 (ft/s) Angle between wind and conductor is 90 (deg) Conductor elevation above sea level is 300 (ft)-at Mississippi River Crossing Span=4000 ft. Conductor bearing is -16 (deg) (perpendicular to solar azimuth for maximum solar heating) Sun time is 14 hours (solar altitude is 62 deg. and solar azimuth is -106 deg.) Conductor latitude is 35.0 (deg) Atmosphere is CLEAR Day of year is 172 (corresponds to June 21 in year 2010) (day of the year with most solar heating) Conductor description: ACCR-TW_1927-T13 Cumberland Conductor diameter is 1.543 (in) Conductor resistance is 0.0461 (Ohm/mile) at 68.0 (deg F) 0.0560 (Ohm/mile) at 167.0 (deg F) and Emissivity is 0.5 and solar absorptivity is 0.5 Solar heat input is 6.066 (Watt/ft) (corresponds to Global Solar Radiation of 94.350 (Watt/ft²) - which was calculated) Radiation cooling is 3.961 (Watt/ft) Convective cooling is 13.129 (Watt/ft) Given a constant dc current of 1033.3 amperes, The conductor temperature is 152.1 (deg F)=67 (deg C)

Power Engineers

Page 1/2

Schedule AWG-3 Page 57 of 94

Current in Amps

Power Engineers

Page 2/2

Schedule AWG-3 Page 58 of 94 PLS-CADD Version 10.64x64 2:08:40 PM Friday, December 10, 2010 Power Engineers Project Name: 'r:\pls\pls_cadd\projects\119990 clean line\clean line plains & eastern 600kv dc_segment 7.DON'

IEEE Std. 738-2006 method of calculation EMERGENCY REGIME: I pole=3720 A; I conductor=I pole/3=1240 A (20% over Normal Regime: I pole=3100 A; I condcutor=I pole/3=1033.3 A) Air temperature is 104.00 (deg F)=40 (deg C)Wind speed is 2.00 (ft/s) Angle between wind and conductor is 90 (deg) Conductor elevation above sea level is 300 (ft) Conductor bearing is -16 (deg) (perpendicular to solar azimuth for maximum solar heating) Sun time is 14 hours (solar altitude is 62 deg. and solar azimuth is -106 deg.) Conductor latitude is 35.0 (deg) Atmosphere is CLEAR Day of year is 172 (corresponds to June 21 in year 2010) (day of the year with most solar heating) Conductor description: ACCR-TW_1927-T13 Cumberland Conductor diameter is 1.543 (in) Conductor resistance is 0.0461 (Ohm/mile) at 68.0 (deg F) 0.0560 (Ohm/mile) at 167.0 (deg F) and Emissivity is 0.5 and solar absorptivity is 0.5 Solar heat input is 6.066 (Watt/ft) (corresponds to Global Solar Radiation of 94.350 (Watt/ft²) - which was calculated) Radiation cooling is 5.333 (Watt/ft) Convective cooling is 17.021 (Watt/ft) Given a constant dc current of 1240.0 amperes, The conductor temperature is 166.4 (deg F)=74 (deg C)

Power Engineers

Page 1/2

Schedule AWG-3 Page 59 of 94

Current in Amps

Power Engineers

Page 2/2

Schedule AWG-3 Page 60 of 94

APPENDIX

600 kV DC Line –Clean Line Project # 119990

Horizontal Bipolar Line

Comparison of Structure Types

Structure Type	Drawing	Advantages	Disadvantages	Conclusion
Self-Supported Steel Single Tubular		 reduced land use line compaction smaller footprint than any of the guyed types shorter lead time vs. steel lattice shorter construction time vs. steel lattice. Needs less design time than steel lattice. Does not use so many plates, gussets, fasteners and bolts as steel lattice Does not need galvanizing as much as the steel lattice. 	 cover shorter spans than steel lattice for same external extreme loading cases. expensive foundation. 	 Good for urban & sub-urban areas (farming land with irrigation) on the corridor of this Clean Line HVDC project. Good for areas with restricted and/or reduced ROW Not used too much in open country ROW, unless farm land with irrigation or special environment requirements.
Self-Supporting Steel Lattice		 Suitable for rugged terrain (mountains, valleys, river crossings, etc) Smaller footprint than any of the guyed types. Past experience with HVDC lines in USA and internationally, with very good reliability. Use of different extension legs and extension bodies, makes it suitable for worst rough terrain. 	 Requires 4 foundations (higher total foundation costs). Highest weight (heaviest of all types). Long lead times Longer construction time Needs more design time. More exposed wind area (higher forces on structure). Heavier equipment used during erection vs. CSR type. 	 Best solution for rugged terrain (mountains) on the corridor of this Clean Line HVDC project, with very good reliability proved in many years of field presence, even for HVDC lines.

ENG	JINELKS			
Guyed Mast Variant 1: Tubular Steel V-String		 Single foundation. Very light. In the tubular steel variant, less material than in the self- supported lattice steel (less expensive), for same height. Some past experience with 	 Difficult to use in the ROW of mountain zones The 4 anchored guys take a lot of space from the ROW. Possible rotational effect in case of slack guy or any minor anchor movement (it can be eliminated by 	 A far less expensive solution for the open country zones of the corridor of this Clean Line HVDC project, as long as it does not have irrigation system.
Variant 2: Lattice Steel I-String		HVDC lines in USA and internationally.	attaching the guys with brackets to the front and back of the tower, instead of being attached to the tower on the opposite side of each anchor).	
Cross-Rope Suspension (CSR) with2 Masts		 The most economical. Lowest weight, for same height, from all types of structures. 	 Difficult to assembly in the ROW of mountain zones. Very large base makes it 	 Due to its very large base that makes it incompatible with large irrigation systems and due to
Variant 1: Portal Formation 2 Foundations I-String		 High strength/weight ratio Lower cost of erection. Flexible suspension catenary (anti- cascading structure). 	 incompatible with large irrigation systems. Lack of previous experience with CSR tower in USA makes it difficult to obtain permit. Small footing print, but it takes a lot 	lack of previous experience with CSR tower in USA, making it difficult to obtain permit, plus the safety concern (access to insulator and conductors during maintenance
Variant 2: V-Formation 1 Foundation V-String		 Claimed that it can sustain the loss of 1 guy w/o collapsing. In the portal type, the masts can have different lengths, for use in irregular terrain. Light equipment used during erection. The strength of the tower can be increased by using larger or stronger steel 	 from the ROW due to its large base. It can collapse, if guys are lost. The portal type requires a larger space than the guyed single mast type. Maintenance Safety: access to the insulator string and conductor supports it is a concern to line field personnel. 	work), the CSR type is not recommend to be used on this Clean Line HVDC project.
		0		

Schedule AWG-3 Page 62 of 94

	cables.	
	Used extensively	
	in international	
	HVAC lines	
	400 kV- 800 KV	
	(Brazil,	
	Argentina, South	
	Africa, Canada).	

APPENDIX H

Conductor Selection		×			
Sort Options					
Conductor Type:	Conductor or Messenger:				
C AAC	BLUEBIRD 2156.0 Kcmil 84/19	84/19 🔻			
	Data Conductor Option				
C ACAR		13			
• ACSR	Area : 1.8309 sq in None				
C ACSR / AW	Diameter : 1.762 in C TP (Twisted Pair)				
C ACSR / TW	Weight: 2.511 lb/ft				
C ACSR / SD	RBS : 60300 lb	jer			
	Chart: 1-1020				
C ACSS					
C ACSS / AW	Edit Data View Chart Chart				
 All - Alumoweld Steel All - Copperweld Copperweld - Cu HD Copper Multiplex Covered Line Wire ADSS OPGW Custom AAC British AAAC British ACSR British 					
	Accept				

Chart Details						X			
	ef. Temp. Oute 77 °F 92.4		n Cable Class	•	V Locked fo	r Editing			
Chart Coefficients Outer Components K0 K1 K2 K3 K4									
Initial -1237.2	64355.7	-63104.2	5109	15764	69500	Elasticity			
Creep -53.7	13141.4	23688.3	-46780	22335	0.00128	Thermal			
ко		Core C		к4					
Initial -36.6	20828.1	-5693.7	-3487	0	20700	Elasticity			
Creep -36.6	20828.1	-5693.7	-3487	0	0.00064	Thermal			
Stranding Information ASTM Lay Ratio Limits (comma separated values for each layer) 3 Layer Example: Strands Layers Minimum: 10, 10, 10, 1 (10, 10, 10) Outer 84 4 Preferred: 11, 13, 14, 1 (11, 13, 14) Core 19 0 Maximum: 13, 16, 17, 1 (13, 16, 17)									
Close		opy] and paste int ws & 6 columns Py			(4 rows, 6 columns ess [Paste] here.) Apply			

acsr_bluebird_dc.wir: the resistances values in this table are DC Resistances:

Cable Data										
Cable Model Nonlinear cable model (separate polynomials for initial and creep behavior for inner and outer materials) Linear elastic with permanent stretch due to creep proportional to creep weather case tension Linear elastic with permanent stretch due to creep specified as a user input temperature increase										
Name r:\pls\pls_cadd\projects\119990 clean line\cables\bluebird_acsr_dc.wir										
escription 2156 kcmil 84/19 Strands BLUEBIRD ACSR - Adapted from 1970's Publicly Available Data										
Stock Number										
Cross section area (in^2) 1.8309 Unit weight (lbs/ft) 2.511 Number of independent wires (1 unless messenger 1 Outside diameter (in) 1.762 Ultimate tension (lbs) 60300 supporting other wires with a spacer) 1										
Conductor is a J-Power Systems GAP type conductor strung with core supporting all tension.										
Temperature at which strand data below obtained (deg F) 77										
Outer Strands Core Strands (if different from outer strands)										
Final modulus of elasticity (see note below) (psi/100) 69500 Final modulus of elasticity (see note below) (psi/100) 20700 Themal wavening set final 0.00120 Themal wavening set final 0.00221										
Thermal expansion coeff. (/100 deg) 0.00128 Thermal expansion coeff. (/100 deg) 0.00064 Polynomial coefficients (all strains in %, stresses in psi, see note Polynomial coefficients (all strains in % stresses in psi, see note)										
Polynomial coefficients (all strains in %, stresses in psi, see note a0 a1 a2 a3 a4 b0 b1 b2 b3 b4										
Stress-strain -1237.2 64355.7 -63104. 5109 15764 Stress-strain -36.6 20828.1 -5693.7 -3487										
c0 c1 c2 c3 c4 d0 d1 d2 d3 d4										
Creep -53.7 13141.4 23688.3 -46780 22335 Creep -36.6 20828.1 -5693.7 -3487										
Note: Final modulus, stress-strain and creep are actual material values multiplied by ratio of outer strand area to total area. Note: Final modulus, stress-strain and creep are actual material values multiplied by ratio of core strand area to total area.										
Bimetallic Conductor Model										
Aluminum has a larger thermal expansion coefficient than steel. If Aluminum is used as the outer material over a steel core there is a temperature transition										
point at which the aluminum is no longer under tension.										
Select the behavior you want for temperatures above the transition point VirtualStress = ActualStress * Ao / At Ao = cross section area of outer strands										
O Use behavior from Litteria/Bimetallic Conductor Model At = total cross section area of entire conductor (outer + inner strands)										
O Aluminum does not take compression at high temperature (Bird Cage) O Aluminum can go into compression at high temperature Maximum virtual compressive stress (ksi) 1.5										
Thermal Rating Properties Resistance at two different temperatures Emissivity coefficient 0.5										
Resistance (0hm/mile) 0.0423 at (deg F) 68 Solar absorption coefficient 0.5										
Resistance (0hm/mile) 0.0499 at (deg F) 167 Outer strands heat capacity (Watt-s/ft-deg F) 490.839										
Core heat capacity (Watt-s/ft-deg F) 56.1										
Generate Coefficients from points on stress-strain curve Composite cable properties OK Cancel										

acsr_bluebird.wir: the resistances values in this table are AC Resistances:

Cable Data	? 🛛									
Cable Model Nonlinear cable model (separate polynomials for initial and creep behavior for inner and outer materials) C Linear elastic with permanent stretch due to creep proportional to creep weather case tension Linear elastic with permanent stretch due to creep specified as a user input temperature increase										
Name r:\pls\pls_cadd\projects\119990 clean line\cable	es\bluebird_acsr.wir									
Description 2156 kcmil 84/19 Strands BLUEBIRD ACSR - Ac	dapted from 1970's Publicly Available Data									
Stock Number										
Cross section area (in^2) 1.8309 Unit weight (lbs/ft) 2.511	Number of independent wires (1 unless messenger 1									
Outside diameter (in) 1.762 Ultimate tension (lbs) 60300	supporting other wires with a spacer)									
Conductor is a J-Power Systems GAP type conductor strung with core supporting all tension.										
Temperature at which strand data below obtained (deg F) 77										
Outer Strands	- Core Strands (if different from outer strands)									
	Final modulus of elasticity (see note below) (psi/100) 20700									
Thermal expansion coeff. (/100 deg) 0.00128	Thermal expansion coeff. (/100 deg) 0.00064									
Polynomial coefficients (all strains in %, stresses in psi, see note	Polynomial coefficients fall strains in %, stresses in psi, see note									
a0 a1 a2 a3 a4 Stress-strain -1237.2 64355.7 -63104. 5109 15764	b0 b1 b2 b3 b4 Stress-strain -36.6 20828.1 -5693.7 -3487									
c0 c1 c2 c3 c4	d0 d1 d2 d3 d4									
	Creep -36.6 20828.1 -5693.7 -3487									
	Note: Final modulus, stress-strain and creep are actual material values									
multiplied by ratio of outer strand area to total area.	multiplied by ratio of core strand area to total area.									
Bimetallic Conductor Model										
Aluminum has a larger thermal expansion coefficient than steel. If Aluminum point at which the aluminum is no longer under tension.	is used as the outer material over a steel core there is a temperature transition									
Select the behavior you want for temperatures above the transition point	VirtualStress = ActualStress * Ao / At									
O Use behavior from Criteria/Bimetallic Conductor Model	Ao = cross section area of outer strands At = total cross section area of entire conductor (outer + inner strands)									
O Aluminum does not take compression at high temperature (Bird Cage)										
Aluminum can go into compression at high temperature	Maximum virtual compressive stress (ksi) 1.5									
Thermal Rating Properties										
Resistance at two different temperatures	Emissivity coefficient 0.5									
Resistance (Dhm/mile) 0.0477 at (deg F) 77 Solar absorption coefficient 0.5										
Resistance (Ohm/mile) 0.0555 at (deg F) 167	Outer strands heat capacity (Watt-s/ft-deg F) 490.839									
	Core heat capacity (Watt-s/ft-deg F) 56.1									
Generate Coefficients from points on stress-strain curve Composite of	cable properties OK Cancel									

ACCR/TW Cumberland- with DC Resistances:

Cable Data								? 🔀	
O Linear elastic wit	th permanent stre	etch due to creep p	proportional to cr	havior for inner and outer eep weather case tensio er input temperature incre	n				
Name Description Stock Number Cross section area (in Outside diameter		Humber of independent wires (1 diffess messenger							
Temperature at which :	strand data belo	w obtained	(deg F) 71						
Outer Strands Final modulus of elastic Thermal expansion coe Polynomial coefficients Stress-strain Creep Note: Final modulus, st multiplied by ratio of ou	eff. (all strains in %, a0 a1 (48031 c0 c1 (22914 ress-strain and c	(/100 deg stresses in psi, see a2 a3 -26987 -1055 c2 c3 -16099 4107 reep are actual ma	0.00128 note a4 2 5471 c4 -2140	Core Strands (if differe Final modulus of elast Thermal expansion co Polynomial coefficient Stress-strain Creep Note: Final modulus, s multiplied by ratio of co	icity (see note bel peff. s (all strains in %. b0 b1 41889 d0 d1 41889 tress-strain and ci	ow) (p (/10 stresses in o b2 -8641 d2 -8641 eep are actr	-4105 2139 d3 d4 -4105 2139		
Bimetallic Conductor Model Aluminum has a larger thermal expansion coefficient than steel. If Aluminum is used as the outer material over a steel core there is a temperature transition point at which the aluminum is no longer under tension. Select the behavior you want for temperatures above the transition point VirtualStress = ActualStress * Ao / At Ao = cross section area of outer strands At = total cross section area of entire conductor (outer + inner strands) O Aluminum does not take compression at high temperature (Bird Cage) O Aluminum can go into compression at high temperature (Bird Cage)									
Thermal Rating Propert Resistance at two diffe Resistance (Ohm/mi Resistance (Ohm/mi	erent temperature le) 0.0461	at (deg F) <mark>68</mark> at (deg F) <mark>167</mark>		Emissivity coeffic Solar absorption Outer strands hea Core heat capac	coefficient at capacity		0.5 0.5 t-deg F) 436.8 t-deg F) 23.6		
Generate Coefficients	s from points on :	stress-strain curve	Composi	ite cable properties	ОК	Cance]		

600 kV DC Bipolar -Clean Line

APPENDIX

ENGINEERS	APPENDIX I- Preliminary Conduct	tors Comparison Summary Table: MO		APPENDIX	
onductor	Normal Regime; 2 ft/s wind	Emergency Regime ¹⁾ ; 2 ft/s wind	Normal Regime; 0 ft/s wind	Emergency Regime ¹⁾ ; 0 ft/s wind	Normal Regime; 2 ft/s wind
уре	Calculated Neccesary MOT for:	Calculated Neccesary MOT for:	Calculated Neccesary MOT for:	Calculated Neccesary MOT for:	Neccesary Power (Current)
	P rectifier=3720 MW	P rectifier=4092 MW ¹⁾	P rectifier=3720 MW	P rectifier=4092 MW ¹⁾	to reach:
	P pole=1860 MW	P pole=2046 MW ¹⁾	P pole=1860 MW	P pole=2046 MW ¹⁾	MOT=284 F=140 C (MAX.)
	l pole=3100 A	l pole=3400 A ¹⁾	l pole=3100 A	l pole=3400 A ¹⁾	
	l conductor=1033.3 A ²⁾	l conductor=1133.3 A ^{1), 2)}	l conductor=1033.3 A ²⁾	l conductor=1133.3 A ^{1), 2)}	
iggest ACSR					For Bluebird conductor to reach
luebird	MOT=148 F= 64 C	MOT=154 F= 68 C	MOT=173 F= 78 C	MOT=180 F= 82 C	MOT=284 F= 140 C (MAX.)
156 kCMIL					results it is neccesary:
					P rectifier=8914 MW (very high!)
					P pole=4457 MW
					l pole=7428 A
					l conductor=2476 A ²⁾
	Max. Sag=58.98 ft				Max. Sag=68.57 ft
	at MOT=148 F=64 C, Final				at MOT=284 F=140 C, Final
	in Ruling Span=1500 ft				in Ruling Span=1500 ft
					Difference in Max Sag=9.59 ft
					between Max MOT=140 C and
					Neccesary MOT=64 C
mallest ACSR					For Bittern conductor to reach
littern	MOT=175 F= 79 C	MOT=186 F= 86 C	MOT=214 F= 101 C	MOT=230 F= 110 C	MOT=284 F= 140 C (MAX.)
272 kCMIL					results it is neccesary:
					P rectifier=6170 MW (very high!)
					P pole=3085 MW
					l pole=5142 A
					l conductor=1714 A ²⁾
	Max. Sag=64.08 ft				Max. Sag=70.02 ft
	at MOT=175 F=79 C, Final				at MOT=284 F=140 C, Final
	in Ruling Span=1500 ft				in Ruling Span=1500 ft
					Difference in Max Sag=5.94 ft
					between Max MOT=140 C and
					Neccesary MOT=79 C

Notes: 1) Emergency Regime: 10% higher than Normal Regime.

2) Assumed 3 conductors/pole.

8/11/2010 Power engineers

ACSR BlueBird @ MOT=148 F=64 C for Normal Regime, Ampacity=1033.3 A Rling Span=1500 ft Max Sag @ MOT=148 F=64 C, Final=58.98 ft

Conductor: 2156.0 Kcmil 84/19 Stranding ACSR "BLUEBIRD"

Area = 1.8309 Sq. in Diameter = 1.762 in Weight = 2.511 lb/ft RTS = 60300 lb
Data from Chart No. 1-1020
English Units
Limits and Outputs in Average Tensions.

Span =	= 15	500	0.0	Feet	
Creep	IS	а	Fac	ctor	

Customary Heavy Load Zone Rolled Rod

Des	ign Poin	ts				Final			Initial	
Temp	Ice	Wind	K	Weight	Sag	Tension	RTS	Sag	Tension	RTS
°F	in	psf	lb/ft	lb/ft	Ft	lb	0/0	Ft	lb	00
0.0	0.50	4.00	0.30	4.324	51.53	23714	39.3	47.16	25891	42.9
15.0	1.25	4.10	0.00	7.339	58.38	35571	59.0	57.72	35975	59.7
32.0	0.50	0.00	0.00	3.917	53.07	20866	34.6	47.84	23126	38.4
60.0	0.00	24.30	0.00	4.363	56.07	22008	36.5	51.19	24084	39.9
-20.0	0.00	0.00	0.00	2.511	45.27	15655	26.0	38.24	18515	30.7
0.0	0.00	0.00	0.00	2.511	47.03	15075	25.0*	39.89	17756	29.4
30.0	0.00	0.00	0.00	2.511	49.60	14301	23.7	42.36	16727	27.7
60.0	0.00	0.00	0.00	2.511	52.09	13623	22.6	44.82	15814	26.2
90.0	0.00	0.00	0.00	2.511	54.51	13025	21.6	47.25	15006	24.9
120.0	0.00	0.00	0.00	2.511	56.85	12494	20.7	49.65	14287	23.7
148.0	0.00	0.00	0.00	2.511	58.98	12049	20.0	51.85	13687	22.7
* Design Condition										

Certain information such as the data, opinions or recommendations set forth herein or given by Southwire representatives, is intended as a general guide only. Each installation of overhead electrical conductor, underground electrical conductor, and/or conductor accessories involves special conditions creating problems that require individual solutions and, therefore, the recipient of this information has the sole responsibility in connection with the use of the information. Southwire does not assume any liability in connection with such information.

3.10.0v

8/11/2010 Power engineers

ACSR Bittern @ MOT=284 F=140 C (Max Allowed for ACSR) Ruling Span=1500 ft Max Sag @ MOT=284 F=140 C, Final=70.02 ft

Conductor: 1272.0 Kcmil 45/ 7 Stranding ACSR "BITTERN"

Area = 1.0680 Sq. in Diameter = 1.345 in Weight = 1.434 lb/ft RTS = 34100 lb Data from Chart No. 1-957 English Units Limits and Outputs in Average Tensions.

Span = 1500.0 FeetCustomary Heavy Load ZoneCreep is NOT a FactorRolled Rod

Des	ign Poin	ts				Final	l Initia			1		
Temp	Ice	Wind	K	Weight	Sag	Tension	RTS	Sag	Tension	RTS		
°F	in	psf	lb/ft	lb/ft	Ft	lb	olo	Ft	lb	00		
0.0	0.50	4.00	0.30	2.997	55.96	15146	44.4	49.65	17050	50.0*		
15.0	1.25	4.10	0.00	5.623	64.08	24862	72.9	64.08	24862	72.9		
32.0	0.50	0.00	0.00	2.581	56.99	12812	37.6	49.25	14803	43.4		
60.0	0.00	24.30	0.00	3.078	60.49	14404	42.2	53.69	16206	47.5		
-20.0	0.00	0.00	0.00	1.434	48.54	8343	24.5	37.53	10773	31.6		
0.0	0.00	0.00	0.00	1.434	50.29	8056	23.6	39.21	10313	30.2		
30.0	0.00	0.00	0.00	1.434	52.83	7672	22.5	41.75	9690	28.4		
60.0	0.00	0.00	0.00	1.434	55.30	7333	21.5	44.27	9141	26.8		
90.0	0.00	0.00	0.00	1.434	57.69	7033	20.6	46.77	8658	25.4		
120.0	0.00	0.00	0.00	1.434	60.00	6765	19.8	49.22	8230	24.1		
284.0	0.00	0.00	0.00	1.434	70.02	5810	17.0	61.70	6581	19.3		
* Desi	gn Condi	tion										

Certain information such as the data, opinions or recommendations set forth herein or given by Southwire representatives, is intended as a general quide only. Each installation of overhead electrical conductor, underground electrical conductor, and/or conductor accessories involves special conditions creating problems that require individual solutions and, therefore, the recipient of this information has the sole responsibility in connection with the use of the information. Southwire does not assume any liability in connection with such information.

3.10.0v

8/11/2010 Power engineers

ACSR Bittern @ MOT=175 F=79 C for Normal Regime, Ampacity=1033.3 A Ruling Span=1500 ft Max Sag @ MOT=175 F=79 C, Final=62.10 ft

Conductor: 1272.0 Kcmil 45/ 7 Stranding ACSR "BITTERN"

Area = 1.0680 Sq. in Diameter = 1.345 in Weight = 1.434 lb/ft RTS = 34100 lb Data from Chart No. 1-957 English Units Limits and Outputs in Average Tensions.

Span = 1500.0 FeetCustomary Heavy Load ZoneCreep is NOT a FactorRolled Rod

Des	ign Poin	ts				Final			Initial	
Temp	Ice	Wind	K	Weight	Sag	Tension	RTS	Sag	Tension	RTS
°F	in	psf	lb/ft	lb/ft	Ft	lb	00	Ft	lb	00
0.0	0.50	4.00	0.30	2.997	55.96	15146	44.4	49.65	17050	50.0*
15.0	1.25	4.10	0.00	5.623	64.08	24862	72.9	64.08	24862	72.9
32.0	0.50	0.00	0.00	2.581	56.99	12812	37.6	49.25	14803	43.4
60.0	0.00	24.30	0.00	3.078	60.49	14404	42.2	53.69	16206	47.5
-20.0	0.00	0.00	0.00	1.434	48.54	8343	24.5	37.53	10773	31.6
0.0	0.00	0.00	0.00	1.434	50.29	8056	23.6	39.21	10313	30.2
30.0	0.00	0.00	0.00	1.434	52.83	7672	22.5	41.75	9690	28.4
60.0	0.00	0.00	0.00	1.434	55.30	7333	21.5	44.27	9141	26.8
90.0	0.00	0.00	0.00	1.434	57.69	7033	20.6	46.77	8658	25.4
120.0	0.00	0.00	0.00	1.434	60.00	6765	19.8	49.22	8230	24.1
148.0	0.00	0.00	0.00	1.434	62.10	6539	19.2	51.46	7874	23.1
* Design Condition										

Certain information such as the data, opinions or recommendations set forth herein or given by Southwire representatives, is intended as a general quide only. Each installation of overhead electrical conductor, underground electrical conductor, and/or conductor accessories involves special conditions creating problems that require individual solutions and, therefore, the recipient of this information has the sole responsibility in connection with the use of the information. Southwire does not assume any liability in connection with such information.

3.10.0v
PLS-CADD Version 10.60x64 3:01:58 PM Tuesday, August 10, 2010 Power Engineers IEEE Std. 738-2006 method of calculation Air temperature is 104.00 (deg F)=40 (deg C) Wind speed is 2.00 (ft/s) Angle between wind and conductor is 90 (deg) Conductor elevation above sea level is 1000 (ft) Conductor bearing is -7 (deg) (perpendicular to solar azimuth for maximum solar heating) Sun time is 14 hours (solar altitude is 63 deg. and solar azimuth is -97 deg.) Conductor latitude is 30.0 (deg) Atmosphere is CLEAR Day of year is 172 (corresponds to June 21 in year 2010) (day of the year with most solar heating) Conductor description: 2156 kcmil 84/19 Strands BLUEBIRD ACSR - Adapted from 1970's Publicly Available Data Conductor diameter is 1.762 (in) Conductor resistance is 0.0423 (Ohm/mile) at 68.0 (deg F) and 0.0499 (Ohm/mile) at 167.0 (deg F) Emissivity is 0.5 and solar absorptivity is 0.5 Solar heat input is 7.105 (Watt/ft) (corresponds to Global Solar Radiation 96.778 (Watt/ft²) - which was calculated) of 23.703 (Watt/ft) Radiation cooling is Convective cooling is 51.773 (Watt/ft) Given a constant ac current of 2476.0 amperes, The conductor temperature is 284.0 (deg F)=140 (deg C)

> Schedule AWG-3 Page 73 of 94

Current in Amps

Schedule AWG-3 Page 74 of 94

Power Engineers IEEE Std. 738-2006 method of calculation Air temperature is 104.00 (deg F)=40 9 deg C)Wind speed is 2.00 (ft/s) Angle between wind and conductor is 90 (deg) Conductor elevation above sea level is 1000 (ft) Conductor bearing is -7 (deg) (perpendicular to solar azimuth for maximum solar heating) Sun time is 14 hours (solar altitude is 63 deg. and solar azimuth is -97 deg.) Conductor latitude is 30.0 (deg) Atmosphere is CLEAR Day of year is 172 (corresponds to June 21 in year 2010) (day of the year with most solar heating) Conductor description: 1272 kcmil 45/7 Strands BITTERN ACSR - Adapted from 1970's Publicly Available Data Conductor diameter is 1.345 (in) Conductor dc resistance is 0.0714 (Ohm/mile) at 68.0 (deg F) 0.0863 (Ohm/mile) at 167.0 (deg F) and Emissivity is 0.5 and solar absorptivity is 0.5 5.424 (Watt/ft) (corresponds to Global Solar Radiation of Solar heat input is 96.778 (Watt/ft²) - which was calculated) Radiation cooling is 18.109 (Watt/ft) Convective cooling is 45.141 (Watt/ft) Given a constant ac current of 1714.0 amperes, The conductor temperature is 284.1 (deg F)=140 (deg C)

PLS-CADD Version 10.60x64 2:20:02 PM Wednesday, August 11, 2010

Page 1/2

Current in Amps

Power Engineers

Schedule AWG-3 Page 76 of 94

Page 2/2

PLS-CADD Version 10.60x64 2:09:07 PM Wednesday, August 11, 2010 Power Engineers IEEE Std. 738-2006 method of calculation Air temperature is 104.00 (deg F)=40 (deg C) Wind speed is 2.00 (ft/s) Angle between wind and conductor is 90 (deg) Conductor elevation above sea level is 1000 (ft) Conductor bearing is -7 (deg) (perpendicular to solar azimuth for maximum solar heating) Sun time is 14 hours (solar altitude is 63 deg. and solar azimuth is -97 deg.) Conductor latitude is 30.0 (deg) Atmosphere is CLEAR Day of year is 172 (corresponds to June 21 in year 2010) (day of the year with most solar heating) Conductor description: 1272 kcmil 45/7 Strands BITTERN ACSR - Adapted from 1970's Publicly Available Data Conductor diameter is 1.345 (in) Conductor dc resistance is 0.0714 (Ohm/mile) at 68.0 (deg F) 0.0863 (Ohm/mile) at 167.0 (deg F) and Emissivity is 0.5 and solar absorptivity is 0.5 Solar heat input is 5.424 (Watt/ft) (corresponds to Global Solar Radiation of 96.778 (Watt/ft²) - which was calculated) Radiation cooling is 6.460 (Watt/ft) Convective cooling is 20.662 (Watt/ft) Given a constant ac current of 1133.3 amperes, The conductor temperature is 186.3 (deg F)=86 (deg C)

Page 1/2

Current in Amps

Power Engineers

Schedule AWG-3 Page 78 of 94 PLS-CADD Version 10.60x64 2:34:38 PM Tuesday, August 10, 2010 Power Engineers IEEE Std. 738-2006 method of calculation Air temperature is 104.00 (deg F)=40 (deg C) Wind speed is 2.00 (ft/s) Angle between wind and conductor is 90 (deg) Conductor elevation above sea level is 1000 (ft) Conductor bearing is -7 (deg) (perpendicular to solar azimuth for maximum solar heating) Sun time is 14 hours (solar altitude is 63 deg. and solar azimuth is -97 deg.) Conductor latitude is 30.0 (deg) Atmosphere is CLEAR Day of year is 172 (corresponds to June 21 in year 2010) (day of the year with most solar heating) Conductor description: 2156 kcmil 84/19 Strands BLUEBIRD ACSR - Adapted from 1970's Publicly Available Data Conductor diameter is 1.762 (in) Conductor resistance is 0.0423 (Ohm/mile) at 68.0 (deg F) and 0.0499 (Ohm/mile) at 167.0 (deg F) Emissivity is 0.5 and solar absorptivity is 0.5 Solar heat input is 7.105 (Watt/ft) (corresponds to Global Solar Radiation 96.778 (Watt/ft²) - which was calculated) of Radiation cooling is 4.685 (Watt/ft) Convective cooling is 14.307 (Watt/ft) Given a constant ac current of 1133.3 amperes, The conductor temperature is 153.6 (deg F)=68 (deg C)

> Schedule AWG-3 Page 79 of 94

Current in Amps

Schedule AWG-3 Page 80 of 94 Power Engineers IEEE Std. 738-2006 method of calculation Air temperature is 104.00 (deg F)=40 (deg C)Wind speed is 0.00 (ft/s) Angle between wind and conductor is 90 (deg) Conductor elevation above sea level is 1000 (ft) Conductor bearing is -7 (deg) (perpendicular to solar azimuth for maximum solar heating) Sun time is 14 hours (solar altitude is 63 deg. and solar azimuth is -97 deg.) Conductor latitude is 30.0 (deg) Atmosphere is CLEAR Day of year is 172 (corresponds to June 21 in year 2010) (day of the year with most solar heating) Conductor description: 1272 kcmil 45/7 Strands BITTERN ACSR - Adapted from 1970's Publicly Available Data Conductor diameter is 1.345 (in) Conductor dc resistance is 0.0714 (Ohm/mile) at 68.0 (deg F) 0.0863 (Ohm/mile) at 167.0 (deg F) and Emissivity is 0.5 and solar absorptivity is 0.5 5.424 (Watt/ft) (corresponds to Global Solar Radiation of Solar heat input is 96.778 (Watt/ft²) - which was calculated) Radiation cooling is 11.053 (Watt/ft) Convective cooling is 17.666 (Watt/ft) Given a constant ac current of 1133.3 amperes, The conductor temperature is 229.9 (deg F)=110 (deg C)

PLS-CADD Version 10.60x64 2:11:38 PM Wednesday, August 11, 2010

Page 1/2

Current in Amps

Power Engineers

Schedule AWG-3 Page 82 of 94

Page 2/2

PLS-CADD Version 10.60x64 2:35:36 PM Tuesday, August 10, 2010 Power Engineers IEEE Std. 738-2006 method of calculation Air temperature is 104.00 (deg F)=40 (deg C) Wind speed is 0.00 (ft/s) Angle between wind and conductor is 90 (deg) Conductor elevation above sea level is 1000 (ft) Conductor bearing is -7 (deg) (perpendicular to solar azimuth for maximum solar heating) Sun time is 14 hours (solar altitude is 63 deg. and solar azimuth is -97 deg.) Conductor latitude is 30.0 (deg) Atmosphere is CLEAR Day of year is 172 (corresponds to June 21 in year 2010) (day of the year with most solar heating) Conductor description: 2156 kcmil 84/19 Strands BLUEBIRD ACSR - Adapted from 1970's Publicly Available Data Conductor diameter is 1.762 (in) Conductor resistance is 0.0423 (Ohm/mile) at 68.0 (deg F) and 0.0499 (Ohm/mile) at 167.0 (deg F) Emissivity is 0.5 and solar absorptivity is 0.5 Solar heat input is 7.105 (Watt/ft) (corresponds to Global Solar Radiation 96.778 (Watt/ft²) - which was calculated) of 7.711 (Watt/ft) Radiation cooling is Convective cooling is 11.779 (Watt/ft) Given a constant ac current of 1133.3 amperes, The conductor temperature is 180.2 (deg F)=82 (deg C)

> Schedule AWG-3 Page 83 of 94

Temperature in (deg F)

Current in Amps

Schedule AWG-3 Page 84 of 94

8/11/2010 Power engineers

ACSR Bittern @ MOT=175 F=79 C for Normal Regime, Ampacity=1033.3 A Ruling Span=1500 ft Max Sag @ MOT=175 F=79 C, Final=64.08 ft

Conductor: 1272.0 Kcmil 45/ 7 Stranding ACSR "BITTERN"

Area = 1.0680 Sq. in Diameter = 1.345 in Weight = 1.434 lb/ft RTS = 34100 lb
Data from Chart No. 1-957
English Units
Limits and Outputs in Average Tensions.

Span = 1500.0 Feet	Special Load Zone
Creep is NOT a Factor	Rolled Rod

Design Points				Final					Initial		
Temp	Ice	Wind	K	Weight	Sag	Tension	RTS	Sag	Tension	RTS	
°F	in	psf	lb/ft	lb/ft	Ft	lb	00	Ft	lb	00	
0.0	0.50	4.00	0.30	2.997	55.96	15146	44.4	49.65	17050	50.0*	
15.0	1.25	4.10	0.00	5.623	64.08	24862	72.9	64.08	24862	72.9	
32.0	0.50	0.00	0.00	2.581	56.99	12812	37.6	49.25	14803	43.4	
60.0	0.00	24.30	0.00	3.078	60.49	14404	42.2	53.69	16206	47.5	
-20.0	0.00	0.00	0.00	1.434	48.54	8343	24.5	37.53	10773	31.6	
0.0	0.00	0.00	0.00	1.434	50.29	8056	23.6	39.21	10313	30.2	
30.0	0.00	0.00	0.00	1.434	52.83	7672	22.5	41.75	9690	28.4	
60.0	0.00	0.00	0.00	1.434	55.30	7333	21.5	44.27	9141	26.8	
90.0	0.00	0.00	0.00	1.434	57.69	7033	20.6	46.77	8658	25.4	
120.0	0.00	0.00	0.00	1.434	60.00	6765	19.8	49.22	8230	24.1	
175.0	0.00	0.00	0.00	1.434	64.08	6340	18.6	53.58	7566	22.2	
* Design Condition											

Certain information such as the data, opinions or recommendations set forth herein or given by Southwire representatives, is intended as a general guide only. Each installation of overhead electrical conductor, underground electrical conductor, and/or conductor accessories involves special conditions creating problems that require individual solutions and, therefore, the recipient of this information has the sole responsibility in connection with the use of the information. Southwire does not assume any liability in connection with such information.

3.10.0v

PLS-CADD Version 10.60x64 2:16:15 PM Tuesday, August 10, 2010 Power Engineers IEEE Std. 738-2006 method of calculation Air temperature is 104.00 (deg F)=40 (deg C) Wind speed is 2.00 (ft/s) Angle between wind and conductor is 90 (deg) Conductor elevation above sea level is 1000 (ft) Conductor bearing is -7 (deg) (perpendicular to solar azimuth for maximum solar heating) Sun time is 14 hours (solar altitude is 63 deg. and solar azimuth is -97 deg.) Conductor latitude is 30.0 (deg) Atmosphere is CLEAR Day of year is 172 (corresponds to June 21 in year 2010) (day of the year with most solar heating) Conductor description: 2156 kcmil 84/19 Strands BLUEBIRD ACSR - Adapted from 1970's Publicly Available Data Conductor diameter is 1.762 (in) Conductor resistance is 0.0423 (Ohm/mile) at 68.0 (deg F) and 0.0499 (Ohm/mile) at 167.0 (deg F) Emissivity is 0.5 and solar absorptivity is 0.5 Solar heat input is 7.105 (Watt/ft) (corresponds to Global Solar Radiation 96.778 (Watt/ft²) - which was calculated) of Radiation cooling is 4.127 (Watt/ft) Convective cooling is 12.782 (Watt/ft) Given a constant ac current of 1033.3 amperes, The conductor temperature is 148.3 (deg F)=64 (deg C)

> Schedule AWG-3 Page 86 of 94

Current in Amps

Schedule AWG-3 Page 87 of 94

PLS-CADD Version 10.60x64 2:04:13 PM Wednesday, August 11, 2010 Power Engineers IEEE Std. 738-2006 method of calculation Air temperature is 104.00 (deg F)=40 (deg C) Wind speed is 0.00 (ft/s) Angle between wind and conductor is 90 (deg) Conductor elevation above sea level is 1000 (ft) Conductor bearing is -7 (deg) (perpendicular to solar azimuth for maximum solar heating) Sun time is 14 hours (solar altitude is 63 deg. and solar azimuth is -97 deg.) Conductor latitude is 30.0 (deg) Atmosphere is CLEAR Day of year is 172 (corresponds to June 21 in year 2010) (day of the year with most solar heating) Conductor description: 1272 kcmil 45/7 Strands BITTERN ACSR - Adapted from 1970's Publicly Available Data Conductor diameter is 1.345 (in) Conductor dc resistance is 0.0714 (Ohm/mile) at 68.0 (deg F) 0.0863 (Ohm/mile) at 167.0 (deg F) and Emissivity is 0.5 and solar absorptivity is 0.5 Solar heat input is 5.424 (Watt/ft) (corresponds to Global Solar Radiation of 96.778 (Watt/ft²) - which was calculated) Radiation cooling is 9.280 (Watt/ft) Convective cooling is 15.029 (Watt/ft) Given a constant ac current of 1033.3 amperes, The conductor temperature is 214.1 (deg F)=101 (deg C)

Page 1/2

Current in Amps

Temperature in (deg F)

Power Engineers

Schedule AWG-3 Page 89 of 94

Page 2/2

PLS-CADD Version 10.60x64 2:36:38 PM Tuesday, August 10, 2010 Power Engineers IEEE Std. 738-2006 method of calculation Air temperature is 104.00 (deg F)=40 (deg C) Wind speed is 0.00 (ft/s) Angle between wind and conductor is 90 (deg) Conductor elevation above sea level is 1000 (ft) Conductor bearing is -7 (deg) (perpendicular to solar azimuth for maximum solar heating) Sun time is 14 hours (solar altitude is 63 deg. and solar azimuth is -97 deg.) Conductor latitude is 30.0 (deg) Atmosphere is CLEAR Day of year is 172 (corresponds to June 21 in year 2010) (day of the year with most solar heating) Conductor description: 2156 kcmil 84/19 Strands BLUEBIRD ACSR - Adapted from 1970's Publicly Available Data Conductor diameter is 1.762 (in) Conductor resistance is 0.0423 (Ohm/mile) at 68.0 (deg F) and 0.0499 (Ohm/mile) at 167.0 (deg F) Emissivity is 0.5 and solar absorptivity is 0.5 Solar heat input is 7.105 (Watt/ft) (corresponds to Global Solar Radiation 96.778 (Watt/ft²) - which was calculated) of Radiation cooling is 6.853 (Watt/ft) Convective cooling is 10.437 (Watt/ft) Given a constant ac current of 1033.3 amperes, The conductor temperature is 173.0 (deg F)=78 (deg C)

> Schedule AWG-3 Page 90 of 94

Current in Amps

Schedule AWG-3 Page 91 of 94

8/11/2010 Power engineers

ACSR BlueBird @ MOT=284 F=140 C (Max Allowed for ACSR Ruling Span=1500 ft Max Sag @ MOT=284 F=140 C, Final=68.57 ft

Conductor: 2156.0 Kcmil 84/19 Stranding ACSR "BLUEBIRD"

Area = 1.8309 Sq. in Diameter = 1.762 in Weight = 2.511 lb/ft RTS = 60300 lb
Data from Chart No. 1-1020
English Units
Limits and Outputs in Average Tensions.

Span = 1500.0 Feet Creep IS a Factor Customary Heavy Load Zone Rolled Rod

Design Points						Final		Initial		
Temp	Ice	Wind	K	Weight	Sag	Tension	RTS	Sag	Tension	RTS
°F	in	psf	lb/ft	lb/ft	Ft	lb	00	Ft	lb	00
0.0	0.50	4.00	0.30	4.324	51.53	23714	39.3	47.16	25891	42.9
15.0	1.25	4.10	0.00	7.339	58.38	35571	59.0	57.72	35975	59.7
32.0	0.50	0.00	0.00	3.917	53.07	20866	34.6	47.84	23126	38.4
60.0	0.00	24.30	0.00	4.363	56.07	22008	36.5	51.19	24084	39.9
-20.0	0.00	0.00	0.00	2.511	45.27	15655	26.0	38.24	18515	30.7
0.0	0.00	0.00	0.00	2.511	47.03	15075	25.0*	39.89	17756	29.4
30.0	0.00	0.00	0.00	2.511	49.60	14301	23.7	42.36	16727	27.7
60.0	0.00	0.00	0.00	2.511	52.09	13623	22.6	44.82	15814	26.2
90.0	0.00	0.00	0.00	2.511	54.51	13025	21.6	47.25	15006	24.9
120.0	0.00	0.00	0.00	2.511	56.85	12494	20.7	49.65	14287	23.7
284.0	0.00	0.00	0.00	2.511	68.57	10386	17.2	61.93	11480	19.0
* Design Condition										

Certain information such as the data, opinions or recommendations set forth herein or given by Southwire representatives, is intended as a general guide only. Each installation of overhead electrical conductor, underground electrical conductor, and/or conductor accessories involves special conditions creating problems that require individual solutions and, therefore, the recipient of this information has the sole responsibility in connection with the use of the information. Southwire does not assume any liability in connection with such information.

3.10.0v

CLEAN LINE ENERGY: GRAIN BELT EXPRESS +/- 600kV HVDC FOUNDATION DESIGN CRITERIA

Geotechnical Information:

The foundations will be designed using the soil profiles based on a desktop geotechnical study.

Applied Loading:

The governing intact load cases have an OLF of 1.0 (NESC Extreme Ice w/ Concurrent Wind & NESC Extreme Wind). The broken conductor/conductor stringing load case does govern in some cases and has an OLF of 1.1. This is the predicted load for a broken conductor load and or conductor stringing load therefore the OLF will not be taken out.

Laterally Loaded Drilled Piers:

Foundations will be designed using the design and analysis software MFAD. All foundations will meet the following criteria:

- 1. Ultimate Load
 - a. Factor of safety of 2 with unfactored loads.
- 2. Allowable Deflection
 - a. Maximum tolerable total deflection of 2.0" with unfactored loads.
 - b. Maximum tolerable non-recoverable deflection of 0.5" with unfactored loads.
- 3. Pier Rotation
 - a. Maximum tolerable pier rotation of 1.72°.
- 4. Pier projection of 2.0 ft.
- 5. Concrete Design
 - a. Concrete design strength of 3,000 psi
 - b. Concrete strength for construction 4,000 psi.
 - c. Longitudinal Reinforcement: #11 bars (60 ksi)
 - d. Shear Reinforcement: #4 or #5 ties
 - e. 3" clear cover

Note: The allowable deflections for the foundations in some project regions may be adjusted from those shown above to accommodate large variations in subsurface priorities

Uplift and Compression Drilled Piers:

Foundations will be designed with using the design and analysis software SHAFT. All foundations will meet the following criteria:

- 1. Ultimate load
 - a. Shaft determines ultimate load at vertical displacement of foundation diameter divided by 20 (Dia/20).
- 2. Vertical Displacement (Uplift)
 - a. Maximum displacement of 1" with unfactored loads.

Schedule AWG-3 Page 93 of 94

- 3. Vertical Displacement (Compression)
 - a. Maximum displacement (settlement) of 1" with unfactored loads.
- 4. Lateral Performance
 - a. The lateral performance of drilled piers shall follow the criteria for laterally loaded drilled piers.
- 5. Concrete Design
 - a. The concrete design shall follow the criteria for lateral loaded drilled piers.

Rev 0