Exhibit No.:	
Issues:	Transmission Planning
	Public Interest
Witness:	Jameson T. Smith
Sponsoring Party:	MISO
Type of Exhibit:	Direct Testimony
Case No.	EA-2017-034
Date Prepared:	September 28, 2017

MISSOURI PUBLIC SERVICE COMMISSION

CASE NO. EA-2016-0358

DIRECT TESTIMONY OF

JAMESON T. SMITH

ON BEHALF OF

MIDCONTINENT INDEPENDENT SYSTEM OPERATOR, INC. (MISO)

September 28, 2017

1 I. INTRODUCTION AND WITNESS QUALIFICATIONS

- 2 Q. Please state your name, business address, and present position.
- A. My name is Jameson Smith. I am employed by the Midcontinent Independent
 System Operator, Inc. ("MISO") as the Director of Economic and Policy Planning.
 My business address is Two Lakeway, 3860 N. Causeway Boulevard, Suite 442,
 Metairie, Louisiana 70002.

7 Q. What is MISO?

A. MISO is a not-for-profit, member-based, regional transmission organization ("RTO")
providing reliability and market services over 65,700 miles of transmission lines in
fifteen states and one Canadian province. MISO's regional area of operations
stretches from the Ohio-Indiana line in the east to eastern Montana in the west, and
south to New Orleans. MISO is governed by an independent Board of Directors.

13

1

14 MISO's responsibilities include the development of the MISO Transmission 15 Expansion Plan ("MTEP") in collaboration with transmission owners and 16 stakeholders. MISO adheres to the nine planning principles outlined in FERC Order 17 No. 890.¹ In so doing, MISO provides an open and transparent regional planning

^{Preventing Undue Discrimination and Preference in Transmission Service, Order No. 890, FERC Stats. & Regs. ¶ 31,241, order on reh'g, Order No. 890-A, FERC Stats. & Regs. ¶ 31,261 (2007), order on reh'g and clarification, Order No. 890-B, 123 FERC ¶ 61,299 (2008), order on reh'g, Order No. 890-C, 126 FERC ¶ 61,228 (2009), order on clarification, Order No. 890-D, 129 FERC ¶ 61,126 (2009). "The Transmission Provider's planning process shall satisfy the following nine principles, as defined in the Final Rule in Docket No. RM05-25-000: coordination, openness, transparency, information exchange, comparability, dispute resolution, regional participation, economic planning studies, and cost allocation for new projects." Order 890-B, Attachment K.}

1 process. FERC Order No. 1000 furthered the planning principles outlined in FERC 2 Order No. 890, and included the requirements to plan for public policy and for coordinated inter-regional planning and cost allocation.² The MTEP process (i) 3 4 identifies transmission system expansions that will ensure the reliability of the 5 transmission system that is under the operational and planning control of MISO, (ii) 6 identifies expansion that is critically needed to support the reliable and competitive 7 supply of electric power by this system, and (iii) identifies expansion that is necessary 8 to support energy policy mandates.

9

Q. What are MISO's responsibilities?

A. As an RTO, MISO is responsible for operational oversight and control, market
 operations, and for coordination of the planning and expansion of the transmission
 systems that are under its control. Among many other responsibilities, MISO
 monitors and calculates Available Flowgate Capability and provides tariff
 administration for its Open Access Transmission, Energy and Operating Reserve
 Markets Tariff ("Tariff"),³ which has been accepted by the Federal Energy
 Regulatory Commission.⁴ MISO is the Reliability Coordinator for its regional area of

³ MISO Tariff, available at: <u>https://www.misoenergy.org/Library/Tariff/Pages/Tariff.aspx</u>

² Transmission Planning and Cost Allocation by Transmission Owning and Operating Public Utilities, Order No. 1000, 136 FERC ¶ 66,051 (2011), order on reh'g, Order No. 1000-A, 139 FERC ¶ 61,132 (2012), order on reh'g and clarification, Order No. 1000-B, 141 FERC ¶ 61,044 (2012).

 ⁴ MISO's Tariff was initially accepted by FERC in 1998, but was suspended until subsequently adopted in 2001. See Midwest Indep. Transmission Sys. Operator, Inc., 97 FERC ¶ 61,326 (2001); Midwest Indep. Transmission Sys. Operator, Inc., 97 FERC ¶ 61,033 (2001), order on reh'g, 98 FERC ¶ 61,141 (2002). MISO began providing transmission service under its Tariff in 2002.

1 operations, providing real-time operational monitoring and control of the transmission 2 MISO operates real-time and a day-ahead energy markets based on system. Locational Marginal Prices ("LMPs") in which each market participant's offer to 3 4 supply energy is matched to demand and is cleared based on a security constrained 5 economic dispatch process – resources on the system are dispatched to minimize the cost of energy production while respecting the reliability limitations of the system. In 6 7 addition, MISO operates a market for Financial Transmission Rights, which are used 8 by market participants to hedge against congestion costs, and an ancillary services 9 market, which provides for the services necessary to support transmission of capacity 10 and energy from resources to load.

11

12 MISO is responsible for approving transmission service, new generation 13 interconnections, and new transmission interconnections within the MISO's regional 14 area of operations, and for ensuring that the system is planned to reliably and 15 efficiently provide for existing and forecasted usage of the transmission system. 16 MISO is the Planning Coordinator for its regional area of operations, which includes 17 portions of Missouri, and performs planning functions collaboratively with 18 transmission owners with stakeholder input – state regulatory authorities (the 19 Organization of MISO States as well as individual authorities), public consumer 20 advocates, environmental representatives, end-use customers, independent power 21 producers, and others - throughout the process. MISO provides an independent 22 assessment and perspective of the needs of the overall transmission system.

1 Q. What is your educational background? 2 A. I graduated from Mississippi State University with a Bachelor of Science degree in 3 Electrical Engineering. I received a Master of Business Administration degree from 4 Oklahoma State University. 5 **Q**. Are you a professional engineer? Yes. I am a registered professional engineer in the State of Oklahoma, License No. 6 A. 7 PE22110. 8 Q. What is your professional experience? 9 In January 2001, I was employed by American Electric Power as a transmission A. 10 planning engineer for its holdings located in the Southwest Power Pool. I performed 11 transmission planning studies for four states, and conducted analyses for annual 12 forward planning, generation interconnection, load interconnection, and voltage stability. 13 14 15 I have been employed by MISO since January 2006 when I became a resource 16 forecasting engineer in MISO's Transmission Asset Management Division ("TAM"). 17 In this role, I participated in the development of the economic planning processes 18 performed today, and have run the resource expansion and production cost models 19 utilized in that process. During my time in this group, I was also the project manager 20 for the study that identified the candidate Multi Value Projects ("MVPs"), the final 21 results from which are discussed in my testimony, for the MISO footprint as it existed 22 in 2010.

23

1		In September 2010, I transitioned to the role of Manager of Policy Studies within
2		TAM. My team was responsible for working with stakeholders to evaluate
3		emerging economic and policy trends and their impacts on the bulk electric system.
4		Most of these studies focus on the impact of renewable portfolio standard
5		("RPS")/renewable energy standard ("RES") and environmental rulemakings.
6		
7		In August 2014, I undertook the position of the Director of Policy Studies and that
8		role was expanded in January of 2017 to the Director of Economic and Policy
9		Planning, bringing all of the production cost modeling activities under one
10		management structure at MISO.
11	Q.	What are your duties and responsibilities in your present position as Director
12		of Economic and Policy Studies?
12 13	A.	of Economic and Policy Studies? My current duties involve providing corporate direction to the Economic and Policy
12 13 14	A.	of Economic and Policy Studies? My current duties involve providing corporate direction to the Economic and Policy Studies management and team where the objective is to evaluate macroeconomic and
12 13 14 15	A.	of Economic and Policy Studies?My current duties involve providing corporate direction to the Economic and PolicyStudies management and team where the objective is to evaluate macroeconomic andpublic policy impacts on the bulk electric system. This can include fluctuations in
12 13 14 15 16	A.	 of Economic and Policy Studies? My current duties involve providing corporate direction to the Economic and Policy Studies management and team where the objective is to evaluate macroeconomic and public policy impacts on the bulk electric system. This can include fluctuations in fuel prices, generation fleet trend changes, and state and federal policies such as
12 13 14 15 16 17	A.	 of Economic and Policy Studies? My current duties involve providing corporate direction to the Economic and Policy Studies management and team where the objective is to evaluate macroeconomic and public policy impacts on the bulk electric system. This can include fluctuations in fuel prices, generation fleet trend changes, and state and federal policies such as carbon mitigation and portfolio standards. I am involved in execution of the
12 13 14 15 16 17 18	A.	of Economic and Policy Studies? My current duties involve providing corporate direction to the Economic and Policy Studies management and team where the objective is to evaluate macroeconomic and public policy impacts on the bulk electric system. This can include fluctuations in fuel prices, generation fleet trend changes, and state and federal policies such as carbon mitigation and portfolio standards. I am involved in execution of the economic planning processes connected with the annual evaluation of MISO
12 13 14 15 16 17 18 19	A.	of Economic and Policy Studies? My current duties involve providing corporate direction to the Economic and Policy Studies management and team where the objective is to evaluate macroeconomic and public policy impacts on the bulk electric system. This can include fluctuations in fuel prices, generation fleet trend changes, and state and federal policies such as carbon mitigation and portfolio standards. I am involved in execution of the economic planning processes connected with the annual evaluation of MISO Transmission Expansion Plan ("MTEP") projects.
12 13 14 15 16 17 18 19 20	A. Q.	of Economic and Policy Studies? My current duties involve providing corporate direction to the Economic and Policy Studies management and team where the objective is to evaluate macroeconomic and public policy impacts on the bulk electric system. This can include fluctuations in fuel prices, generation fleet trend changes, and state and federal policies such as carbon mitigation and portfolio standards. I am involved in execution of the economic planning processes connected with the annual evaluation of MISO Transmission Expansion Plan ("MTEP") projects. Have you ever testified?
 12 13 14 15 16 17 18 19 20 21 	А. Q. А.	 of Economic and Policy Studies? My current duties involve providing corporate direction to the Economic and Policy Studies management and team where the objective is to evaluate macroeconomic and public policy impacts on the bulk electric system. This can include fluctuations in fuel prices, generation fleet trend changes, and state and federal policies such as carbon mitigation and portfolio standards. I am involved in execution of the economic planning processes connected with the annual evaluation of MISO Transmission Expansion Plan ("MTEP") projects. Have you ever testified? Yes. I testified before this Commission in transmission siting Case No. EA-2015-

1 II. **PURPOSE AND SCOPE**

Q. Are you familiar with the transmission project proposed in the Application filed by Ameren Transmission Company of Illinois ("ATXI")?

4 A. Yes. ATXI filed an Application in this docket seeking a certificate of public 5 convenience and necessity. ATXI seeks authorization to construct, operate, and 6 maintain the Mark Twain facilities (also referred to as the "Project"). The Mark 7 Twain facilities include approximately 96 miles of high voltage electric transmission lines and related facilities. The Project generally contains the following elements: 8 9 high voltage 345 kV transmission facilities running generally from Palmyra, Missouri 10 and extending westward to a new substation located near Kirksville, Missouri as well 11 as a 345-kV transmission line running from the new substation north to the Missouri-12 Iowa border.

13 Q. What is the purpose of your testimony?

14 A. The purpose of my testimony is to generally describe the transmission planning 15 functions performed by MISO, including the development of the MTEP. I provide a 16 summary of findings regarding the Mark Twain facilities based on MISO's analyses 17 and discuss the integration of the Project into the regional transmission plan. I will 18 explain how the MVP portfolio of projects, including the Project, reliably and 19 economically support a wide range of energy policies and generation scenarios -a20 "no regrets" plan for transmission expansion - and how the benefits of the portfolio 21 have been defined and confirmed. I address issues regarding the role played by 22 renewables in MISO's transmission planning process as well as issues involving that

2

process as it specifically relates to the MVP portfolio and the Mark Twain portion of that portfolio.

3	Q.	Please elaborate on the terminology you will use in this testimony.
4	A.	Throughout the testimony, I will refer to the benefits of the Mark Twain facilities and
5		the benefits of the MVP portfolio. The benefits of the Mark Twain facilities are those
6		that accrue to the project directly. The benefits of the MVP portfolio are the
7		aggregate benefits of all projects approved as part of the MVP portfolio, including the
8		Mark Twain facilities.
9		
10		Also, I will refer to the MISO "footprint" throughout the testimony. Unless otherwise
11		specified, this footprint refers to MISO's regional area of operations at the time of the
12		approval of the MVP portfolio in 2011. This is generally the northern portion of the
13		total region served by MISO, including Missouri.
14	Q.	What analyses form the basis of your testimony?
15	A.	The Mark Twain facilities are part of a MVP portfolio, the initial report concerning
16		which is attached as Schedule JTS-1 to this testimony. ⁵ The portfolio was approved
17		by the MISO Board of Directors. ⁶ This approval was based on a set of reliability,
18		economic, and public policy analyses of the full MVP portfolio.
10		

⁵ A copy of MISO's publicly available Multi Value Project Portfolio Report, Results and Analyses (January 10, 2012) is also available at: <u>https://www.misoenergy.org/Library/Repository/Study/Candidate%20MVP%20Analysis/MVP%20Portfolio%20Analysis%20Full%20Report.pdf</u>.

⁶ The MTEP 2011 Report is publicly available at: <u>https://www.misoenergy.org/Library/Repository/Study/MTEP/MTEP11/MTEP11%2</u> <u>OReport.pdf</u>.

MISO conducts a comprehensive review of the MVP portfolio on a triennial basis, the
 second report of which is attached as Schedule JTS-2 to this testimony ("2017 MVP
 Triennial Review").⁷ The follow-up analyses of the MVP portfolio support initial
 selection of projects by demonstrating economic and public policy benefits of the
 MVP portfolio.

6

Q. What are your key findings?

7 A. The Mark Twain facilities provide a high voltage transmission path that increases the 8 reliability of the regional transmission system while enhancing the ability of the 9 Missouri transmission system to meet local load serving needs. The Mark Twain 10 facilities are part of the MVP portfolio that, as part of the MISO regional plan, creates 11 a robust transmission network that supports multiple generation and policy futures 12 with economic benefits in excess of costs. The purpose of MISO's planning was the creation of a "no regrets" portfolio of transmission system enhancements under a 13 variety of future conditions. MISO's MTEP reports provide assessments of resource 14 15 adequacy, analyses of various energy policy scenarios, and the development of long-16 term resource forecasts based on those scenarios.

17

When system-wide MVP benefits were evaluated for their distribution within the MISO footprint, benefits to Missouri reported in the recently completed 2017 MVP Triennial Review (attached as Schedule JTS-2) amounted to between 1.5 and 2.6 times the portfolio costs to Local Resource Zone 5 (comprised of MISO member

⁷ JTS-2 contains a draft report, whose analytical results (some restated in the text of this testimony) will remain unchanged. The text of the draft report may be edited before release of the final report.

1		comp	anies within Missouri), as compared to 2.0 to 2.9 from the 2011 analysis on
2		MVP	$s.^8$ As explained in this testimony, the primary drivers for the changes are
3		natura	al gas commodity prices and changes in the fleet of generation resources.
4	Q.	What	t are the components of benefits in MISO's MTEP planning process?
5		These	e benefits are described further in this testimony and are summarized as follows:
6		1)	MISO Regional Transmission Planning and Multi Value Project Planning
7			Process - MISO's regional planning process ensures continued system
8			reliability in a least cost manner while considering a series of potential future
9			policy and economic conditions. This testimony discusses the high level goals
10			and key considerations of the MISO planning process, as well as the planning
11			process utilized to define and justify the projects in the MVP portfolio.
12		2)	Reliability Planning and Project Considerations - MISO's analyses ensure that
13			load has access to reliable energy and that local reliability issues are
14			considered. This testimony discusses the key criteria applied in MTEP
15			reliability analyses and the importance of each of these factors in maintaining
16			a safe and reliable supply of energy to end-use customers.
17		3)	Economic and Public Policy Considerations - The MISO planning process
18			considers the benefits of transmission projects under multiple economic and
19			public policy scenarios. This testimony elaborates on the structure of these

⁸ Schedule JTS-2, page 24 ("Benefit/Cost Ratio Ranges"). The 2014 and 2017 Triennial Reviews report comparisons of benefit/cost ratios based upon averaging of high and low load growth in the business-as-usual ("BAU") scenarios. This was not the basis for the initial report on benefit/cost ratios in the 2011 analysis, which states benefit/cost ratios between 1.8 and 3.2 times the portfolio costs for Local Resource Zone 5. Schedule JTS-1, page 6, Figure 1.5.

1		analyses, both in the initial MVP project justification and in subsequent
2		reports on the MVP portfolio of projects.
3		4) <u>Economic and Public Policy Portfolio Benefits</u> - The Project, as part of the
4		overall MVP portfolio, provides economic benefits in excess of its costs while
5		enabling compliance with public policy requirements such as renewable
6		energy mandates. This testimony discusses the economic benefits of the MVP
7		portfolio as a whole, both in the 2011 justification and in the 2017 review.
8		This testimony also discusses the ability of the portfolio to enable existing
9		public policies, along with a wide variety of other potential future generation
10		options.
11		5) <u>Regional System Planning and MVP Policies</u> - The projects in the MVP
12		portfolio, including the Project, have been incorporated in the MISO
13		transmission plan and subsequent analyses. My testimony discusses the cost
14		implications of the project and the near-term impacts of a failure to approve
15		this project.
16	III.	MISO REGIONAL TRANSMISSION PLANNING
17	Q.	What are the requirements and objectives of the MISO regional planning
18		process?
19	A.	Regional planning at MISO is performed in accordance with several guiding
20		documents. The Agreement of Transmission Facilities Owners to Organize the
21		Midcontinent Independent Transmission System Operator, Inc., a Delaware Non-
22		Stock Corporation ("Transmission Owners Agreement" or "TOA") includes the
23		planning framework that describes the planning responsibilities of MISO and its

1	transmission owning members. ⁹ MISO's responsibilities include the development of
2	the MTEP in collaboration with transmission owners and stakeholders.
3	MISO also adheres to the nine planning principles outlined in FERC Order No. 890. ¹⁰
4	In so doing, MISO provides an open and transparent regional planning process that
5	result in recommendations for expansion that are reported in the MTEP. Recently,
6	FERC Order No. 1000 furthered the planning principles outlined in FERC Order No.
7	890 and included the requirements to plan for public policy and for coordinated inter-
8	regional planning and cost allocation. ¹¹
9	Consistent with these planning principles, the objectives of the MTEP process are (i)
10	to identify transmission system expansions that will ensure the reliability of the
11	transmission system that is under the operational and planning control of MISO, (ii)
12	to identify expansion that is critically needed to support the reliable and competitive
13	supply of electric power by this system, and (iii) to identify expansion that is

⁹ See MISO Transmission Owners Agreement (TOA), Version: 0.0.0 Effective: 7/31/2010, Appendix B, Section VI, publicly available at: <u>https://www.misoenergy.org/Library/Repository/Tariff/Rate%20Schedules/Rate%20Schedule%2001%20-%20Transmission%20Owners%20Agreement.pdf</u>.

Preventing Undue Discrimination and Preference in Transmission Service, Order No. 890, FERC Stats. & Regs. ¶ 31,241, order on reh'g, Order No. 890-A, FERC Stats. & Regs. ¶ 31,261 (2007), order on reh'g and clarification, Order No. 890-B, 123 FERC ¶ 61,299 (2008), order on reh'g, Order No. 890-C, 126 FERC ¶ 61,228 (2009), order on clarification, Order No. 890-D, 129 FERC ¶ 61,126 (2009). "The Transmission Provider's planning process shall satisfy the following nine principles, as defined in the Final Rule in Docket No. RM05-25-000: coordination, openness, transparency, information exchange, comparability, dispute resolution, regional participation, economic planning studies, and cost allocation for new projects." Order 890-B, Attachment K.

¹¹ Transmission Planning and Cost Allocation by Transmission Owning and Operating Public Utilities, Order No. 1000, 136 FERC ¶ 66,051 (2011), order on reh'g, Order No. 1000-A, 139 FERC ¶ 61,132 (2012), order on reh'g and clarification, Order No. 1000-B, 141 FERC ¶ 61,044 (2012).

necessary to support energy policy mandates in effect within the MISO footprint.
 MISO's MTEP report provides assessments of resource adequacy, analyses of various
 energy policy scenarios, and the development of long-term resource forecasts based
 on those scenarios.

5

Q. What is the planning process used to develop the MTEP?

6 MISO uses a "bottom-up, top-down" approach in developing the MTEP plan. The A. 7 "bottom-up" portion relies on the ongoing responsibilities of the individual 8 transmission owners to continuously review and plan to reliably and efficiently meet 9 the needs of their local systems. MISO then reviews these local planning activities 10 with stakeholders and performs a "top-down" review of the adequacy of and 11 appropriateness of the local plans in a coordinated fashion with all other local plans to 12 most efficiently ensure that all of the needs are cost effectively met. In addition, 13 MISO, together with stakeholders, considers opportunities for improvements and 14 expansions that would reduce consumer costs by providing access to new low cost 15 resources that are consistent with and required by evolving legislative energy policies.

16

MISO's planning process examines congestion that may limit access to the most efficient resources, and considers improvements that may be needed to meet forecasted energy requirements. Stakeholders from each MISO member sector, including state regulatory authorities, public consumer advocates, environmental representatives, end use customers, and independent power producers, among others, are engaged to develop a wide range of future system scenarios that are guided by assessments of possible future state and federal energy policy decisions. The possible future scenarios and energy polices ("Future Scenarios") form the basis for forecasts
 of resources and load that would be economical and consistent with policy.
 Transmission needs are then assessed and plans developed to reliably and efficiently
 deliver the necessary energy from resources to load.

What does it mean for a project to be approved by the MISO Board of Directors

5

6

Q.

as a part of the MTEP?

A. The MTEP plan consists of the many individual projects or portfolios of projects that
are recommended by the MISO staff to the MISO Board of Directors. In accordance
with the TOA, approval of a MISO MTEP Plan by the Board of Directors certifies the
MTEP as MISO's plan for meeting the transmission needs of all stakeholders, subject
to any required approvals by federal or state regulatory authorities.

12 Q. In preparing the MTEP regional plans, what considerations does MISO take 13 into account?

14 A. There are numerous considerations in planning for a regional transmission system. 15 The transmission system must be adequately planned to be able to accommodate 16 changes in generation and generation dispatch patterns – such as evidenced by the 17 growth in renewables and natural gas generation and decline of coal-fired generation 18 - without having equipment perform outside of its design capability. Additional 19 considerations include addressing constraints that limit market efficiency and 20 providing for expansions that enable energy policy mandates to be achieved. The 21 security of the transmission system must be maintained such that it is able to 22 withstand disturbances (generator and/or transmission facility outages) without the 23 interruption of service to load.

1 IV.

MULTI VALUE PROJECT PLANNING PROCESS

2 Q. What is a MVP under the MISO Tariff?

A. A MVP is a type of transmission project developed by MISO and stakeholders, and accepted by FERC.¹² A MVP is a project that must be (i) evaluated as part of a portfolio of MVPs whose benefits are spread broadly across the MISO footprint and (ii) must meet at least one of the following criteria (taken from the MISO Tariff):

7 a. Criterion 1. A Multi Value Project must be developed through the 8 transmission expansion planning process for the purpose of enabling 9 the Transmission System to reliably and economically deliver energy 10 in support of documented energy policy mandates or laws that have 11 been enacted or adopted through state or federal legislation or 12 regulatory requirement that directly or indirectly govern the minimum 13 or maximum amount of energy that can be generated by specific types of generation. The MVP must be shown to enable the transmission 14 15 system to deliver such energy in a manner that is more reliable and/or 16 more economic than it otherwise would be without the transmission 17 upgrade.

b. Criterion 2. A Multi Value Project must provide multiple types of
economic value across multiple pricing zones with a Total MVP
Benefit-to-Cost ratio of 1.0 or higher where the Total MVP Benefit to-Cost ratio is described in Section II.C.7 of . . . Attachment FF [in

¹² *Midwest Independent Transmission System Operator, Inc.*, 133 FERC ¶61,221 (2010) ("MVP Order") at PP 1, 3, *order on reh'g*, 137 FERC ¶61,074 (2011) ("MVP Rehearing Order") at P 1.

1 the Tariff]. The reduction of production costs and the associated 2 reduction of LMPs resulting from a transmission congestion relief 3 project are not additive and are considered a single type of economic 4 value.

5 c. Criterion 3. A Multi Value Project must address at least one Transmission Issue associated with a projected violation of a NERC or 6 7 Regional Entity standard and at least one economic-based 8 Transmission Issue that provides economic value across multiple 9 pricing zones. The project must generate total financially quantifiable 10 benefits, including quantifiable reliability benefits, in excess of the 11 total project costs based on the definition of financial benefits and 12 Project Costs provided in Section II.C.7 of Attachment FF [in the Tariff].¹³ 13

14 Q. Why was the MVP cost allocation and planning process developed?

15 A. MISO investigated transmission needs associated with a growing desire by 16 stakeholders for renewable energy in the MISO footprint. Renewable 17 mandates were passed by an increasing number of states in the region. At the 18 same time, the MISO Generator Interconnection queue saw a substantial 19 increase in queued requests by wind generators, and the study results for those 20 generators continued to show the need for more large-scale transmission. 21 These factors led to the definition of a MVP project type, and also to the

MISO Tariff, Attachment FF, Section II.C.2.

ultimate analysis and approval of the MVP portfolio that included the Mark Twain facilities.

3

Q. What is the MVP portfolio?

4 A. The MVP portfolio is a group of transmission projects distributed across the MISO 5 footprint that enable the reliable delivery of the aggregate of state policies regarding renewable energy (Renewable Portfolio Standards or "RPS" mandates) and provide 6 7 for economic benefits in excess of the portfolio costs to that area, primarily by 8 reducing generator production costs. Each project within the MVP portfolio was 9 determined to be a necessary component of the portfolio that would provide benefits 10 that broadly span the MISO footprint, and meets at least one of the criteria set forth 11 above.

Q. What was the overall process by which the Project became part of the MVP portfolio of projects?

14 A. MISO undertook a multi-year planning process – the Regional Generation Outlet Study ("RGOS")¹⁴ – aimed at addressing the regional transmission plans necessary to 15 16 enable RPS mandates to be met at the lowest delivered energy cost. The RGOS 17 identified energy zones in which mandated energy could locate and indicative 18 transmission options that would provide sufficient transmission capacity and 19 connectivity needed for the efficient and reliable delivery of new generation capacity 20 to meet the combined renewable portfolio standards of the MISO region while 21 providing value across this footprint. These indicative plans were further

¹⁴ MISO's Regional Generation Outlet Study is publicly available at: <u>https://www.misoenergy.org/Planning/Pages/RegionalGenerationOutletStudy.aspx</u>.

consolidated into a proposed MVP portfolio and evaluated for effectiveness in meeting the plan objectives.

3 Q. How were the renewable energy zones utilized in these analyses?

4 Α Energy zone development began during the RGOS referenced previously in my 5 testimony. Zone selection involved MISO staff evaluation of multiple energy zone configuration and extensive stakeholder interaction, including with various state and 6 7 regulatory agencies within the MISO footprint, including the Midwest Governors 8 Association, the Organization of MISO States, and the Upper Midwest Transmission 9 Development Initiative ("UMTDI"). The analyses and selection process optimized 10 transmission and wind generation capital investment across the footprint, resulting in 11 a least-cost distributed set of wind zones. The analysis balanced relative wind 12 capacities with distances from natural gas pipelines and existing transmission 13 infrastructure.

Q. What factors were considered by MISO and the transmission owner members in identifying and justifying the MVP portfolio?

A. Each of the transmission owners, including an affiliate of ATXI, worked with MISO
 staff to identify potential transmission expansions that were consistent with the
 regional needs, would address identified local needs, and would provide additional
 benefits on their respective systems and the MISO footprint as a whole. These
 potential expansions were then intensively studied through the MISO open and
 transparent study process.

22

1 This intensive process began with analysis conducted in the RGOS analyses and 2 discussions around the MVP cost allocation process in a number of MISO stakeholder 3 forums. MISO performed a final set of reliability, economic, and public policy 4 assessments, as discussed in more detail later in this testimony, resulting in a final set 5 of projects that was approved as the MVP portfolio. MISO discussed the analyses 6 and cost allocation in over 200 public stakeholder meetings.

7

The overall goal for the MVP portfolio analysis was to design a transmission portfolio that takes advantage of the linkages between local and regional reliability and economic benefits to promote a competitive and efficient electric market within MISO. The portfolio was designed using reliability and economic analyses, applying several Future Scenarios to determine the robustness of the designed portfolio under a number of potential energy policies. The results of these analyses are described in Section VII of this testimony.

Q. Did MISO perform analyses to determine the effectiveness of the Mark Twain
 facilities to provide an adequate supply of electric energy, regional reliability
 benefits to customers, and the promotion and development of an effectively
 competitive and efficient electric market?

A. Yes. As explained more fully later in my testimony, the MVP portfolio analyses
 evaluated the expected future conditions on the MISO regional grid. MISO's
 analyses found that the Mark Twain project will be needed in order to ensure the
 continued reliable operation of the regional transmission system while meeting the
 renewable energy mandates of the MISO footprint. In addition, MISO's analyses

1 show that the MVP portfolio of projects that include the Mark Twain facilities 2 provides additional connectivity across the grid, reducing congestion and enabling access to a broader array of resources by loads in Missouri. These improvements 3 4 increase market efficiency, competitive supply, and provide opportunity for economic 5 benefits to retail electric consumers well in excess of the portfolio costs. The MVP portfolio represents the holistic solution for delivering these improvements when 6 7 considering generation, transmission, and other factors under expected future 8 conditions. The results of these analyses are described later in this testimony.

9 Q. Was any subsequent analysis performed on this portfolio after it was justified 10 and approved?

11 A. Yes. MISO's Tariff provides for a full review of the MVP Portfolio benefits on a 12 triennial basis. The 2017 MVP Triennial Review provides an updated view into the 13 projected economic, public policy, and qualitative benefits of the initial MTEP 14 approved MVP Portfolio. The results of these analyses are further described in 15 Section VIII of this testimony. The MVPs are also the subject of limited annual 16 reviews, as reported in MISO's annual MTEP reports.

17 V. <u>RELIABILITY PLANNING AND PROJECT IMPACT</u>

Q. What are the standards that govern MISO's planning practices to ensure
 reliable transmission system performance?

A. MISO plans its transmission system in compliance with NERC, regional entity, and
 the transmission owning members' planning standards. In addition, planning
 practices are dictated by FERC Order Nos. 890 and 1000, as mentioned earlier.
 MISO implements these practices through its governing and informational

documents, including Attachment FF to MISO's Tariff, the TOA, and MISO's Business Practices Manual ("BPM").¹⁵

3 Q. Can you briefly summarize the scope of the FERC planning practices?

4 A. Yes. As mentioned earlier, Order No. 890 is primarily concerned with ensuring that 5 transmission planning takes place in an open and transparent environment where stakeholders to the planning process are engaged in and have opportunities to provide 6 7 input and comment on the development of local area as well as regional transmission plans, and this need for transparency was reinforced in FERC Order 1000. The 8 9 planning process also addresses economic and regulatory policy considerations in 10 addition to the NERC standards for reliability. There are also requirements aimed at 11 ensuring coordination with neighboring planning regions and proper cost allocation.

12 Q. What is the NERC transmission planning standard and what does it require?

A. The NERC Transmission Planning reliability standard ("TPL") is applicable to
 transmission planning and governs planning requirements to ensure reliable
 transmission system performance. The standard addresses system performance:
 under conditions ranging from normal (no contingency) operation to more extreme
 events that result in loss of many transmission elements. ¹⁶

18 Q. In more detail, what were the reliability analyses performed and the needs 19 identified by MISO if the Mark Twain facilities are not built?

¹⁵ See MISO's Business Practices Manual, Transmission Planning, BPM-020-r10, publicly available at: <u>https://www.misoenergy.org/Library/BusinessPracticesManuals/Pages/BusinessPracticesManuals.aspx</u>.

¹⁶ See Table 1 of the NERC Transmission Planning Standard, publicly available at: <u>http://www.nerc.com/files/TPL-001-1.pdf</u>.

1 A. A reliability analysis, based on the NERC standards and system needs described 2 earlier, was conducted to identify transmission system equipment loadings and 3 voltages with respect to safe equipment design tolerances. The MISO reliability 4 analysis included steady state analysis of thermal loading and voltages, as well as 5 system stability. These analyses identified numerous reliability issues that will occur for the projected future system if the Project is not completed. The Mark Twain 6 7 facilities address these issues by creating an additional connection between the 345 8 kV networks in Iowa and Illinois. This provides additional transmission paths to 9 offload 345 kV and 161 kV congestion, strengthening the overall transmission system 10 and increasing its ability to serve load under contingent conditions.

11

Q. What was considered during the steady state analysis?

12 A The steady state analysis evaluated 2021 Summer Peak and 2021 Shoulder Peak 13 powerflow models and monitored all system elements 100 kV and above within the 14 MISO footprint, as well as tie lines to neighboring systems. NERC Category A, B, 15 and C contingency events were analyzed for the MISO footprint, and all system 16 elements that were loaded at 95 percent or higher were flagged as potential issues for 17 all non-Category C3 contingencies. Elements under Category C3 contingencies were 18 flagged as transmission issues under loadings of 125 percent or higher.¹⁷

19

20

Q.

How were the steady state models developed?

21

A Power flow models were developed representing transmission system topology for the year 2021 to evaluate transmission reliability. Transmission topology was

¹⁷ NERC issued standards in 2013 that re-designated contingency categories to a system of P0 to P7 contingencies.

1 developed by adding the transmission upgrades previously approved in the MISO 2 MTEP regional planning process and projects identified by MISO in prior MTEPs as 3 expected to be needed to meet NERC reliability standards to existing system 4 facilities. Load forecasts applied in the reliability models were supplied by MISO 5 transmission owners via the annual reliability model building process. Peak and offpeak conditions were simulated. Generation in the power flow models included 6 7 existing generation, committed generation from the MISO generation interconnection 8 process, and generation in renewable energy zones sufficient to meet regional 9 renewable energy mandates. This additional renewable energy was located in the 10 wind energy zones mentioned previously.

Q. What would be the effects on the regional transmission system if the Project was not constructed?

13 A. Failure to build the Project, which would be accompanied by the absence of 14 connecting MVP 7 facilities through southern Iowa, would likely mean that wind 15 projects would not be built in Northeastern Missouri. At times, MISO would be 16 forced to direct generation in the region to back down to relieve congestion on the 17 area's 161 kV transmission system. Price separation would occur under these 18 circumstances, depriving the local area (Missouri and the nearby area) of the benefits 19 of low cost generation resources. The largest category of benefits from the MVP 20 portfolio of projects is generator production cost reductions. Access to low cost

8

Q.

generation drives the benefits for the region, providing large benefits that are not related to load growth.¹⁸

3 Q. Did MISO consider alternatives to the Mark Twain project?

A. Yes. MISO considered an additional 345 kV line from West Adair to Thomas Hill as
an alternative to the Mark Twain project.¹⁹ While improving reliability in the area,
the addition would not improve the distribution of benefits within MISO. Thus, the
alternative was removed and the proposed MVP project was recommended.

Does MISO continue to see evidence of the projected value of the Mark Twain

9 project?

10 Yes. The renewable energy mandates and system flows that drove the initial project A. 11 justification for the Mark Twain project have remained unchanged, and a strong west-12 to-east regional flow continues to drive the need for new transmission paths through Missouri. This conclusion is reinforced by the significant growth in the MISO 13 Generation Interconnection Queue ("Queue"). As of August 4, 2017, the Generation 14 15 Interconnection Queue contains 355 projects totaling 59 GW of new generation 16 capacity with approximately 31 GW of that capacity being proposed wind projects. 17 Particularly of note for Missouri, wind generation projects J541 and J598 (totaling 18 700 MW) propose interconnection to the Project and are located in Adair and 19 Schuyler Counties. These wind projects are in MISO's Definitive Planning Phase of 20 the Queue.

¹⁸ The dominance of production cost reductions is shown in the 2017 MVP Triennial Review. Schedule JTS-2, Section 6 ("Portfolio Economic Analysis").

¹⁹ ATXI refers to the West Adair substation as the Zachary Substation.

1 VI. ECONOMIC AND PUBLIC POLICY CONSIDERATIONS

- Q. How does MISO plan to optimize the benefits of an effectively competitive and
 efficient electric market under multiple state and federal energy policy
- 4 requirements?
- 5 A. MISO considers the benefits that transmission may provide under a variety of policy 6 and economic futures, as represented by the Future Scenarios. These benefits are 7 evaluated over the first 20 to 40 years of the transmission's life, primarily through the 8 use of production cost models.

9 Q. How does MISO consider public policy benefits, in general?

10 MISO considers public policy benefits through the direct evaluation of specific A. 11 policies, such as renewable energy mandates or EPA regulations. Also, to account for 12 out-year public policy and economic uncertainties, MISO collaborates with 13 representatives from each of its stakeholder groups, including regulatory authorities, 14 public consumer advocates, environmental representatives, end use customers, and 15 independent power producers, among others, to develop available future policy 16 scenarios to align them with potential policy outcomes taking place. The Future 17 Scenarios are designed to "bookend" the potential range of future economic and 18 policy outcomes, ensuring that the most likely future policy scenarios and their 19 impacts are within the range bounded by the results.

20

VII. MVP PORTFOLIO RESULTS: ECONOMIC AND PUBLIC POLICY

- 21 JUSTIFICATION
- Q. What Future Scenarios were developed for the initial MVP Portfoliojustification?

A. The initial MVP Portfolio justification was based upon two Future Scenarios that
 represented the Business as Usual ("BAU") conditions with no new energy policy
 mandates. These Future Scenarios were used to define the primary range of benefits
 for the MVP portfolio and were based on the assumptions below:

- 5 1) A Business As Usual with Continued Low Demand and Energy Growth 6 (BAULDE) scenario assumes that current energy policies will be continued, with 7 continuing recession level low demand and energy growth projections.
- 8 2) A Business As Usual with Historic Demand and Energy Growth (BAUHDE)
 9 scenario assumes that current energy policies will be continued, with demand and
 10 energy returning to pre-recession growth rates.
- In addition, the MVP Portfolio justification looked at two potential policy Futures
 Scenarios to bookend long-term conditions. These scenarios were considered
 sensitivities and are described below:
- A Carbon Constrained scenario assumes that current energy policies will be
 continued, with the addition of a carbon cap modeled on the Waxman-Markey
 Bill.
- A Combined Energy Policy scenario assumes multiple energy policies are
 enacted, including a 20 percent federal RPS, a carbon cap modeled on the
 Waxman-Markey Bill, implementation of a smart grid, and widespread adoption
 of electric vehicles.²⁰

²⁰ The four future scenarios, including input assumptions, are discussed further in the report on the MVP portfolio that is attached as to my testimony. Exhibit 1, Multi Value Project Portfolio Report, Results and Analyses (January 10, 2012).

Q. What assumptions were used in projecting the expected future conditions in the
 BAU Future Scenarios upon which the MISO need and benefit analyses were
 based?

A. Natural gas prices were projected to be \$5 per million cubic feet in the business-as usual cases (2011 dollars). Other fuel costs and generator operating parameters were
 obtained from a vendor-provided comprehensive energy market data repository that
 contains detailed operating characteristics for generating units derived from public
 sources.

9 Q. Please describe in more detail the primary economic benefits that MISO 10 identified will be made available by the MVP portfolio.

11 The MVP portfolio allows for a more efficient dispatch of generation resources, A. 12 opening wholesale markets to competition and spreading the benefits of low cost 13 generation to Missouri and throughout the MISO footprint. These benefits reflect the 14 savings achieved through the reduction of transmission congestion and through more 15 efficient use of generation resources. MISO's initial report on the MVP portfolio 16 stated an expectation that it would produce an estimated \$12.4 to \$40.9 billion in 17 present value adjusted production cost benefits (2011 dollars) to the aggregate MISO 18 footprint under existing energy policies, depending on the period over which benefits 19 are calculated, discount rates applied, and assumptions about growth rates of energy and demand.²¹ Under additional possible Future Scenarios representing sensitivities to 20

Schedule JTS-1, Section 8.1 ("Congestion and fuel savings").

variations in energy policies, this benefit reported increased to a maximum present
 value of \$91.7 billion (2011 dollars).²²

3

Q. Were other economic benefits identified?

4 A. Yes. While congestion-driven production cost benefits were by far the single greatest 5 benefit identified, additional benefits from the new transmission facilities were also identified. These additional benefits included reductions in operating reserve 6 7 requirements, reduced planning reserve margin requirements, reduced transmission system losses, lower capital costs of renewable resources, and deferrals of 8 9 transmission investments that would be required for the reliability of the system in the 10 absence of the MVPs. These additional factors contribute between \$3.1 billion and 11 \$8.2 billion in additional present value of benefits above the production cost savings (2011 dollars).²³ 12

Q. What was the benefit-cost ratio of the MVP portfolio as a whole, and what was the benefit-cost ratio for Missouri?

A. When compared to the present value of the revenue requirements for the MVP portfolio, MISO originally reported that the portfolio produces total benefits of between 1.8 and 3.0 times the costs on a present value basis, under existing policies.²⁴ When these system-wide benefits were evaluated for their distribution within the MISO footprint, benefits to Missouri amounted to between 1.8 and 3.2 times the

²² *Id*.

²⁴ *Id.*, Section 1 ("Executive Summary").

²³ *Id.*, Section 8 ("Portfolio economic benefits analyses").

portfolio costs to Local Resource Zone 5.²⁵ Zone 5 is comprised of MISO member
 companies within Missouri.

3 Q. How will the MVPs provide their benefits across the MISO footprint?

4 A. Wind generation, while available in many areas within the MISO region, tends to be 5 located in areas of superior wind quality such as the areas to the west of the 6 Mississippi River. The MVP portfolio in general and Mark Twain project in 7 particular, allows for the integration of high quality wind in these western areas, 8 including in Missouri, for transmission across the MISO footprint. More specifically, 9 the initial MVP report (attached as Schedule JTS-1) states that the MVP portfolio will 10 enable the production of approximately 41 million MWh of wind energy annually throughout the MISO footprint.²⁶ The 2017 Triennial Review, described more fully 11 below, updated this figure to approximately 53 million MWh.²⁷ 12

Q. How does population growth and associated load growth factor into MISO's calculation of benefits for MVP projects?

A. MISO investigated the regional transmission required to support the renewable energy mandates of the states in the MISO footprint, and its MVP results were not driven by population and load growth. The benefits provided by the Mark Twain project facilities and the MVP portfolio are only minimally affected by even the absence of reliability benefits linked with population and peak load growth.

²⁶ Schedule JTS-1, Section 1 ("Executive Summary").

²⁵ *Id.*, Section 10.2.8 ("Zonal Benefit-Cost Ratio"), Figure 10.2.

²⁷ Schedule JTS-2, Executive Summary.

Q. Are there other public policy benefits that will accrue to Missouri from the MVP portfolio project?

3 A. Yes. The industry has moved towards the retirement of coal-fired plants as the result 4 of legislation and environmental regulation, but also due to changing economics in 5 power production. Under these circumstances, transmission investment through the MVP portfolio (including the Mark Twain project) provides a robust, "no regrets" 6 transmission additions that will be available to support to maintain reliable service.²⁸ 7 8 As stated previously, the MVP portfolio supports the development of renewable 9 generation, and the proximity of the energy zones to natural gas pipeline allows for 10 the utilization of the energy zones by new natural gas fired units that have also been 11 important to the retirement of coal-fired plants. The production cost simulations of 12 the MVP portfolio found that the portfolio will reduce carbon output in the MISO footprint by 13 to 21 million tons annually.²⁹ 13

14 VIII. 2017 MTEP TRIENNIAL AND ANNUAL MVP REVIEW: ECONOMIC AND

15 **PUBLIC POLICY EVALUATION**

16 Q. Have these results been validated through subsequent analyses?

17 A. Yes. The 2017 MVP Triennial Review analysis provided a second comprehensive

18 update to the projected economic and public policy benefits of the initially approved

As an example, the United States Environmental Protection Agency issued Clean Power Plan rules under the Clean Air Act in August 2015 to regulate the release of carbon dioxide. Due to the timing, those rules were not studied in the 2011 MVP Report, and they will likely not be implemented in their present form. However, implementation of any future rules regarding carbon reduction strategies would likely require additional development of renewable generation that is supported by construction of the MVP portfolio.

²⁹ Schedule JTS-2, Section 7.6.

MVP portfolio. The triennial reviews consistently demonstrate substantial benefits in
 excess of MVP portfolio costs.

Q. Were these analyses conducted in a consistent manner with the previous MVP project justification?

- A. Yes. As stated in the 2017 MVP Triennial Review, MISO's analysis was conducted
 using stakeholder vetted models. The procedures and assumptions used were
 consistent with the evaluation contained in the initial MTEP analysis that is described
 in this testimony, as explained below.
- 9 Q. What Future Scenarios were used in the 2017 MVP Triennial Review?

10 The 2017 MVP Triennial Review was based upon the MTEP17 economic models, as A. 11 developed and vetted with stakeholders. The review focused upon the Policy Regulation Future Scenario, the most comparable 2017 Future to the original 12 13 MTEP11 Business as Usual Scenario. The MTEP17 Policy Regulation Future Scenario was defined as a continuation of the fleet change trends across the industry 14 15 reflecting the effects of continued retirements of aged thermal generation and a 16 transition to a less carbon intensive resources.

- 17 Q. What assumptions were used in projecting the expected future conditions in the
 18 2017 MVP Triennial Review?
- A. The MTEP17 Policy Regulation Future Scenario assumed a lower starting natural gas
 price, at \$2.26/MMBTU, compared to \$5.38/MMBTU in the MTEP11 BAU Future
 Scenario.³⁰ It also included all publically announced generation retirements, along

Schedule JTS-2, Section 3.1 ("Economic Models").

with forecasted age-related generation retirements, a total of 16,000 MW as compared
 to 12,600 MW in the in the 2014 Triennial Review. Other fuel costs and generator
 operating parameters were obtained from a vendor-provided comprehensive energy
 market data repository that contains detailed operating characteristics for generating
 units derived from public sources.

6 Q. Please describe in more detail the primary economic benefits that MISO 7 identified will be made available by the MVP portfolio.

A. The 2017 MVP Triennial Review found that the MVP portfolio continues to allow for
a more efficient dispatch of generation resources, opening wholesale markets to
competition and spreading the benefits of low cost generation to Missouri and
throughout the MISO footprint through the reduction of transmission congestion and
more efficient use of generation resources. The review found that the MVP portfolio
will produce \$20 to \$71 billion in present value adjusted production cost benefits
(2017 dollar terms).³¹

Q. What was the benefit-cost ratio of the MVP portfolio as a whole, and what was the benefit-cost ratio for Missouri?

17 A When compared to the present value of the revenue requirements for the MVP 18 portfolio, the 2017 MVP Triennial Review found that the portfolio produces total 19 benefits of between 2.2 to 3.4 times the costs on a present value basis, an increase 20 from the benefit cost ratio of 1.8 to 3.0 determined in the initial portfolio

³¹ Schedule JTS-2, Executive Summary.

justification.³² When these system-wide benefits were evaluated for their distribution 1 2 within the MISO footprint, benefits to Missouri amounted to between 1.5 and 2.6 times the portfolio costs to Local Resource Zone 5.³³ As stated earlier in this 3 4 testimony, Zone 5 is comprised of MISO member companies within Missouri. 5 What are the drivers for change in the benefit to cost ratios between the various Q. 6 reviews? 7 A. There are two primary drivers for the changes in value of the MVP portfolio: natural gas commodity prices and resource fleet changes. Stability in natural gas forecasting 8 9 has resulted in better alignment of impacts associated with the 2015 and 2016 limited 10 reviews and the 2017 MVP Triennial Review. 11 12 The second primary driver, generation fleet trends, is reflected in the most recent 13 modeling and captures the trend of the retirement of end-of-life thermal baseload 14 generation to a system that has a balance of new gas-fired capacity and renewable 15 resources. This projected change in fleet results in the long-term market economics of low marginal cost wind displacing natural-gas fired capacity versus displacing 16 17 coal-fired baseload capacity that was modeled earlier projections. This driver impacts

³² Benefit-to-cost ratios stated in my testimony for the original MVP review and the 2017 MVP Triennial Review are located in the schedules to my testimony, especially Section 1 ("Executive Summary") of the Multi Value Project Portfolio Report, Results and Analyses (January 10, 2012) (Schedule JTS-1) and the Executive Summary to the MTEP17 MVP Triennial Review (September 2017) (Schedule JTS-2).

³³ Schedule JTS-2, page 24 ("Benefit/Cost Ratio Ranges"). The MVPs are the subject of limited annual review in addition to the more comprehensive reviews that take place at three year intervals. The MTEP15 and MTEP16 benefit-to-cost ratios for Local Resource Zone 5 in the MVP limited review were both 1.6 to 2.0.

1		the high end of the benefit range that looks at the economic benefit on a 40 year
2		perspective that reflects the life of new assets and their impact on saving fuel costs for
3		gas-fired units.
4	Q.	Will the MVPs facilitate satisfaction of the RPS mandates across the MISO
5		footprint?
6	A.	Yes. The 2017 MVP Triennial Review confirmed the MVP portfolio's ability to
7		enable the renewable energy mandates of the states within the MISO footprint. The
8		review found that the MVP portfolio enables 53 million MWh of wind energy
9		annually through year 2026, an additional 12 million MWh from the MTEP 2011
10		forecast for 2026.
11	IX.	MARK TWAIN REGIONAL IMPACTS AND POLICIES
12	Q.	As a MVP under the MISO Tariff, how are the MVP costs recovered?
13	A.	MVP project costs are recovered from MISO transmission customers in the footprint
14		based on their pro-rata usage of energy and according to through-and-out schedules.
15		The methodology is described in Attachment MM of the MISO Tariff. ³⁴ The portion
16		of Missouri in the MISO footprint is obligated to pay a share of the MVP projects that
17		are or will be built, according to this energy usage.
18	Q.	What are the statuses of the MVPs in the MISO regional planning process?
19	A.	The MVP projects approved by the MISO Board of Directors are a portfolio of MVP
20		projects. Required state approvals have largely been obtained for siting the MVP
21		projects, with some under construction or already built.
22		

³⁴ See MISO Tariff, Attachment MM, Multi-Value Project Charge ("MVP Charge")

1 The remaining MVP approvals consist of the Mark Twain Project and a small portion 2 of the facilities planned for Wisconsin that is expected to be the subject of an 3 upcoming siting proceeding. The approval by the Iowa Utilities Board of the portion 4 of MVP 7 that connects with the Mark Twain facilities at the Missouri-Iowa border 5 was conditioned upon Missouri's approval of the Mark Twain Project.³⁵

6 **Q.**

What is the impact on the MISO regional plan if one of the projects that received MISO approval is not constructed as planned?

8 A. The purpose of the very extensive planning functions of MISO is to involve all 9 stakeholders in a process that will derive the most cost-efficient expansion plan that 10 will meet local and regional needs for reliability, optimize access to economic power 11 resources, and deliver other important values that benefit the ultimate consumer and 12 society. The MTEP amounts to the design of a very complex system that will serve 13 both short- and long-term needs of the bulk electrical grid in a coordinated manner. 14 The inability to construct a key element of the regional expansion plan, especially a 15 "backbone" element such as the one proposed in the Application that is designed for 16 both reliability and its economic attributes, could result in the loss of the economic 17 benefits provided by the project and the need to develop less optimal solutions to 18 reliability concerns. The revised plan would likely have a negative economic impact 19 to portions of ratepayers in the MISO footprint.

³⁵ In re: MidAmerican Energy Company and ITC Midwest LLC, Docket Nos. E-22269, E-22270, E-22271, and E-22279. Order Granting Petitions for Electric Franchises at 30 (August 18, 2017) ("approved, subject to MVP-7 approval by the Public Service Commission of Missouri"). This testimony updates the information contained in Figure 4-1 of the 2017 MVP Triennial Review.

Q. More specifically, what would be the system impacts if the Mark Twain project were not constructed as planned?

3 The result of not constructing the Mark Twain project would be the inability of the A. 4 existing transmission system to reliably deliver power in support of the existing 5 renewable energy mandates and the failure to realize the other MVP benefits identified earlier in my testimony. As described, the MISO analyses of the projects 6 7 identified numerous transmission facilities that will be loaded above safe operating 8 levels or below adequate voltage levels without the Mark Twain MVP. The overall 9 system would also be less secure, with additional voltage and transient stability 10 limitations. In addition, without the Mark Twain project, Missouri and the other 11 states in the MISO footprint would not receive the full set of economic benefits that is 12 provided by the MVP portfolio.

13 X. <u>CONCLUSION</u>

Q. Based upon the results of MISO planning studies, as well as your review and
analyses, how would you summarize your recommendations for the Project
facilities contained in the ATXI application?

A. The Project facilities proposed by ATXI would provide substantial reliability,
 economic, and public policy benefits to Missouri. These facilities also fit well as a
 component of the MISO regional plan for the continued development of a reliable and
 efficient regional transmission system.

21 Q. Does this conclude your prepared direct testimony?

A. Yes, it does.
BEFORE THE PUBLIC SERVICE COMMISSION OF THE STATE OF MISSOURI

)

)

)

)

)

)

In the Matter of the Application of Ameren Transmission Company of Illinois for a Certificate of Public Convenience and Necessity Authorizing it to Construct, Install, Own, Operate, Maintain and Otherwise Control and Manage a 345-kV Electric Transmission Line in from Palmyra, Missouri to the Iowa Border and an Associated Substation near Kirksville, Missouri

File No. EA-2017-0345

AFFIDAVIT OF JAMESON T. SMITH

STATE OF INDIANA)) ss COUNTY OF HAMILTON)

Jameson T. Smith, being first duly sworn on his oath, states:

1. My name is Jameson T. Smith. I work at Midcontinent Independent System Operator, Inc. ("MISO") as the Director of Economic and Policy Planning. My business address is Two Lakeway, 3860 N. Causeway Boulevard, Suite 442, Metairie, Louisiana 70002.

2. Attached hereto and made a part hereof for all purposes is my Direct Testimony on behalf of MISO, consisting of approximately 37 pages (including the cover page) and two attached schedules, having been prepared in written form for introduction into evidence in the above-captioned docket.

3. I have knowledge of the matters set forth therein. I hereby swear and affirm that my answers contained in the attached Direct Testimony to the questions therein propounded, including the attachments thereto, are true and accurate to the best of my knowledge, information and belief.

Jameson T. Smith

Subscribed and sworn before me this 20th day of September, 2017.

ipperdan Notary Public

My commission expires: April 15, 2019 "SEAL" ANGELA K. RIPPERDAN Notary Public, State of Indiana My Commission Expires 04/15/2019

Multi Value Project Portfolio

Results and Analyses

January 10, 2012

Schedule JTS-1 Page 1 of 90

Th

1	Executive Summary	1				
2	2 MISO Planning Approach					
3 3 3 3	Multi Value Project portfolio drivers.1Tariff requirements.2Transmission strategy.3Public policy needs.4Enhanced reliability and economic drivers	8 8 9 10 10				
4 4 4 4 4	MVP Portfolio Development and Scope .1 Development of the MVP Portfolio. .2 Wind siting strategy. .3 Incremental Generation Requirements. .4 Analyses Performed. .5 Stakeholder involvement.	11 16 18 19 21				
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	 Project justification and alternatives assessment Big Stone to Brookings County 345 kV Line Brookings County to Southeast Twin Cities 345 kV Line Lakefield Junction to Winnebago to Winnco to Burt area; Sheldon to Burt area to Vebster 345 kV Lines Winco to Lime Creek to Emery to Black Hawk to Hazleton 345 kV Line North LaCrosse to North Madison to Cardinal 345 kV Line Dubuque to Spring Green to Cardinal 345 kV Line Ellendale to Big Stone 345 kV Line Ottumwa to Adair to Palmyra Tap 345 kV Line Palmyra Tap to Quincy to Meredosia to Pawnee; Meredosia to Ipava 345kV Line Pawnee to Pana to Mt. Zion to Kansas to Sugar Creek 345kV Line MI Thumb Loop Expansion Reynolds to Greentown 765 kV line Pleasant Prairie to Zion Energy Center 345 kV line Sidney to Rising 345kV Line 	22 23 25 26 27 28 30 31 32 33 34 35 37 38 39 41				
6 6 6 6 7 7	Portfolio reliability analyses .1 Steady state .2 Transient stability .3 Voltage stability .4 Short circuit .4 Short circuit .1 Wind Curtailment .1 Wind Enabled	42 43 44 45 45 47 47				
8 8 8 8 8 8 8 8 8 8	Portfolio economic benefits analyses .1 Congestion and fuel savings .2 Operating reserves .3 System Planning Reserve Margin .4 Transmission line losses .5 Wind turbine investment .6 Transmission investment .7 Business case variables and impacts	49 49 55 57 61 64 66 67				

9 Qu	alitative and social benefits	70
9.1	Enhanced generation policy flexibility	70
9.2	Increased system robustness	71
9.3	Decreased natural gas risk	72
9.4	Decreased wind generation volatility	75
9.5	Local investment and job creation	76
9.6	Carbon reduction	77
10 F	Proposed Multi Value Project Portfolio Overview	79
10.1	Underbuild requirements	
10.2	Portfolio benefits and cost spread	82
10.3	Cost allocation	85
11 C	Conclusions and recommendations	

1 Executive Summary

MISO staff recommends that the Multi Value Project (MVP) portfolio described in this report be approved by the MISO Board of Directors for inclusion into Appendix A of MTEP11. This recommendation is based on the strong reliability, public policy and economic benefits of the portfolio that are distributed across the MISO footprint in a manner that is commensurate with the portfolio's costs. In short, the proposed portfolio will:

- Provide benefits in excess of its costs under all scenarios studied, with its benefit to cost ratio ranging from 1.8 to 3.0.
- Maintain system reliability by resolving reliability violations on approximately 650 elements for more than 6,700 system conditions and mitigating 31 system instability conditions.
- Enable 41 million MWh of wind energy per year to meet renewable energy mandates and goals.
- Provide an average annual value of \$1,279 million over the first 40 years of service, at an average annual revenue requirement of \$624 million.
- Support a variety of generation policies by using a set of energy zones which support wind, natural gas and other fuel sources.

This report summarizes the key reliability, public policy and economic benefits of the recommended MVP portfolio, as well as the scope of the analyses used to determine these benefits.

Figure 1.1: MVP portfolio¹

¹ MVP line routing shown throughout the report is for illustrative purposes only and do not represent the final line routes.

The recommended MVP portfolio includes the Brookings Project, conditionally approved in June 2011, and the Michigan Thumb Loop project, approved in August 2010. It also includes 15 additional projects which, when integrated into the transmission system, provide multiple kinds of benefits under all future scenarios studied².

	Project	State	Voltage (kV)	In Service Year	Cost (M, 2011\$) ³	
1	Big Stone–Brookings	SD	345	2017	\$191	
2	Brookings, SD–SE Twin Cities	MN/SD	345	2015	\$695	
3	Lakefield Jct. –Winnebago–Winco–Burt area & Sheldon–Burt area–Webster	MN/IA	345	2016	\$506	
4	Winco–Lime Creek–Emery–Black Hawk–Hazleton	IA	IA 345 2015		\$480	
5	N. LaCrosse–N. Madison–Cardinal & Dubuque Co. –Spring Green–Cardinal	WI	WI 345 2018/2020		\$714	
6	Ellendale-Big Stone	ND/SD	345	2019	\$261	
7	Adair-Ottumwa	IA/MO 345 2		2017	\$152	
8	Adair–Palmyra Tap	MO/IL	345	2018	\$98	
9	Palmyra Tap-Quincy-Merdosia-Ipava & Meredosia-Pawnee	IL	345	2016/2017	\$392	
10	Pawnee-Pana	IL	345	2018	\$88	
11	Pana–Mt. Zion–Kansas–Sugar Creek	IL/IN	345	2018/2019	\$284	
12	Reynolds-Burr Oak-Hiple	IN	345	2019	\$271	
13	Michigan Thumb Loop Expansion	МІ	345	2015	\$510	
14	Reynolds-Greentown	IN	765	2018	\$245	
15	Pleasant Prairie–Zion Energy Center	WI/IL	345	2014	\$26	
16	Fargo-Galesburg–Oak Grove	IL	345	2018	\$193	
17	Sidney–Rising	IL	345	2016	\$90	
Total						

Table 1.1: MVP portfolio⁴

 ² More information on these scenarios may be found in the business case description.
 ³ Costs shown are inclusive of transmission underbuild upgrades and upgrades driven by short circuit requirements.

⁴ In-service dates represent the best information available at the time of publication. These dates may shift as the projects progress through the state regulatory processes.

Public policy decisions over the last decade have driven changes in how the transmission system is planned. The recent adoption of Renewable Portfolio Standards (RPS) and clean energy goals across the MISO footprint have driven the need for a more regional and robust transmission system to deliver renewable resources from often remote renewable energy generators to load centers.

Figure 1.2: Renewable energy mandates and clean energy goals within the MISO footprint^{5,6}

Beginning with the MTEP03 Exploratory Studies, MISO and stakeholders began to explore how to best provide a value added regional planning process to complement the local planning of MISO members.

These explorations continued in later MTEP cycles and in specific targeted studies. In 2008, MISO, with the assistance of state regulators and industry stakeholders such as the Midwest Governor's Association (MGA), the Upper Midwest Transmission Development Initiative (UMTDI) and the Organization of MISO States (OMS), began the Regional Generation Outlet Study (RGOS) to identify a set of value based transmission projects necessary to enable Load Serving Entities (LSEs) to meet their RPS mandates.

The goal of the RGOS analysis was to design transmission portfolios that would enable RPS mandates to be met at the lowest delivered wholesale energy cost. The cost calculation combined the expenses of the new transmission portfolios with the capital costs of the new renewable generation, balancing The recent adoption of Renewable Portfolio Standards (RPS) across the MISO footprint have driven the need for a more regional and robust transmission system to deliver renewable resources from often remote renewable energy generators to load centers.

⁵ Existing and planned wind as included in the MVP Portfolio analyses. State RPS mandates and goals include all policies signed into law by June 1, 2011.

⁶ The higher number for Iowa's state RPS mandates and goals reflects the wind online rather than a statutory requirement.

the trade offs of a lower transmission investment to deliver wind from low wind availability areas, typically closer to large load centers; against a larger transmission investment to deliver wind from higher wind availability areas, typically located further from load centers.

While much consideration was given to wind capacity factors when developing the energy zones utilized in the RGOS and MVP portfolio analyses, the zones were chosen with consideration of more factors than wind capacity. Existing infrastructure, such as transmission and natural gas pipelines, also influenced the selection of the zones. As such, although the energy zones were created to serve the The zones were chosen with consideration of more factors than wind capacity. Existing infrastructure, such as transmission and natural gas pipelines, also influenced the selection of zones.

renewable generation mandates, they could be used for a variety of different generation types, to serve various future generation policies. Figure 1.3 depicts the correlation between the natural gas pipelines in the MISO footprint and the energy zones.

Figure 1.3: RGOS and MVP Analyses Incremental Energy Zones and natural gas pipelines

Executive Summary

Common elements between the RGOS results and previous reliability, economic and generation interconnection analyses were identified to create the 2011 candidate MVP portfolio. This portfolio represented a set of "no regrets" projects which were believed to provide multiple kinds of reliability and

The output from the study, a recommended MVP portfolio, will reduce the wholesale cost of energy delivery for the consumer by enabling the delivery of low cost generation to load, reducing congestion costs and increasing system reliability, regardless of the future generation mix. economic benefits under all alternate futures studied.

The 2011 MVP portfolio analysis hypothesized that this set of candidate projects will create a high value transmission portfolio, enabling MISO states to meet their near term RPS mandates. The study evaluated the candidate MVP portfolio against the MVP cost allocation criteria to prove or disprove this hypothesis, as well as to confirm that the benefits of the portfolio would be widely distributed across the footprint. The output from the study, a recommended MVP portfolio, will reduce the wholesale cost of energy delivery for the consumer by enabling the delivery of low cost generation to load, reducing congestion costs and increasing system reliability, regardless of the future generation mix.

Over the course of the MVP portfolio analysis, the candidate MVP portfolio was refined into the portfolio that is now

recommended to the MISO Board of Directors for approval. The portfolio was refined to ensure that the portfolio as a group and each project contained within it was justified under the MVP criteria, discussed below, and to ensure that the portfolio benefit to cost ratio was optimized.

Figure 1.4: Candidate versus Recommended MVP Portfolios

The recommended MVP portfolio will enable the delivery of the renewable energy required by public policy mandates, in a manner more reliable and economic than it would be without the associated

The benefits created by the recommended MVP portfolio are spread across the system, in a manner commensurate with its costs. transmission upgrades. Specifically, the portfolio mitigates approximately 650 reliability constraints under 6,700 different transmission outage conditions, for steady state and transient conditions under both peak and shoulder load scenarios. Some of these conditions could be severe enough to cause cascading outages on the system. By mitigating these constraints, approximately 41 million MWh per year of renewable generation can be delivered to serve the MISO state renewable portfolio mandates.

Under all future policy scenarios studied, the recommended MVP

portfolio delivers widespread regional benefits to the transmission system. For example, based on scenarios that did not consider new energy policies, the benefits of the proposed portfolio were shown to range from 1.8 to 3.0 times its total cost. These benefits are spread across the system, in a manner commensurate with their costs, as demonstrated in Figure 1.5.

Figure 1.5: Recommended MVP portfolio benefits spread

Taking into account the significant economic value created by the portfolio, the distribution of these value, and the ability of the portfolio to meet MVP criterion 1 through its reliability and public policy benefits, MISO staff recommended the 2011 MVP portfolio to the MISO Board of Directors for their review and approval.

2 MISO Planning Approach

The goal of the MISO planning process is to develop a comprehensive expansion plan that reflects a fully integrated view of project value inclusive of reliability, market efficiency, public policy and other value drivers across all planning horizons. This process is guided by a set of principles established by the MISO Board of Directors, adopted on August 18, 2005. The principles were created in an effort to improve and guide transmission investment in the region and to furnish an element of strategic direction to the MISO transmission planning process. These principles, modified and approved by the MISO Board of Directors System Planning Committee on May 16, 2011, are:

- **Guiding Principle 1:** Make the benefits of an economically efficient energy market available to customers by providing access to the lowest electric energy costs.
- **Guiding Principle 2:** Provide a transmission infrastructure that safeguards local and regional reliability and supports interconnection-wide reliability.
- **Guiding Principle 3:** Support state and federal energy policy objectives by planning for access to a changing resource mix.
- **Guiding Principle 4:** Provide an appropriate cost mechanism that ensures the realization of benefits over time is commensurate with the allocation of costs.
- **Guiding Principle 5:** Develop transmission system scenario models and make them available to state and federal energy policy makers to provide context and inform the choices they face.

A number of conditions must be met to build longer term transmission able to support future generation growth and accommodate new energy policies. These conditions are intertwined with the planning principles put forth by the MISO Board of Directors and supported by an integrated, inclusive transmission planning approach. The conditions that must be met to build transmission include:

- A robust business case that demonstrates value sufficient to support the construction of the transmission project.
- Increased consensus on current and future energy policies.
- A regional tariff that matches who benefits with who pays over time.
- Cost recovery mechanisms that reduce financial risk.

3 Multi Value Project portfolio drivers

The 2011 MVP portfolio analysis was based on the need to economically and reliably help states meet their public policy needs. The study identified a regional transmission portfolio that will enable the MISO Load Serving Entities (LSEs) to meet their Renewable Portfolio Standards (RPS). The analyses and their results describe a robust business case for the portfolio. This business case demonstrates that not only will the recommended MVP portfolio reliably enable Renewable Portfolio Standards to be met, but it will do so in a manner where its economic benefits exceed its costs.

While the study focused upon the RPS requirements, the transmission portfolio will ultimately have widespread benefits beyond the delivery of wind and other renewable energy. It will enhance system reliability and efficiency under a variety of different generation build outs. It will also open markets to competition, reducing congestion and spreading the benefits of low cost generation across the MISO footprint. The MVP portfolio analysis focused on identifying and increasing the benefits of the transmission portfolio, including the reliability, economic and public policy drivers.

3.1 Tariff requirements

The MVP portfolio analysis and the recommendation were premised on the MVP criteria described in Attachment FF of the MISO Tariff and shown below.

Criterion 1

A Multi Value Project must be developed through the transmission expansion planning process to enable the transmission system to deliver energy reliably and economically in support of documented energy policy mandates or laws enacted or adopted through state or federal legislation or regulatory requirement. These laws must directly or indirectly govern the minimum or maximum amount of energy that can be generated. The MVP must be shown to enable the transmission system to deliver such energy in a manner that is more reliable and/or more economic than it otherwise would be without the transmission upgrade.

Criterion 2

A Multi Value Project must provide multiple types of economic value across multiple pricing zones with a Total MVP benefit to cost ratio of 1.0 or higher, where the total MVP benefit to cost ratio is described in Section II.C.7 of Attachment FF to the MISO Tariff. The reduction of production costs and the associated reduction of LMPs from a transmission congestion relief project are not additive and are considered a single type of economic value.

Criterion 3

A Multi Value Project must address at least one transmission issue associated with a projected violation of a NERC or Regional Entity standard and at least one economic based transmission issue that provides economic value across multiple pricing zones. The project must generate total financially quantifiable benefits, including quantifiable reliability benefits, in excess of the total project costs based on the definition of financial benefits and Project Costs provided in Section II.C.7 of Attachment FF.

The MVP cost allocation criteria requires evaluation of the portfolio on a reliability, economic and energy delivery basis. The scope of the analysis was designed to demonstrate this value, both on a project and portfolio basis. The projects in the MVP portfolio were evaluated against MVP criteria 1 and their ability to reliably enable the renewable energy mandates of the MISO states was quantified.

In addition, the Tariff identifies specific types of economic value which can be provided by Multi Value Projects. These values are:

- Production cost savings where production costs include generator startup, hourly generator no-load, generator energy and generator Operating Reserve costs. Production cost savings can be realized through reductions in both transmission congestion and transmission energy losses. Productions cost savings can also be realized through reductions in Operating Reserve requirements within Reserve Zones and, in some cases, reductions in overall Operating Reserve requirements for the Transmission Provider.
- Capacity losses savings where capacity losses represent the amount of capacity required to serve transmission losses during the system peak hour including associated planning reserve.
- Capacity savings due to reductions in the overall Planning Reserve Margins resulting from transmission expansion.
- Long-term cost savings realized by Transmission Customers by accelerating a long-term project start date in lieu of implementing a short-term project in the interim and/or long-term cost savings realized by Transmission Customers by deferring or eliminating the need to perform one or more projects in the future.
- Any other financially quantifiable benefit to Transmission Customers resulting from an enhancement to the transmission system and related to the provisions of Transmission Service.

The full proposed portfolio was evaluated against the benefits defined in the Tariff for MVPs. In addition to the benefits described above, the operating reserve and wind siting benefits for the portfolio were quantified, as allowed under the last Tariff defined economic value. These benefits are described more fully in the economic benefit section later in the report.

3.2 Transmission strategy

A transmission strategy addressing both local needs and regional drivers allows the MISO system to realize significant economic and reliability benefits. Regional transmission, such as the transmission in the recommended MVP portfolio, increases reliability in the MISO footprint and opens the market to increased competition by providing access to low cost generation, regardless of fuel type. Development of a strong regional transmission backbone is analogous to the development of the U.S. Interstate Highway System. While developed for specific national security justifications, the system has realized significant additional benefits in subsequent years. Similarly, the recommended MVP portfolio will create reliability, economic and public policy benefits reaching beyond the immediate needs exhibited in this analysis.

The overall goal for the MVP portfolio analysis was to design a transmission portfolio which takes advantage of the linkages between local and regional reliability and economic benefits to bring value to the entire MISO system. The portfolio was designed using reliability and economic analyses, applying several futures scenarios to determine the robustness of the designed portfolio under a number of future potential energy policies.

3.3 Public policy needs

Twelve of thirteen states in the MISO footprint have enacted either RPS requirements or renewable energy goals which require or recommend varying amounts of load be served with energy from renewable energy resources. The MVP portfolio analysis focused on the transmission necessary to economically and reliably meet the state RPS mandates. Figure 3.1 provides additional details on these renewable energy requirements and goals.

Figure 3.1: RPS mandates and goals within the MISO footprint⁷

RPS mandates vary from state to state in their specific requirement details and implementation timing, but they generally start in about 2010 and are indexed to increase with load growth. While state laws support a number of different types of renewable resources, and multiple types of renewable resources will play a role in meeting state RPS mandates, the majority of renewable energy resources installed in the foreseeable future will likely focus on harnessing the abundant

wind resources throughout the MISO footprint.

3.4 Enhanced reliability and economic drivers

The ultimate goal of the MISO planning process is enable the reliable delivery of energy to load at the lowest possible cost. This requires a strategy premised upon a low cost approach to transmission and generation investment. This premise supports the overall constructability of the transmission portfolio, while reducing financial risk associated with overbuilding the system.

The goal of the MVP portfolio analysis was to design a transmission portfolio which takes advantage of the linkages between local and regional reliability and economic benefits to bring value to the entire MISO system.

⁷ The higher number for Iowa's state RPS mandates and goals reflects the wind online rather than a statutory requirement.

4 MVP Portfolio Development and Scope

The MVP portfolio was developed by considering regional system enhancements, from previous MISO analyses, that could potentially provide multiple types of value, including enhanced reliability, reduced congestion, increased market efficiency, reduced real power losses and the deferral of otherwise needed capital investments in transmission.

This portfolio was also based upon a set of energy zones, developed to provide a low-cost approach to wind siting when both generation and transmission capital costs are considered. Incremental wind necessary to meet the 2021 or 2026 renewable mandates for MISO stakeholders was added to these zones, as described in the following sections.

Finally, the MVP portfolio was intensively evaluated to ensure its composite projects, and the portfolio in total, are justified under the MVP cost allocation criterion. This analysis included an evaluation of each individual project justification against MVP criterion 1. It also included an evaluation of the full portfolio, both on a reliability and economic basis.

4.1 Development of the MVP Portfolio

MISO began to investigate the transmission required to integrate wind and provide the best value to consumers in 2002. The analyses continued through subsequent MTEP cycles, with exploratory and energy market analyses. As the demand for renewable energy grew, driven largely by an increasing level of renewable energy mandates or goals, additional regional studies were conducted to determine the transmission necessary to support these policy objectives. These studies included the Joint and Coordinated System Plan (JCSP), the Regional Generation Outlet Studies (RGOS), and analyses by the Organization of MISO States (OMS) Cost Allocation and Regional Planning (CARP) group.

Figure 4.1: Summary of prior study input into recommended MVP portfolio

As analyses continued, the policy and economic drivers behind a regional transmission plan continued to grow. This growth was partly fueled by the development of the MISO energy and operating reserve market, which allows for regional transmission to provide regional benefits through increasing market efficiency, enabling low cost generation to be delivered to load. Simultaneously, an increase in state energy policy mandates drove the need for a robust regional transmission network, capable of responding to legislated changes in generation requirements.

It is worth noting that, although individual projects were identified beginning in MTEP03, these projects were not studied only in the year they were first identified. Subsequent MTEP analyses built on the analyses of previous years and culminated in the final recommendation of the recommended MVP portfolio.

4.1.1 MTEP03 high wind generation development scenario

In the first MISO Transmission Expansion Plan, MTEP03, the MISO evaluated at a high level the potential economic benefits of large regional transmission projects under various postulated generation development scenarios. MTEP 03 evaluated a dozen such plans based on analysis of the base planned transmission system, and its ability to accommodate substantial new additions of coal, wind and gas generation based on the interconnection queues at the time. The transmission and generation scenario analysis showed generally that there was significant potential for the right regional transmission to result in substantial reductions in marginal energy costs, particularly if that transmission was coupled with introduction of low cost coal and wind energy resources.

More specifically, MTEP03 included a high wind development scenario, which included approximately 8,600 to 10,000 MW of new wind development. This scenario was used to evaluate several transmission scenarios on a conceptual level, including a set of high voltage lines in Iowa, running from Lakefield to Adams in southern Minnesota, then looping back to tap the line from Raun to Lakefield line in Iowa.

Figure 4.2: Iowa transmission identified in MTEP03

This line was studied in subsequent MTEP cycles, and it eventually led to the identification and incorporation of several lowa lines into the MVP portfolio. MTEP03 also identified a potential upgrade of the Sidney-Rising line, as a conceptual transmission project.

4.1.2 MTEP05

MTEP05 continued the exploratory transmission analysis began in MTEP03, with two studies which focused in the area around the Dakotas and Northern Minnesota, along with the area around Iowa and Southern Minnesota. It was expected that high voltage transmission projects in these areas would provide additional access to existing base load generation, as well as future wind investment.

Figure 4.3: Northwest Transmission Option 2

The Northwest study identified the need for at least one, and potentially several, new transmission corridors between the Dakotas and to the Twin Cities of Minnesota. These lines were further studied through the MISO stakeholder CapX 2020 study effort, and they formed the basis of several lines included in the recommended MVP portfolio.

Figure 4.4: Iowa-Minnesota Transmission Scenario 2

The Iowa-Minnesota study further reinforced the need for transmission through southern Minnesota and Iowa. It also identified the need for transmission extending from Minnesota to the Spring Green area in Wisconsin, then from the Spring Green area southwest to the Dubuque area.

4.1.3 MTEP06

In MTEP06, the Vision Exploratory Study modeled scenario which included 20% wind energy for Minnesota and 10% wind energy for the other MISO states, for a total of 16 GW. This hypothetical generation scenario was used to evaluate additional high voltage transmission needs. Although this study focused on a 765 kV solution, it determined that transmission would be needed along many of the corridors identified in prior studies. Additionally, it identified that a transmission path would be required across south-central Illinois to efficiently deliver wind energy to load.

Figure 4.5: Proposed Vision Lines

4.1.4 Regional Generation Outlet Study (RGOS)

Beginning in MTEP09, MISO began the Regional Generation Outlet Study (RGOS). This study was intended, at a high level, to identify the transmission required to support the renewable mandates and goals of the MISO states, while minimizing the cost of energy delivered to the consumers. The study was conducted in two phases: Phase I focused on the western portion of the footprint, while Phase II focused on the full footprint.

Figure 4.6: Regional Generator Outlet Study Input into MVP Portfolio

At the conclusion of the RGOS analyses, a set of three alternative expansion portfolios were identified. These portfolios, designed to meet the renewable energy mandates and goals of the full load for all the states in the MISO footprint, ranged in cost from \$16 to \$22 billion. They included transmission identified through the previous MTEP analyses, as highlighted earlier. Common transmission projects or corridors were identified between the three scenarios, and these projects formed transmission recommendations for the initial candidate MVP portfolio.

4.1.5 Candidate MVP Portfolio

The candidate MVP portfolio was created based on stakeholder feedback, as well as input from the analyses described in section 4.1. The portfolio was designed to meet the renewable energy mandates of all MISO load, and the projects in the portfolio were hypothesized to provide widespread benefits across the footprint. The projects selected as candidates for possible inclusion in the broader portfolio were then intensively evaluated in the MVP portfolio analysis to ensure they were justified and contributed to the portfolio business case.

Figure 4.7: Initial Candidate MVP portfolio

4.2 Wind siting strategy

Key assumptions of the MVP portfolio study revolved around the amount and location of wind energy zones modeled within the study footprint. This energy zone development was based on stakeholder surveys focusing on expected renewable energy needs over the next 20 years and how much of that need is expected to be met with wind generation.

During the RGOS energy zone development, MISO staff evaluated multiple energy zone configurations to meet renewable energy requirements. In this process, study participants identified capital costs associated with generation capacity as well as capital costs associated with indicative transmission that would help deliver the energy to the system. It was determined that the most expensive energy delivery options were those options relying: 1) solely on the best regional wind source areas (with higher amounts

of transmission needed) or 2) those options relying solely on the best local wind source areas (with higher amounts of generation capital required).

Figure 4.8: Generation and Transmission Capacity, by Energy Zone Location

As a result of RGOS energy zone development efforts as well as interaction with regulatory bodies such as the Upper Midwest Transmission Development Initiative (UMTDI) and various state agencies within the MISO, a set of energy zones was selected. These zones represent the intention of state governments to source some renewable energy locally while also using the higher wind potential areas within the MISO market footprint. Zone selection was based on a number of potential locations developed by MISO utilizing mesoscale wind data supplied by the National Renewable Energy Laboratory (NREL) of the US Department of Energy. The analysis found wind zones distributed across the region resulted in the best method to meet renewable energy requirements at the least overall system cost.

Figure 4.9:: Energy Zone Locations

4.3 Incremental Generation Requirements

Once the location of the incremental wind generation was determined, through the low cost wind siting approach described above, additional analyses were required to determine how much incremental generation will be required to meet the renewable energy mandates of the MISO stakeholders. These analyses are based upon the 2009 retail sales for each area, as provided by the U.S. Energy Information Administration, a growth rate of 1.125% annually, and the specifics of each state's public policy requirements. Details on each state's public policy requirements may be found in Appendix A, while the calculations used to determine the total energy requirements may be found in Appendix B.

	2021 RPS Requirements	2026 RPS Requirements
	(MWh)	(MWh)
IL - Ameren Illinois	3,072,047	4,274,713
IL - Alternative Retail Energy Suppliers in Ameren Illinois	2,016,516	3,046,465
MI - Total State of Michigan less AEP ⁸	8,383,843	8,383,843
MN - Xcel Energy	10,535,661	11,141,777
MN - Total State of Minnesota less Xcel Energy	8,050,396	10,641,919
MO - Ameren Missouri	5,825,834	6,160,994
MO - Columbia Water and Light	122,809	194,812
MT - Montana-Dakota Utilities	113,581	120,115
OH - Duke Ohio ⁹	2,099,315	2,921,169
WI - Total State of Wisconsin	7,682,829	8,124,821
TOTAL	47,902,831	55,010,629

Table 4.1: State Renewable Energy Mandates

Incremental wind generation was added to the model to satisfy these mandated needs. The amount of incremental generation for each zone was based on the capacity factor, the planned and proposed generation, and existing wind with power purchase agreements to serve non-MISO load ascribed to each zone. It was also based on a total wind buildout following the distributed, low-cost wind siting approach described in section 4.2.

Wind Zone	2021 Incremental Wind (MW)	2026 Incremental Wind (MW)	Wind Zone	2021 Incremental Wind (MW)	2026 Incremental Wind (MW)
IA-B	300	474	MN-L	0	0
IA-F	292	462	MO-A	356	356
IA-G	271	427	MO-C	500	500
IA-H	215	339	MT-A	136	214
IA-I	127	201	ND-G	199	313
IA-J	18	28	ND-K	164	259
IL-F	400	415	ND-M	59	94
IL-K	449	449	OH-A	30	42
IN-E	145	229	OH-B	30	42

⁸ RPS requirement must be sourced entirely within Michigan

⁹ Half of RPS requirement must be sourced from within Ohio.

Wind Zone	2021 Incremental Wind (MW)	2026 Incremental Wind (MW)	Wind Zone	2021 Incremental Wind (MW)	2026 Incremental Wind (MW)
IN-K	194	306	OH-C	30	42
MI-A	0	0	OH-D	30	42
MI-B	601	601	OH-E	30	42
MI-C	549	549	OH-F	30	42
MI-D	442	442	OH-I	30	42
MI-E	601	601	SD-H	300	474
MI-F	601	601	SD-J	292	461
MI-I	303	303	SD-L	300	474
MN-B	75	119	WI-B	234	370
MN-E	0	0	WI-D	257	405
MN-H	0	0	WI-F	0	0
MN-K	175	277			

Table 4.2: Incremental Generation Added to the MVP Portfolio Analysis Model

4.4 Analyses Performed

The MVP portfolio analysis combined the MISO Board of Director planning principles and the conditions precedent to transmission construction to develop a transmission portfolio that meets public policy, economic and reliability requirements. The analysis built a robust business case for the recommended transmission, using the newly created MVP cost allocation methodology approved by FERC. The candidate transmission was tested against a variety of potential policy futures. This maximized the value of the transmission portfolio and reduced potential negative risks associated with its construction due to changes in future demand and energy growth. The output of the study was a justified portfolio of recommended MVPs for inclusion in MTEP11 Appendix A and, if approved by the MISO Board of Directors, subsequent construction.

The MVP cost allocation criteria requires the evaluation of the portfolio on a reliability, economic and energy delivery basis. The analyses were designed to demonstrate this value, both on a project and portfolio basis. To this end, the MVP portfolio analysis included the studies and output shown in Table 4.3.

These analyses focused on three main areas. The project valuation analyses focused on justifying each individual MVP against the MVP criteria. The portfolio valuation analyses determined the benefits of the portfolio in aggregate, quantifying additional reliability and economic benefits. Finally, a series of system performance analyses were performed to ensure that the system reliability will be maintained with the recommended MVP portfolio in service.

Analysis Type	Analysis Output	Purpose
Steady state	List of thermal overloads mitigated by each project in the MVP portfolio	
Alternatives	Relative value of each MVP against a stakeholder or MISO identified alternative Can include steady state and production cost analyses	Project valuation
Underbuild requirements	Incremental transmission required to mitigate constraints created by the addition of the recommended MVP portfolio	System performance
Short circuit	Incremental upgrades required to mitigate any short circuit / breaker duty violations	System performance
Stability	List of violations mitigated by the recommended MVP portfolio Includes both transient and voltage stability analysis	System performance Portfolio valuation
Generation enabled	Wind enabled by the MVP portfolio	Portfolio valuation
Production cost	Adjusted Production Cost (APC) benefits of the entire MVP portfolio	Portfolio valuation
Robustness testing	Quantification of MVP portfolio benefits under various policy futures or transmission conditions	Portfolio valuation
Operating reserves Impact	Impact of the MVP portfolio on existing operating reserve zones and quantification of this benefit	Portfolio valuation
Planning Reserve Margin (PRM) benefits	Capacity savings due to reductions in the system-wide Planning Reserve Margin caused by the addition of the MVP portfolio to the transmission system	Portfolio valuation
Transmission loss reductions	Capacity losses savings caused by the addition of the MVP portfolio to the transmission system, where capacity losses represent the amount of capacity required to serve transmission losses during the system peak hour	Portfolio valuation
Wind generation capital investment	Quantification of the incremental wind generator capital cost savings enabled by the wind siting methodology supported by the MVP portfolio	Portfolio valuation
Avoided capital investment (transmission)	Future baseline transmission investment that may be avoided due to the installation of the MVP portfolio	Portfolio valuation

Table 4.3: MVP Portfolio Analyses and Output

4.5 Stakeholder involvement

Stakeholders reviewed and contributed to the development of the recommended MVP portfolio throughout the study process. A Technical Study Task Force (TSTF), composed of regulators, transmission owners, renewable energy developers, and market participants, met at least monthly with MISO engineers to provide input, feedback, and guidance throughout the MVP study processes. Also, regular updates were given to the MISO Planning Advisory Committee (PAC) and Planning Subcommittee (PSC). Finally, all study results were available for stakeholder review Feedback or analyses requested throughout the study process were incorporated into the MVP portfolio scope.

Figure 4.10: Regional Planning Stakeholder Meetings, 2008 - 2011

5 Project justification and alternatives assessment

Each project in the MVP portfolio was analyzed to ensure that the project is justified against MVP cost allocation criterion 1, and to determine if any relevant alternatives exist to the proposed projects. The projects listed below constitute the final projects, which are recommended to the MISO Board of Directors.

5.1 Big Stone to Brookings County 345 kV Line

Figure 5.1: Big Stone to Brookings County

Project(s): 2221

Transmission Owner(s): OTP, XEL

Project Description: This project creates a new 345 kV path on the border of South Dakota and Minnesota by connecting XEL's Brookings County and OTP's Big Stone. Approximately 69 miles of new 345 kV transmission will be installed between these two substations along with a new 345 kV terminal at Big Stone and two 345/230 kV, 672 MVA transformers. The total estimated cost of this project is \$191 million¹⁰. The expected in service date for this project is December 2017.

Project Justification: The new 345 kV outlet from Big Stone removes overloads on the 230 kV paths from Big Stone to Blair and Hankinson to Wahpeton along with 115 kV paths from Johnson to Morris , Big Stone to Highway 12 to Ortonville, Pipestone to Buffalo Ridge and Canby to Granite Falls. The overloaded Watertown 345/230 kV is also alleviated. Along with project 2220, this project reliably moves mandated renewable energy from the Dakotas to major 345 kV transmission hubs and load centers.

Alternatives Considered: An alternative to build a new 345 kV from Big Stone to Canby to Granite Falls to Minnesota Valley and rebuild the 230 kV or build a new 345 kV to Morris could provide an

¹⁰ In 2011 dollars.

alternative outlet for Big Stone wind. The cost of this alternative is higher than the 345 kV path to Brookings County.

Figure 5.2: Brookings County to Southeast Twin Cities

Project(s): 1203

Transmission Owner(s): XEL, GRE

Project Description:

This project creates a new 345 kV path through southern Minnesota, by connecting XEL's Brookings County substation to the Twin Cities. Single circuit 345 kV transmission will be constructed from Brookings County to Lyon County, from Helena to Lake Marion to Hampton Corner, and from Lyon County to Hazel Creek to Minnesota Valley. The Hazel Creek to Minnesota Valley section will be operated at 230 kV initially. Double circuit 345 kV transmission will be constructed from Lyon Count to Cedar Mountain to Helena. A 115 kV line will be built between the new Cedar Mountain and the existing Franklin substations. The project includes one 345/230 kV, 336 MVA transformer at Hazel Creek, three 345/115 kV, 448 MVA transformers at Lyon County, Lake Marion and Cedar Mountain, one upgraded 115/69 kV, 140 MVA transformer at Lake Marion and two upgraded 115/69 kV, 70 MVA transformers at Franklin. A new breaker and deadend structure is planned at Lake Marion and the Arlington to Green Isle 69 kV line will be upgraded to 477 ACSR. The project adds a total of 351 miles of new 345 kV, 5 miles of new 115 kV and 5.8 miles of rebuilt 69 kV lines. The total estimated cost of this project is \$695 million¹¹. The expected in service dates for these projects are:

- June 2013 (Cedar Mountain 345/115 kV transformer)
- August 2013 (Cedar Mountain to Helena 345 kV double circuit line and Arlington to Green Isle 69 kV rebuild)

¹¹ In 2011 dollars

- October 2013 (Lyon County 345/115 kV transformer)
- November 2013 (Lyon County to Cedar Mountain 345 kV double circuit line)
- January 2014 (Franklin 115/69 kV transformers)
- February 2014 (Cedar Mountain to Franklin 115 kV line)
- March 2014 (Lake Marion 345/115 kV and 115/69 kV transformers and station work)
- April 2014 (Helena to Lake Marion 345 kV line)
- June 2014 (Lake Marion to Hampton Corner 345 kV line)
- January 2015 (Brookings to Lyon County 345 kV line and Hazel Creek 345/230 kV transformer)
- February 2015 (Lyon County to Hazel Creek to Minnesota Valley 345 kV line)

Project Justification:

Without the Brookings County to Twin Cities 345 kV line, the loss of Split Rock to White 345 kV leaves only the 230kV system to feed load to the East. This overloads the Watertown 345/230 kV transformer without the parallel 345 kV path from Brookings County. Not having the project also impacts the 115 kV network in southern Minnesota which is connected on both sides by 230 kV. The loss of either 230kV source causes multiple overloads in the surrounding 115 kV network without this project. The loss of any segment of the Wilmarth-Helena-Blue Lake 345 kV line in southeast Minnesota leads to overloads on the underlying 115 kV network. Without this project, the power flowing west to east is forced through the 115 kV system, overloading the underlying 115 kV lines. The Wilmarth to Eastwood and Wilmarth to Swan Lake 115 kV lines are overloaded without the additional 345kV support to the north that is included with project 1203. At the Minnesota/Wisconsin interface, the loss of 345 kV lines at Blue Lake, Prairie Island, Red Rock, Coon Creek and Chisago substations overload the Prairie Island 345/161 kV transformer, particularly for any NERC Category C5 outages involving lines between the aforementioned substations. The Brookings County to Twin Cities project would bring an additional 345 kV source into this area to reduce loading along the path into Wisconsin. There are also 115 kV overloads in this area which are mitigated by this project.

Alternatives Considered:

With the existing 345 kV outlets out of Brookings County thermally constrained and with most of the 230 and 115 kV paths between Brookings County and the Twin Cities overloaded, mitigating all these constraints through underlying line rebuilds would be infeasible and costlier compared to this project.

5.3 Lakefield Junction to Winnebago to Winnco to Burt area; Sheldon to Burt area to Webster 345 kV Lines

Figure 5.3: Lakefield Jct to Winnebago to Winnco to Burt area; Sheldon to Burt area to Webster

Project(s): 3205

Transmission Owner(s): MEC, ITCM

Project Description:

Designed to connect with project 3213, this project creates a double circuit 345/161 kV path through the border of Minnesota and Iowa. New 345 kV transmission will be built from Lakefield Junction to Winnebago to Winnco to Burt and from Sheldon to Burt to Webster. Rebuilt 161 kV transmission will be on the same towers and go from Lakefield to Fox Lake to Rutland to Winnebago to Winnco and Wisdom to Osgood to Burt to Hope to Webster. Winnebago, Winnco, Sheldon and Burt are all new 345 kV stations. Sheldon will be a tap on the existing Raun to Lakefield 345 kV line. A 345/161 kV, 450 MVA transformer will be installed at Winnebago. This project adds 218 miles of new 345 kV and 92 miles of rebuilt 161 kV transmission. The total estimated cost of this project is \$506 million¹². The expected in service dates for these projects are:

- December 2015 (All Lakefield Junction to Burt work)
- December 2016 (All Sheldon to Webster work)

Project Justification:

The new 345 kV path through southern Minnesota and northern Iowa effectively mitigates the Fox Lake – Rutland – Winnebago 161 kV constraint. Existing wind in the Winnebago and Wisdom areas are benefitted by 345 kV transmission moving generation out of these constrained areas. Working in tandem with project 3213, this project reliably moves mandated renewable energy from western and

¹² In 2011 dollars

northern Iowa along with existing wind at the Winnebago, Wisdom and Lime Creek/Emery areas to major 345 kV transmission hubs.

Alternatives Considered:

An lowa alternative of Lakefield Junction to Mitchell County and Sheldon to Burt to Webster to Black Hawk to Hazleton 345 kV was analyzed but was not effective in collecting Lime Creek/Emery area wind or lowering congestion on the Mitchell County to Hazleton 345 kV line. It had similar cost to the combined lowa projects 3205 and 3213.

5.4 Winco to Lime Creek to Emery to Black Hawk to Hazleton 345 kV Line

Figure 5.4: Winnco to Lime Creek to Emery to Black Hawk to Hazleton 345 kV line

Project(s): 3213

Transmission Owner(s): MEC, ITCM

Project Description:

Designed to connect with project 3205, this project creates a double circuit 345/161 kV path through northern Iowa. New 345 kV transmission will be built from the new Winnco substation to Lime Creek to Emery to Black Hawk to Hazleton. Rebuilt 161 kV transmission will be on the same towers as the 345 kV and will go from Lime Creek to Emery to Hampton to Franklin to Union Tap to Black Hawk to Hazleton. A 345/161 kV, 450 MVA transformer will be installed at Lime Creek, Emery and Black Hawk. This project adds 206 miles of new 345 kV, 23 miles of new 161 and 149 miles of rebuilt 161 kV transmission. The total estimated cost of this project is \$480 million¹³. The expected in service date of the project is December 2015.

Project Justification:

¹³ In 2011 dollars

The new 345 kV path through Iowa mitigates constraints seen on the Lime Creek – Emery – Floyd – Bremer – Black Hawk 161 kV line. The 345/161 kV transformers at Lime Creek and Emery are effectively acting as step-up transformers for wind and lowering congestion on the lower voltages. The additional 345 kV path into Hazleton significantly increases the transfer capability of the Mitchell County – Hazleton 345 kV line. Working in tandem with project 3205, this project reliably moves mandated renewable energy from western and northern Iowa along with existing wind at the Winnebago, Wisdom and Lime Creek/Emery areas to major 345 kV transmission hubs.

Alternatives Considered:

An lowa alternative of Lakefield Junction to Mitchell County and Sheldon to Burt to Webster to Black Hawk to Hazleton 345 kV was analyzed but was not effective in collecting Lime Creek/Emery area wind or lowering congestion on the Mitchell County to Hazleton 345 kV line. It had similar cost to the combined lowa projects 3205 and 3213.

5.5 North LaCrosse to North Madison to Cardinal 345 kV Line

Figure 5.5: North LaCrosse to North Madison to Cardinal

Project(s): 3127

Transmission Owner(s): ATC, XEL

Description: This creates a 345 kV line from the North LaCrosse (Briggs Road) substation, to the North Madison substation, to the Cardinal substation, through southwestern Wisconsin. A 448 MVA, 345/161 kV transformer will be installed at Briggs Road, and approximately 20 miles of 138 kV line between the North Madison and Cardinal substations will be reconductored. The new 345 kV line will be approximately 157 miles long. The estimated cost is \$390 million¹⁴. The expected in service date is December 2018.

¹⁴ In 2011 dollars

Justification: The 345 kV line from North LaCrosse to North Madison creates a tie between the 345kV network in western Wisconsin to the 345 kV network in southeastern Wisconsin. This creates an additional wind outlet path across the state; pushing power into southern Wisconsin, where it can go east into Milwaukee, or south to Illinois, providing access to less expensive wind power in two major load centers. With the Brookings project, the wind coming into North LaCrosse needs an outlet, and the line to North Madison is the best option studied. From a reliability perspective, the addition of the North LaCrosse to North Madison to Cardinal 345 kV path helps relieve constraints on the 345 kV system parallel to the project to the north and south of the new line. The 138 and 161 kV system in southwest Wisconsin and nearby in Iowa are also overloaded during certain contingent events, and the new line relieves those constraints. This project will mitigate twelve bulk electric system (BES) NERC Category B thermal constraints and eight NERC Category C constraints. It will also relieve 30 non-BES NERC Category B and 36 NERC Category C constraints.

Alternatives Considered:

Rebuilding the overloaded 138 and 161 kV lines, along with adding transformers or upgrading the existing units to handle the increased loading, was the only other alternative considered. This was not a viable alternative, because the cost is greater than the proposed project. The proposed project also provides the most benefit to the transmission grid in the future.

5.6 Dubuque to Spring Green to Cardinal 345 kV Line

Figure 5.6: Dubuque to Spring Green to Cardinal

Project(s): 3127

Transmission Owner(s): ATC, ITCM

Description: A 345 kV line is created from the Dubuque substation in Iowa, to the Spring Green substation to the Cardinal substation through southwestern Wisconsin. A new Dubuque County 345 kV switching station will be created, and the Spring Green substation will be upgraded to

accommodate the new connections. A new 500 MVA, 345/138 kV transformer will be added. To accommodate the new 345 kV connections from Spring Green and North Madison, the Cardinal substation will be upgraded. There are also upgrades to the 69 kV system, which is being converted to operate at 138 kV, in the Mazomanie – Black Earth – Stagecoach area. The new 345 kV line is approximately 136 miles long. The estimated cost is \$324 million¹⁵. The expected in service date is December 2020.

Justification: The 345 kV line from Dubuque to Spring Green to Cardinal creates a tie between the 345kV network in Iowa to the 345 kV network in southcentral Wisconsin. This expansion creates an additional wind outlet path across the state; bringing power from lowa into southern Wisconsin, where it can then go east into Milwaukee or south toward Chicago providing access to less expensive wind power in two major load centers. In combination with another Multi Value Project, the Oak Grove -Galesburg - Fargo 345 kV line, this project enables 1,100 MW of wind power transfer capability. This new path will help offload the lines that feed the Quad City (lowa) area by bringing power flow to the north. From a reliability perspective, the addition of the Dubuque - Spring Green - Cardinal 345 kV path helps relieve constraints on the 345 kV system parallel to the project to the north and south of the new line, as well as 138 kV system constraints in the aforementioned areas and to the west of the new line. The 138 kV system in southwest Wisconsin and nearby in Iowa is also overloaded during certain contingent events, and the new line relieves those constraints. Those overloaded facilities that are not relieved by the 345 kV project are relieved by upgrades to the lower voltage transmission system, including converting part of the 69 kV system to operate at 138 kV. This project will mitigate eight bulk electric system (BES) NERC Category B thermal constraints and ten NERC Category C constraints. It will also relieve two non-BES NERC Category B and two NERC Category C constraints.

Alternatives Considered: An alternative to the proposed project would be to rebuild the 138 kV lines that were overloaded. The cost of this alternative would be more than the proposed project, without providing benefits of the proposed project.

¹⁵ In 2011 dollars

5.7 Ellendale to Big Stone 345 kV Line

Figure 5.7: Ellendale to Big Stone

Project(s): 2220

Transmission Owner(s): OTP, MDU

Project Description:

This project creates a new 345 kV path through the border of the Dakotas by connecting OTP's Big Stone and MDU's Ellendale substations. Approximately 145 miles of new 345 kV transmission will be installed between these substations along with a new 345kV terminal at Ellendale and a 345/230 kV, 500 MVA transformer. The total estimated cost of this project is \$261 million¹⁶. The expected in service date for this project is December 2019.

Project Justification:

The new 345 kV outlet from Ellendale removes overloads on the 230 kV path from Ellendale to Oakes to Forman and the 115 kV path from Ellendale to Aberdeen. Overloads on the 230/115 kV transformers at Ellendale, Forman and Heskett are also alleviated. Along with project 2221, this project reliably moves mandated renewable energy from the Dakotas to major 345 kV transmission hubs and load centers.

Alternatives Considered:

An alternative to convert the 115 kV path from Ellendale to Huron could alleviate the southern path constraints out of Ellendale but downstream transmission may also need to be rebuilt to accommodate wind injection delivered through a lower impedance line. The eastern 230 kV path out of Ellendale would need to be rebuilt to 345 kV up to Fergus Falls. The cost of this alternative is higher than a 345 kV path to Big Stone.

¹⁶ In 2011 dollars

5.8 Ottumwa to Adair to Palmyra Tap 345 kV Line

Figure 5.8: Ottumwa to Adair to Palmyra Tap

Project(s): 2248, 3170

Transmission Owner(s): Ameren Missouri, MEC, ITCM

Project Description:

This creates a 345 kV path through central/eastern Missouri by connecting Iowa's Ottumwa substation to Ameren Missouri's West Adair substation (P2248). It then extends 345 kV from West Adair to Ameren Missouri's Palmyra substation Tap (P3370), near the Missouri/Illinois border. Approximately 88 miles of new and rebuilt 345 kV line will be installed between Ottumwa and Adair, along with a 345kV terminal at Adair and a 345/161 kV, 560 MVA step down transformer. Sixty-three miles of new 345 kV line will be built between West Adair and the Palmyra Tap, where a new 345 kV switching station will be established. The estimated cost is \$250 million¹⁷. The New Palmyra Tap substation will be ready by November 2016. The Ottumwa to West Adair 345 kV line and West Adair substation work will be ready by June 2017. The West Adair to Palmyra 345 kV line and West Adair 345/161 kV transformer will be ready by November 2018.

Project Justification:

The new 345 kV lines from Ottumwa to West Adair to Palmyra will provide an outlet for wind generation in the western region to move toward the more densely populated load centers to the east. In addition to providing a wind outlet, the new lines will provide reliability benefits by mitigating a number of contingent outage events during peak and shoulder periods, where the wind generation component is much higher. The addition of the 345 kV lines and step down transformer at West Adair is especially effective in resolving 161 kV line overloads on the lines out of West Adair and preventing the loss of the generation at West Adair during certain NERC Category C events. This project will mitigate two bulk electric system (BES) NERC Category B thermal constraints and five NERC Category C constraints. It will also relieve three non-BES NERC Category B and two NERC Category C constraints.

¹⁷ In 2011 dollars

Alternatives Considered:

An alternative was to incorporate an additional 345 kV line from West Adair to Thomas Hill. While improving reliability in the area, the addition would not improve the distribution of benefits within MISO. Thus the alternative was removed, and the proposed project was recommended.

5.9 Palmyra Tap to Quincy to Meredosia to Pawnee; Meredosia to Ipava 345kV Line

Figure 5.9: Palmyra Tap to Quincy to Meredosia to Pawnee; Meredosia to Ipava

Project(s): 3017

Transmission Owner(s): Ameren

Description: This creates a 345 kV path through western/central Illinois by construction of 345 kV lines between the new Palmyra Tap switching station to Quincy, Meredosia and Pawnee. Another 345 kV line would go from Meredosia north to the Ipava substation. A total of 116 miles of new 345 kV line will be built between the Palmyra switching station and Pawnee, with new 345/138 kV, 560 MVA transformers at Quincy and Pawnee. The new 345 kV line from Meredosia to Ipava would be 41 miles long. The estimated cost is \$392 million¹⁸. The New Palmyra Tap switching station will be ready by June 2016. The Palmyra Tap switching station to Quincy to Meredosia 345 kV line and the Quincy and Pawnee 345/138kV transformers will be ready by November 2016. The Ipava substation upgrades for new 345 kV connection from Meredosia will be ready by June 2017. The Meredosia to Ipava and Meredosia to Pawnee 345 kV lines will be ready by November 2017.

Justification: The 345 kV lines from the Palmyra switching station to Pawnee and from Meredosia to Ipava will provide an outlet for wind generation in the western region to move toward the more densely populated load centers to the east. In addition to providing a wind outlet, the new lines will

¹⁸ In 2011 dollars
Multi Value Project Analysis Report

provide reliability benefits by mitigating a number of contingent outage events during peak and shoulder periods, where the wind generation component is much higher. The addition of the 345 kV lines and step down transformers in this project will keep the power flow on the 345 kV system. Otherwise, it would be, injected into the lower voltage transmission networks if the 345 kV additions are not made, which causes a number of lower voltage network constraints to be alleviated. This project will mitigate eight bulk electric system (BES) NERC Category B thermal constraints and three NERC Category C constraints.

Alternatives Considered: A 345 kV connection between Palmyra and Sioux would alleviate some constraints, but would not affect constraints in the Tazewell area, which would also need a 345 kV connection to Palmyra. The alternative would not provide regional distribution of benefits with the multi value project, as it would constrain the 345 kV path from St. Louis across southern Illinois and into Indiana. Therefore the proposed project is recommended for the greatest benefit.

5.10 Pawnee to Pana to Mt. Zion to Kansas to Sugar Creek 345kV Line

Figure 5.10: Pawnee to Pana to Mt. Zion to Kansas to Sugar Creek

Project(s): 2237, 3169

Transmission Owner(s): Ameren

Description: This creates a 345 kV path through eastern/central Illinois by building 345 kV lines between the Pawnee substation to Pana, Mt. Zion, Kansas and Sugar Creek (Indiana). A total of 146 miles of new 345 kV line will be constructed between the Pawnee substation and Sugar Creek substation on the eastern Illinois/Indiana border, with new 345/138 kV, transformers at Mt. Zion, Pana (both transformers are 560 MVA) and Kansas (448 MVA transformer). The estimated cost is \$372 million¹⁹ All components will be in service by November 2018, except the new Kansas to Sugar Creek 345 kV Line, which will be ready by November 2019.

¹⁹ In 2011 dollars

Justification: The 345 kV lines from the Pawnee to Sugar Creek in western Indiana will provide an outlet for wind generation in the western region to move toward the more densely populated load centers to the east. This 345 kV extension creates another 345 kV path across central Illinois to connect to the existing 345 kV network in Indiana at Sugar Creek. This provides access wind generation to all of Indiana, and supplies major load centers such as Indianapolis and the Chicago suburbs in northern Indiana. The new lines will provide a wind outlet and reliability benefits, by mitigating a number of contingent outage events during peak and shoulder periods, where the wind generation component is much higher. The addition of the 345 kV lines and step down transformers in this project will keep the power flow on the 345 kV system. Otherwise, it would be injected into the lower voltage transmission networks in Illinois if the 345kV additions are not made, which causes a number of lower voltage network constraints to be alleviated. This project will mitigate eight bulk electric system (BES) NERC Category B thermal constraints and 12 NERC Category C constraints.

Alternatives Considered: An alternative to the proposed project was a parallel 345 kV path to the north, which would have built a 345 kV line through Bloomington into Brokaw, through Gilman and to the Reynolds Substation in northwest Indiana. Although the benefits of taking this northern path were similar to the southern route, there were fewer benefits gained by going with the northern path. It also cost more than the recommended project.

5.11 Reynolds to Burr Oak to Hiple 345 kV line

Figure 5.11: Reynolds to Burr Oak to Hiple

Project(s): 3203

Transmission Owner(s): NIPSCo

Description: This creates a 345 kV line from Reynolds substation to Burr Oak to Hiple through northern Indiana. At the Reynolds and Hiple stations, it creates a tie to 345kV lines routed near those two stations but do not connect electrically at those points. The 345 kV line is approximately 100 miles long, along with the substation upgrades at Reynolds and Hiple necessary to accommodate the

new 345 kV line connections. The estimated cost of this project is \$284 million²⁰. The expected in service date is December 2019.

Justification: The project from Reynolds to Burr Oak to Hiple through northern Indiana will create a 345 kV path across the northern portion of Indiana toward Michigan, with the new tie at Hiple connecting an existing 345 kV line to the Argenta Station in southern Michigan. This path will provide an additional 345 kV path to move wind energy across Indiana, and closer to the east coast, bringing less expensive wind generation into areas where the expense to generate power can be considerably greater. The line will relieve overloads on the 138 kV system along a parallel path as well as the 138 kV network in the Lafayette, IN, area. The additional ties at Reynolds and Hiple also reduce loading on the existing 345 kV lines and creates a second path for power flow in this area, enhancing system reliability. This project will mitigate five bulk electric system (BES) NERC Category B thermal constraints and five NERC Category C constraints.

Alternatives Considered: There is no viable alternative to the proposed plan. The proposed project runs parallel to the constraints identified and is the most effective at relieving them.

5.12 MI Thumb Loop Expansion

Figure 5.12: Michigan Thumb Loop Expansion

Project(s): 3168

Transmission Owner(s): ITC

Description: The proposed transmission line will connect into a new station to the south and west of the Thumb area that will tap three existing 345 kV circuits; one between the Manning and Thetford 345 kV stations, one between the Hampton and Pontiac 345 kV stations and one between the Hampton and Thetford 345 kV stations. Two new 345 kV circuits will extend from this new station, to be called Baker (formerly Reese), up to a new station, to be called Rapson (formerly Wyatt or Wyatt East) that will be

²⁰ In 2011 dollars

Multi Value Project Analysis Report

located to the north and east of the existing 120 kV Wyatt station. In order to support the existing 120 kV system in the northern tip of the Thumb, the two existing 120 kV circuits between the Wyatt and Harbor Beach stations, one that connects directly between Wyatt and Harbor Beach and that connects Wyatt to Harbor Beach through the Seaside station, will be cut into the new Rapson station. From the Rapson station, two 345 kV circuits will extend down the east side of the Thumb to the existing Greenwood 345 kV station and then continue south to the point where the existing three ended Pontiac to Greenwood to Belle River 345 kV circuit combines. To facilitate connection to the existing transmission system a new 345 kV station, to be called Fitz (formerly Saratoga), is included in the plan at a site due south of the existing Greenwood station and just north of where the existing three ended Pontiac to Greenwood to Belle River 345 kV circuit combines. The Fitz station will then tap the existing Pontiac to Belle River to Greenwood 345 kV circuit and the existing Belle River to Blackfoot 345 kV circuit. Transformation from the 345 kV facilities to the 120 kV facilities will be necessary to maintain continuity to the existing system in and around the Sandusky area. The existing 120 kV facilities between the sites that will facilitate the new 345 kV to 120 kV transformation can be utilized to facilitate a connection between the new 345 kV to 120 kV transformation and the existing 120 kV facilities in the Sandusky area. The cost of this project is $$510 \text{ million}^{21}$.

Justification: This project was needed pursuant to the directives of the Michigan Public Service Commission' and the Final Report of the Michigan Wind Energy Resource Zone Board ("Board"). This project is necessary to deliver wind mandate in Region 4, the primary wind zone region in Michigan (the Thumb). Reliability analysis tested 13 different system conditions involving Ludington pumped storage scenarios and Ontario interface transfers. Without mitigations, overloads were up to 155% and instability may happen for some multiple contingencies. With the existing system and alternative designs tested, NERC reliability standards cannot be met when renewable sufficient to deliver the wind mandates are connected.

Alternative 1 Considered: Replace the existing single circuit 120 kV loop from Tuscola up to Wyatt and down to Lee with two new 230 kV circuits on a 230 kV double circuit tower line that will extend from a new 230 kV station at or near the existing 120 kV Wyatt station southwest to a new 345/230 kV station southwest of the existing Atlanta 138/120 kV station and two more 230 kV circuits on a 230 kV double circuit tower line that will extend from the new 230 kV station at or near the Wyatt station down around to the existing Greenwood 345 kV station utilizing high temperature 1431 ACSR conductor (or an equivalently rated conductor) and 230 kV double circuit tower (or steel pole) construction, existing ROW as available and new ROW where necessary. Also, add two new 230 kV circuits (on new ROW) on a 230 kV double circuit tower line that will extend from the new station at or near the Wyatt station down around the west side of the Thumb to the new station south west of the Atlanta 138/120 kV station and two new 230 kV circuits on a 230 kV double circuit tower line that will extend from the Wyatt station down to the Greenwood station along the east side of the Thumb utilizing a similar conductor/tower configuration as the "inner loop". Continue south from the Greenwood 345 kV station with a new 345 kV double circuit tower line containing two new 345 kV circuits toward a new 345 kV station at a site due south of the existing Greenwood station and just north of the point where the three ended Pontiac to Greenwood to Belle River 345 kV circuit combines. The two new 345 kV circuits from Greenwood to this new station south of Greenwood would parallel the existing 345 kV circuit along that same path. These routes would utilize existing ROW to the extent possible.

Total Project Cost Estimate: \$740, 000,000

Alternative 2 Considered: Replace the existing single circuit 120 kV loop from Tuscola up to Wyatt and down to Lee with two new 230 kV circuits on a 230 kV double circuit tower line that will extend from a new 230 kV station at or near the existing 120 kV Wyatt station southwest to a new 345/230 kV station southwest of the existing Atlanta 138/120 kV station and two more 230 kV circuits on a 230 kV double circuit tower line that will extend from the new 230 kV station at or near the Wyatt station down around to the existing Greenwood 345 kV station utilizing high temperature 1431 ACSR conductor (or an equivalently rated conductor) and 230 kV double circuit tower (or steel pole) construction, existing ROW

²¹ In 2011 dollars

as available and new ROW where necessary. Also, add two new 230 kV circuits (on new ROW) on a 230 kV double circuit tower line that will extend from the new station at or near the Wyatt station down around the west side of the Thumb to the new station south west of the Atlanta 138/120 kV station utilizing a similar conductor/tower configuration as the "inner loop". Then continue south from the Greenwood 345 kV station with a new 345 kV double circuit tower line containing two new 345 kV circuits toward a new 345 kV station at a site due south of the existing Greenwood station and just north of the point where the three ended Pontiac to Greenwood to Belle River 345 kV circuit combines. The two new 345 kV circuits from Greenwood to this new station south of Greenwood would parallel the existing 345 kV circuit along that same path. These routes would utilize existing ROW to the extent possible.

Total Project Cost Estimate: \$560,000,000

5.13 Reynolds to Greentown 765 kV line

Figure 5.13: Reynolds to Greentown

Project(s): 2202

Transmission Owner(s): NIPSCO, Duke

Description: This project creates a 765 kV line from the Reynolds substation to the Greentown substation through Indiana, north of the Lafayette area. A 765/345 kV transformer/substation will also be installed at the Reynolds substation. The length of 765 kV line is approximately 66 miles, along with the 765 kV substation terminal upgrades at Greentown necessary to accommodate the 765 kV line connection. The estimated cost of this project is \$245 million²². The 765 kV line project will be ready by June 2018. The 765/345 kV substation upgrade/construction will be ready by August 2018.

Justification: The 765 kV line from Reynolds to Greentown path across central Indiana will create an additional wind outlet path across the state, pushing power closer to the east coast, bringing less expensive wind generation into areas where the generation of power can be considerably more expensive. There are constraints on reliability on the 345 kV system to the north going toward

²² In 2011 dollars

Multi Value Project Analysis Report

Chicago and Michigan, and to the south, crossing the Illinois/Indiana border and down into southwestern Indiana. These are mitigated with the new 765 kV line. The system flows attempt to bring power back to the Greentown substation, which cause numerous overloads for contingent scenarios that can be mitigated with the proposed 765 kV line. The line will also relieve constraints on the 138 kV system along a parallel path in the Lafayette, Indiana, area as well as the 138 kV line to the south between Dresser and Bedford. This 765 kV line will provide reliability benefits throughout Indiana. This project will mitigate seven bulk electric system (BES) NERC Category B thermal constraints and 21 NERC Category C constraints. It also relieves four non-BES NERC Category C constraints.

Alternatives Considered: Alternatives to the proposed project would be building lines to bypass the Lafayette area, which would relieve the constraints identified in this analysis, but load up the 230 and 138kV systems beyond the Lafayette area. The 345 kV in the Cayuga area is also heavily loaded, and upgrading would not be recommended. The proposed project is effective in alleviating all these constraints, without creating new ones, and provides a reduction of loadings on the existing lines.

5.14 Pleasant Prairie to Zion Energy Center 345 kV line

Figure 5.14: Pleasant Prairie to Zion Energy Center

Project(s): 2844

Transmission Owner(s): ATC

Description: A 345 kV line will be created from the Pleasant Prairie substation in Wisconsin to the Zion Energy Center substation in Illinois. The line will be approximately 5.3 miles long. The estimated cost is \$26 million²³. The expected in service date is March 2014.

Justification: The 345 kV line from Pleasant Prairie to Zion Energy Center creates an additional 345kV tie between these two stations, allowing more power to flow from the north down into Illinois.

²³ In 2011 dollars

That will bring wind energy from the north and west into this area. From a reliability perspective, the addition of the path relieves constraints on the 138 kV system adjacent to the project as well as 138 kV system constraints to the west of the new line. This project will mitigate seven bulk electric system (BES) NERC Category B thermal constraints and four NERC Category C constraints.

Alternatives Considered: No viable alternatives to this project were identified. The proposed project, which creates a parallel path to the existing constrained line, is the most effective solution.

5.15 Oak Grove to Galesburg to Fargo 345 kV line

Figure 5.15: Oak Grove to Galesburg to Fargo 345 kV line

Project(s): 3022

Transmission Owner(s): Ameren, MEC

Description: This creates a 345 kV line from the MEC's Oak Grove substation to Ameren's Galesburg substation and to the Fargo substation through central Illinois. A new 560 MVA, 345/138 kV transformer will be installed at the Galesburg substation in addition to terminal additions/upgrades at all three substations. The 345 kV line is approximately 70 miles long, along with 40 miles of reconductor/rebuild at 345 kV and 138 kV to complete the project. The estimated cost is \$193 million²⁴. The Oak Grove – Galesburg 345 kV line and the Oak Grove 345 kV substation upgrades are expected to be ready by December 2016. The Fargo – Oak Grove 345 kV Line and Galesburg transformer addition are expected to be ready by November 2018. The Fargo substation upgrades are expected to be in service in 2018.

Justification: The new 345 kV line from Oak Grove to Galesburg to Fargo creates a path from western Illinois near the Iowa/Illinois border to central Illinois. This expansion creates an additional wind outlet path across the state, pushing power into central Illinois. In combination with another MVP, Dubuque – Spring Green – Cardinal 345 kV line, this enables 1,100 MW of wind power transfer

²⁴ In 2011 dollars

Multi Value Project Analysis Report

capability. From a reliability perspective, the addition of the Oak Grove to Fargo 345 kV path helps relieve constraints on the 345 kV system to the north. The 138kV system in the same area is also overloaded during certain contingent events. With the MVPs proposed in Wisconsin, Oak Grove to Fargo is needed to provide an outlet for the power coming from the west. It will keep that power on the 345 kV transmission system, rather than forcing it through the 138 kV system, requiring significant upgrades to carry the increased power flow.

Analysis also shows that the north ties from ATC to ComEd will remain constrained despite a new MVP from Pleasant Prairie to Zion, if the Oak-Grove Fargo 345 kV line is not built. This is because both outlets, Dubuque-Cardinal and Oak Grove-Fargo, are needed to effectively mitigate constraints on the transmission network supplying the Chicago area. This project will mitigate six bulk electric system (BES) NERC Category B thermal constraints and five NERC Category C constraints.

Alternatives Considered: Alternatives to the proposed project would be upgrading the 345 and 138 kV lines that are overloaded going toward Chicago. Upgrading the overloaded lines would likely lead to more overloads to the east, by injecting the additional power into an already constrained 345 kV path through Com Ed's Silver Lake area. The proposed project provides the greatest benefit to the transmission system.

5.16 Sidney to Rising 345kV Line

Figure 5.16: Sidney to Rising 345 kV line

Project(s): 2239

Transmission Owner(s): Ameren

Description: This builds a 345 kV line between the Sidney and Rising substation through eastern/central Illinois. That would create approximately 27 miles of 345 kV line, along with the substation upgrades at Sidney and Rising needed to accommodate the new line. The estimated cost of this project is \$90 million²⁵. The Sidney and Rising substation upgrades are expected to be ready by June 2016, and the 345 kV line should be ready by November 2016.

Justification: The 345 kV line from Rising to Sidney in Illinois will connect a gap in the 345 kV network in the area, promoting wind generation moving from the west to the east into Indiana. It will mitigate constraints by keeping the power on the 345 kV system, rather than pushing it into the 138 kV network at Rising. That causes overloads on the Rising transformer and on nearby 138 kV lines fed from Rising. This project will mitigate one bulk electric system (BES) NERC Category A thermal constraint, one NERC Category B constraint and three NERC Category C constraints.

Alternatives Considered: Upgrading the transformer at Rising and the 138 kV lines are a possible alternative, but that transformer was upgraded recently. Analysis shows that the power flow is being forced into the 138 kV system between Sidney and Rising to step back up to the 345 kV system. Completing the short connection between Sidney and Rising is the most effective recommendation for a long term solution.

²⁵ In 2011 dollars

6 Portfolio reliability analyses

In addition to the individual project justification, the MVP portfolio analysis also included an evaluation of the complete recommended MVP portfolio to ensure that system reliability is maintained. The recommended MVP portfolio maintains system reliability by resolving violations on approximately 650 transmission elements for more than 6,700 system conditions. It also mitigates 31 system instability conditions. More information on the constraints for each individual project may be found in Section 6 of this report.

6.1 Steady state

6.1.1 Reliability Planning Methodology Overview

The reliability assessment performed for the MVP portfolio analysis tested the transmission system using appropriate North American Electric Reliability Corporation (NERC) Table 1 events to determine if the system, as planned, meets Transmission Planning (TPL) standards. Any violation of these standards was identified, and the components of the portfolio were tested to determine their effectiveness in addressing the identified issues. In addition secondary transmission upgrades were developed to mitigate any unresolved issues. The performance of the mitigation plan was tested to ensure it alleviates the identified issues and does not create additional issues.

6.1.2 Planning Criteria and Monitored Elements

In accordance with the MISO Transmission Owners Agreement, the MISO Transmission System is to be planned to meet local, regional and NERC planning standards. The MVP portfolio analysis, performed by MISO staff, tested the performance of the system against the NERC Standards when applicable Renewable Portfolio Standards (RPS) were applied. Compliance with local requirements, where the local requirements exceed NERC standards, was not evaluated. This analysis will be performed by the responsible Transmission Owners. All system elements that were loaded at 95% or higher were flagged as transmission issues for Category A, B and C events. Elements under Category C3 contingencies were flagged as transmission issues at loadings of 125% and higher.

All system elements, 100 kV and above, within the MISO Planning regions, as well as tie lines to neighboring systems, were monitored. Elements 69 kV and above were monitored in select MISO Planning regions per Transmission Owner planning standards. Some non-MISO member systems were monitored if they were within the MISO Reliability Coordination Area.

6.1.3 Baseline Modeling Methodology

The MVP portfolio analysis powerflow models were developed to represent various system conditions in the planning horizon. 2021 Summer Peak and 2021 Shoulder Peak powerflow models were developed. MISO coordinated with external seam regions, including TVA, SPP, MAPP and PJM, to reflect the latest topology of the corresponding regions. For all other areas, modeling data from the 2020 Eastern Interconnection Planning Collaborative (EIPC) model was applied.

6.1.4 Contingencies Examined

Regional contingency files were developed by MISO staff collaboratively with Transmission Owners and regional study group input. NERC Category A, B and C contingency events on the transmission system under MISO functional control were analyzed. In general, contingencies on the MISO members' transmission system at 100 kV and above were analyzed, although some 69 kV transmission was also analyzed. The MTEP10 MRO contingency files were used with updates from MISO Transmission Owners. Automated single contingencies and bus double contingencies were also performed on the new MVP and surrounding transmission.

6.1.5 Results

A total of 384 thermal overloads were mitigated by the recommended MVP portfolio under shoulder peak conditions, for approximately 4,600 system conditions. In addition, approximately 100 additional thermal overloads and 150 voltage violations were mitigated by the recommended MVP portfolio in the summer peak analysis.

6.2 Transient stability

The purpose of performing transient stability analysis is to identify loss of synchronism, sometimes referred to as 'out of step' conditions for existing and proposed generation under severe fault conditions required by NERC and regional reliability standards. For the MVP portfolio transient stability analysis, two scenarios were studied.

Tasks of the two studies were evaluation of the impact of major fault conditions on the ability of the generators to remain synchronized to the electric system without any voltage or damping criteria violations.

6.2.1 Methodology and base case creation

Transient stability analysis was performed on two cases representing the shoulder peak conditions, in 2021, after the addition of RGOS wind zones and the 17 MVP portfolio lines. The following two cases were created for comparative analysis. These models were based upon the MTEP11 powerflow models utilized for the steady state analysis, as described in the previous section.

- 1. A base case, or the "No MVP portfolio case," was developed by adding all the incremental wind zones, without the portfolio, to the MTEP11 case.
- 2. A study case, or the "With MVP portfolio case," was developed by adding all the incremental wind zones, with the portfolio, to the MTEP11 case.

The corresponding dynamic files, for the power flow cases mentioned above, were created by adding the GE 1.5 MW turbines (GEWTG1- Type 3 model) to represent each wind zone. It was assumed that all new wind turbines would have a +/-0.95 power factor range. The machine data for all existing units was unchanged because it had been reviewed by the Transmission Owners during the MTEP10 review process. For all external models where the data was not available, machines were modeled with a classical machine model (GENCLS).

6.2.2 Monitored facilities

For evaluating the transient stability performance under fault conditions, the rotor angle, active power output, terminal voltage and the reactive power output for each machine was monitored. For evaluating the transient voltage violations under fault conditions, 345kV bus voltages in each MISO control area were monitored. The list of monitored bus voltages can be seen in Appendix C of this report.

6.2.3 Fault analysis and assumptions

All faults that were analyzed during the MTEP10 stability analysis review were used as the starting point for the stability analysis. In addition, several three phase faults and single line to ground faults (SLG) were developed to simulate fault conditions on the MVP portfolio lines. All these faults were reviewed by the Technical Study Task Force in the first quarter of 2011.

A two cycle margin was added to the fault clearing times to determine if system reliability would be maintained under more stressed conditions. Generally, when the fault clearing times are increased, the probability of having an unstable condition is also increased. Therefore, it was important to determine whether the existing MTEP10 faults would cause system instability; with a two cycle embedded margin to account for modeling errors that can mask underlying reliability issues if the clearing times are close to the critical clearing times. This analysis was not required to comply with any NERC reliability criteria, but

was performed to check the strength of the power system with increased wind generation and transmission under the 2021 conditions.

At the time this fault analysis was conducted, short circuit data was not available to model SLG fault conditions for the CMVP faults. NERC Category C6, C7, C8 and C9 reliability criteria requires the system to be stable under SLG faults cleared under delayed clearing such as a stuck breaker condition. NERC Category D1, D2, D3 and D4 reliability criteria, which is a lot more stringent, requires the system to be stable under three phase fault conditions with delayed clearing. Typically, a three phase fault is a lot more severe than a SLG fault and is a lot easier to simulate due to the absence of zero sequence fault currents. Therefore, SLG faults with delayed clearing on the MVP portfolio lines were simulated as three phase faults with delayed clearing.

The rationale for choosing this approach was simple. If the Three Phase faults were stable under delayed clearing conditions, then it could be reasonably assumed that the same faults would also be stable under SLG with delayed clearing. However, if the analysis revealed that a few faults caused instability, then only those faults would then be re-analyzed with correct fault impedance.

6.2.4 Results

The transient stability analysis revealed that the addition of the MVP portfolio to the transmission system made the system more stable under several fault conditions and 2021 shoulder peak conditions. There were a few fault conditions, which required the addition of minor reactive support devices at a couple of 345kv buses in the western region of the MISO transmission system. The evaluation of optimized reactive support locations under these fault conditions will be studied during the regular MTEP12 reliability analysis, which requires additional stakeholder input and more detailed analysis. The results of the transient stability analysis are under Appendix C of this report.

6.3 Voltage stability

Voltage stability analysis was performed to identify voltage collapse conditions under high energy transfer conditions from major generation resources to major load sinks. For this analysis, high transfer conditions were analyzed, from the wind rich west region of the MISO footprint to major load centers such as Minneapolis-St. Paul, Madison, St Louis and Des Moines. The idea was to evaluate the incremental transfer capability, between the generation resources and the load sinks, that is created by the addition of the MVP portfolio under 2021 summer peak conditions.

6.3.1 Methodology and base case creation

The evaluation of the MVP portfolio's incremental transfer capability benefits can only be quantified when the results are compared to identical system conditions without the MVP lines. Therefore, two different power flow cases were created for 2021 summer peak conditions, shown below.

- 1. A base case or the "No MVP portfolio case" was developed by adding all the incremental wind zones without the portfolio.
- 2. A study case or the "With MVP portfolio case" was developed by adding all the incremental wind zones with the portfolio.

For each of the two cases mentioned above, four different transfers were modeled by increasing the generation in the source areas and reducing the generation in the load areas. The idea is to transmit maximum megawatts over the transmission system before a voltage collapse condition occurs due to the contingency loss of a major transmission line. For each simulated transfer, an interface consisting of major import transmission lines into the load centers was created and monitored for each contingency.

The voltage stability transfer analysis was simulated under several contingency conditions to identify the worst contingency and the corresponding maximum megawatt transfer levels over the defined interface. This method was repeated for each transfer and for both the 2021 summer peak load cases as described above.

6.3.2 Results

The comparative analysis summary below shows that the addition of the MVP lines boosted transfer capabilities from wind rich regions to major load centers within the MISO footprint. The details of the voltage stability analysis showing the PV plots and reactive reserve margins for each transfer, under both scenarios, can be viewed in Appendix C of this report.

Voltage Stability Transfer Analyzed	Without Multi Value Project Portfolio (MW)	With Multi Value Project Portfolio (MW)	Incremental Transfer enabled by the MVPs (MW)	Incremental Transfer enabled by the MVPs (percent)
MISO West - Twin Cities 3399		5240	1841	54 percent
MISO West - Madison 1720		3160	1440	84 percent
MISO West - Des 2000 Moines 2000		3100	1100	55 percent
MISO West - St Louis 3700		4660	960	26 percent

Table 6.1:	Transfer ca	pabilities	under high	transfer	conditions

6.4 Short circuit

The reliability analysis component of the MVP portfolio study included a short-circuit analysis. The goal was to determine whether the installation of the MVP transmission facilities would cause certain existing circuit breakers to exceed their short-circuit fault interrupting capability.

Per the Tariff, should the installation of one or more MVPs cause an electrical issue on a facility, the resolution can be included in the scope of the MVP. The costs can then be shared using the same regional cost allocation mechanism applicable to the base MVPs, as long as the electrical issue is associated with a facility that is owned by a MISO Transmission Owner and classified as a transmission plant. While many electrical issues resulting from MVPs are loading or voltage related, it is also possible for the MVPs to raise the available short-circuit fault current at specific buses.

When the available short-circuit fault current increases beyond the capability of one or more circuit breakers to interrupt the fault current, the situation must be remedied. Typical remedies include replacing the affected circuit breaker with those with higher short circuit fault interrupting capabilities. In some situations, it may be necessary to reconfigure the topology of the system (e.g., splitting buses, etc.) if the available short-circuit fault currents exceed the capabilities of available circuit breakers.

To perform the short-circuit analysis, MISO developed default criteria to govern the short-circuit study. MISO then requested each Transmission Owner to conduct a short-circuit analysis on their own circuit breakers, using either their own internal criteria or MISO's default criteria, to determine if there are fault duty issues with any circuit breakers caused by the installation of one or more MVPs. Most Transmission Owners elected to use the default MISO criteria. The Transmission Owners then submitted results to MISO, including any recommendations to be added to the scope of existing MVPs. The default MISO criteria for the short-circuit analysis follows.

6.4.1 Default criteria for worst case fault current interruption exposure

This default criteria will establish the worst case fault current interruption exposure for each circuit breaker when there is no established criteria for worst case fault current interruption exposure for a specific Transmission Owner:

• Three-phase, phase-to-ground and double phase-to-ground faults will be evaluated. Phase-to-phase faults will not be evaluated.

- Faults will be simulated with zero fault impedance.
- Fault currents will be calculated in accordance with IEEE/ANSI Standard C37.010-1999 using the X/R multiplying factors.
- Faults will be simulated with all generation on-line with the sub transient reactance or equivalent modeled for all generators.
- Faults will be simulated with all network buses and branches in their normal configuration.
- For branch faults, fault locations will be simulated at the branch-side terminals of the circuit breaker in question.
- For branch and bus faults, faults current circuit breaker flows will be determined assuming all other circuit breakers protecting the branch or bus are open. While this results in a lower total fault current, this typically represents the highest fault current exposure for a specific circuit breaker.
- For each circuit breaker, simulations will be made to determine the worst case fault current interruption exposure for primary and backup zones of protection, where backup zones of protection are covered by a specific circuit breaker under the failure of a different circuit breaker.

6.4.2 Default criteria for circuit breaker fault duty calculations

The following default criteria will be used to establish the fault duty for each circuit breaker when there is no established criteria for circuit breaker fault duty calculations for a specific Transmission Owner:

- For each circuit breaker, the interrupting capability of the circuit breaker must be greater than the worst case fault current interrupting exposure of the circuit breaker, plus a safety margin of 2.5 percent
- When specific circuit breakers must be derated for reclosing duty, the Transmission Owner will inform MISO about the specific derates and the associated zones of protection where they apply for each circuit breaker. These derates will be applied in determining the fault duty for the circuit breaker.

6.4.3 Results

The results of the short-circuit analysis indicated the need for only nine circuit breaker replacements, representing an estimated capital cost of about \$2.2 million, or less than 0.1 percent of the recommended MVP portfolio. The circuit breaker replacements represented lower voltage circuit breakers exposed to higher fault current levels due the installation of nearby MVP facilities. The recommended circuit breaker replacements are shown in the table below:

Substation	Voltage	Number of Breaker Replacements	Driving MVP
Blount	69 kV	3	N. Lacrosse – Cardinal - Dubuque
Lakefield	161 kV	1	Lakefield - Hazleton
Winnebago	161 kV	3	Lakefield – Hazleton
Lime Creek	161 kV	1	Lakefield – Hazleton
Hazleton	161 kV	1	Lakefield – Hazleton

Table 6.2: Circuit breaker replacements

7 Portfolio Public Policy Assessment

The projects in the proposed Multi Value Project portfolio were evaluated against criterion 1, which require the projects to reliably or economically enable energy policy mandates. To demonstrate the ability of the portfolio to enable the renewable energy mandates of the footprint, a set of analyses were conducted to quantify the renewable energy enabled by the footprint.

This analysis took part in two parts. The first part demonstrated the wind needed to meet the 2026 renewable energy mandates that would be curtailed but for the recommended MVP portfolio. The second part demonstrated the additional renewable energy, above the 2026 mandate, that will be enabled by the portfolio. This energy could be used to serve mandated renewable energy needs beyond 2026, as most of the mandates are indexed to grow with load.

7.1 Wind Curtailment

A wind curtailment analysis was performed to find the percentage of mandated renewable energy which could not be enabled but for the recommended MVP portfolio.

The shift factors for all wind machines were calculated on the worst NERC Category B and C contingency constraints of each monitored element identified as mitigated by the recommended MVP portfolio. The 429 monitored element/contingent element pairs (flowgates) consisted of 205 Category B and 224 Category C contingency events. These constraints were taken from a blend of 2021 and 2026 wind levels with the final calculations based on the 2026 wind levels.

Since the majority of the western region MVP justification was based on 2021 wind levels, it was assumed that any incremental increase to reach the 2026 renewable energy mandated levels would be curtailed. A transfer of the 193 wind units, sourced from both committed wind units and the RGOS energy zones, to the system sink, Browns Ferry in TVA, was used to develop the shift factors on the flowgates.

Linear optimization logic was used to minimize the amount of wind curtailed while reducing loadings to within line capacities. Similar to the Multi Value Project justifications, a target loading of less than or equal to 95% was used. 24 of the 429 flowgates could not achieve the target loading reduction, and their targets were relaxed in order to find a solution.

The algorithm found that 10,885 MW of dispatched wind would be curtailed. As a connected capacity, this equates to 12,095 MW as the wind is modeled at 90% of its nameplate. A MISO-wide per-unit capacity factor was averaged from the 2026 incremental wind zone capacities to 32.8%.

The curtailed energy was calculated to be 34,711,578 MWHr from the connected capacity times the capacity factor times 8,760 hours of the year. Comparatively, the full 2026 RPS energy is 55,010,629 MWHr. As a percentage of the 2026 full RPS energy, 63% would be curtailed in lieu of the MVP portfolio.

7.2 Wind Enabled

Additional analyses were performed to determine any incremental wind energy, in excess of the 2026 requirements, enabled by the recommended MVP portfolio. This energy could be used to meet renewable energy mandates beyond 2026, as most of the state mandates are indexed to grow with load. A set of two First Contingency Incremental Transfer Capability (FCITC) analyses were run on the 2026 model to determine how much the wind in each zone could be ramped up prior to additional reliability constraints occurring.

Multi Value Project Analysis Report

First, a transfer was sourced from all the wind zones in proportion to their 2026 maximum output. All the Bulk Electric System (BES) elements in the MISO system were monitored, with constraints being flagged at 100% of the applicable ratings. All single contingencies in the MISO footprint were evaluated during the transfer analysis. This transfer was sunk against MISO, PJM, and SPP units, in the proportions below. More specifically, the power was sunk to the smallest units in each region, with the assumption that these small units would be the most expensive system generation.

Region	Sink
MISO	33 percent
PJM	44 percent
SPP	23 percent

Table 7.1: Transfer Sink Distribution

As a result of this analysis, it was determined that an additional 981 MW could be reliably sourced from the energy zones. Because of regional transfer limits, no additional western wind could be increased beyond this level. The output levels of the wind zones were updated in the model and a second transfer analysis was performed to determine any incremental wind that could be sourced from the Central and East wind zones. This analysis was performed with the same methodology and sink as the first analysis, but all the western wind zones were excluded from the transfer source. This analysis determined that 1,249 MW of additional generation could be sourced from the Central and Eastern wind zones.

Wind	Incremental Wind	Wind	Incremental Wind	Wind	Incremental Wind
Zone	Ellableu	Zone	Ellableu	20116	Ellableu
IA-BF	22.5	IN-E	144.9	MT-A	15.4
IA-GH1	27.4	IN-K	483.0	ND-M	2.4
IA-H2	76.0	MN-B	109.5	SD-HJ	130.1
IA-J	5.1	MN-H	254.7	SD-L	15.4
IL-F	678.6	MN-K	34.8	WI-B	230.4

Table 7.2: Incremental Wind Enabled Above 2026 Mandated Level, by Zone

In total, it was determined that 2,230 MW of additional generation could be sourced from the incremental energy zones to serve future renewable energy mandates. When the results from the curtailment analyses and the wind enabled analyses are combined, the recommended MVP portfolio enables a total of 41 million MWhs of renewable energy to meet the renewable energy mandates.

8 Portfolio economic benefits analyses

Multi Value Projects represent the next step in the evolution of the MISO transmission system: a regional network that, when combined with the existing system, provides value in excess of its costs under a variety of future policy and economic conditions. These benefits are discussed below, as well as the analyses used to determine them.

Figure 8.1: Recommended MVP portfolio economic benefits

8.1 Congestion and fuel savings

The recommended MVP portfolio allows for a more efficient dispatch of generation resources, opening markets to competition and spreading the benefits of low cost generation throughout the MISO footprint. These benefits were outlined through a series of production cost analyses, which captured the economic benefits of the recommended MVP transmission and the wind it enables. These benefits reflect the savings achieved through the reduction of transmission congestion costs and through more efficient use of generation resources.

The future scenarios without any new energy policy requirements provide a baseline of the recommended MVP portfolio's benefits under current policy conditions. Additionally, the evaluation of the Carbon Constrained and Combined Policy future scenarios provide "bookends," helping to show the full range of benefits that may be provided by the portfolio. Looking at the "Business as Usual" future scenarios with no new energy policies, the recommended MVP portfolio will produce an estimated \$12.4 to \$40.9 billion in 20 to 40 year present value adjusted production cost benefits, depending on the timeframe, discounts and growth rates of energy and demand. This benefit increases to a maximum present value of \$91.7 billion under the Combined Policy future scenario.

8.1.1 Production cost model development

PROMOD IV[®] is an integrated electric generation and transmission market simulation system, and was the primary tool used to support economic assessment of the recommended MVP portfolio. It incorporates details of generating unit operating characteristics and constraints, transmission constraints, generation analysis, unit commitment/operating conditions and market system operations. It performs an 8,760-hour centralized security constrained unit commitment and economic dispatch, recognizing generation and transmission impacts at the nodal level. It uses an hourly chronological dispatch algorithm that minimizes cost, while recognizing a variety of operating constraints.

These include generating unit characteristics, transmission limits, fuel and environmental considerations, reserve requirements and customer demand. It provides a wide spectrum of forecasts on hourly energy prices, unit generation, fuel consumption, energy market prices at bus level, regional energy interchanges, transmission flows and congestion prices.

To be able to perform a credible economic assessment on the recommended MVP portfolio, production cost models require detailed model input assumptions on generation, fuel, demand and energy, transmission topology and system configuration, described below.

8.1.2 Models

The primary economic analysis was performed with 2021 and 2026 production cost models, with incremental wind mandates considered for 2021, 2026 and 2031, respectively. Three various levels of wind mandates and loads were modeled: 2021 RPS mandates and load levels, 2026 RPS mandates and load levels and 2026 load levels, plus all generation enabled by the recommended MVP portfolio used to estimate benefits in year 2031.

The transmission topology was taken from the 2021 summer peak power flow model developed through the MTEP11 planning process. The 2026 production cost models used the same transmission topology as 2021. The PROMOD study footprint included the majority of the Eastern Interconnection with ISO-New England, Eastern Canada and Florida excluded. Although these regions have very limited impact on the study results, fixed transactions were modeled to capture the influence of these regions on the rest of the study footprint.

8.1.3 Event file

Production cost models use an "event file" to capture a set of transmission constraints. The constraints ensure system reliability by performing hourly security constrained unit commitment and economic dispatch. The event file was developed based on the latest Book of Flowgates from MISO and NERC, updated to incorporate rating and configuration changes from concurrent studies in the MTEP11 planning cycle. In addition, MUST AC analyses and PROMOD Analysis Tool (PAT) contingency screening analyses were performed to identify a number of additional monitored/contingencies to ensure the most severe limiters of the transmission system are captured in the event file. As an integral part of the study, stakeholders and interested parties were extensively involved in the review of the event file.

8.1.4 Benefit measure

Comprised of 17 projects spread across the MISO footprint, the recommended MVP portfolio enables the renewable energy delivery required by public policy mandates that could not otherwise be realized. To determine the economic benefits of the recommended MVP portfolio, two production cost model simulations were performed with and without the combination of the recommended MVP portfolio and the wind it enables. The difference between these two cases provides measurable benefits associated with the recommended MVP portfolio, focusing on Adjusted Production Cost savings according to the tariff provisions. Adjusted Production Cost is the annual generation fleet production costs, including fuel, variable operations and maintenance, start up cost and emissions, adjusted with off-system purchases and sales. Adjusted Production Cost savings are achieved through reduction of transmission congestion costs and more efficient use of generation resources across the system.

8.1.5 Policy driven future scenarios

To account for out-year public policy and economic uncertainties, MISO collaborated with its stakeholders to refresh available future policy scenarios to better align them with potential policy outcomes taking place. The future scenarios were designed to bookend the potential range of future policy outcomes, ensuring that all of the most likely future policy scenarios and their impacts were within the range bounded by the results. Four futures were refreshed and analyzed:

- Business As Usual with Continued Low Demand and Energy Growth (BAULDE) assumes that current energy policies will be continued, with continuing recession level low demand and energy growth projections.
- Business As Usual with Historic Demand and Energy Growth (BAUHDE) assumes that current energy policies will be continued, with demand and energy returning to pre-recession growth rates.
- Carbon Constrained assumes that current energy policies will be continued, with the addition of a carbon cap modeled on the Waxman-Markey Bill.
- Combined Energy Policy assumes multiple energy policies are enacted, including a 20 percent federal RPS, a carbon cap modeled on the Waxman-Markey Bill, implementation of a smart grid and widespread adoption of electric vehicles.

The various input assumptions and uncertain variables defined for each policy driven future dictate a unique set of generation expansion plans on a least cost basis to meet regional Resource Adequacy Requirements, detailed in Table 8.1.

Future Scenarios	Wind Penetration	Effective Demand Growth Rate	Effective Energy Growth Rate	Gas Price	Carbon Cost / Reduction Target
BAULDE	State RPS	0.78 percent	0.79 percent	\$5	None
BAUHDE	State RPS	1.28 percent	1.42 percent	\$5	None
Combined Energy Policy	20 percent Federal RPS by 2025	0.52 percent	0.68 percent	\$8	\$50/ton (42 percent by 2033)
Carbon Constrained	State RPS	0.03 percent	0.05 percent	\$8	\$50/ton (42 percent by 2033)

Table 8.1: MTEP11 Future Scenario Assumptions

8.1.6 Economic analysis results

A holistic economic assessment for the recommended MVP portfolio was performed against a wide range of future policy driven scenarios. This was done to minimize the risk imposed by the uncertainties around potential policy decisions. The future scenarios without any new energy policy mandates provide a baseline of the recommended MVP portfolio's benefits under current policy conditions. The evaluation of the Carbon Constrained and Combined Energy Policy future scenarios also provide "bookends" which help show the full range of benefits that may be provided by the portfolio.

8.1.7 Adjusted Production Cost savings and benefit spread

With the recommended MVP portfolio providing access to the lowest electric energy costs and relieving transmission congestion across the MISO footprint, the portfolio brought a wide range of adjusted production cost savings, from an estimated \$12.4 to \$28.3 billion in 20 year present value terms under the four selected future scenarios, as shown in Figure 8.2.

The recommended MVP portfolio also collects renewable energy from a distributed set of wind energy zones, enables the wind delivery and provides widespread regional benefits across the MISO footprint, regardless of future policy outcomes.

8.1.8 Generation displacement

Figure 8.3 summarizes the 2021 annual energy production changes between the base case and the change case. The recommended MVP portfolio enables the delivery of renewable energy to meet the near term RPS mandates of MISO states in a more reliable and economic manner, causing higher cost units to be displaced by the wind resources enabled by the proposed portfolio across the MISO footprint. Moreover, the recommended MVP portfolio allows low cost energy in the western regions to reach a wider footprint. It leads to a more efficient usage of generation resource across the entire study footprint, with some level of generation displacement occurring in external regions, particularly in PJM and SERC.

Figure 8.3: Generation displacement by region

8.1.9 Economic Variable Impact

The projected benefits of the recommended MVP portfolio depend on projections of future policy and economic variables. Figure 8.4 shows the impacts of economic variable assumptions on the projected economic benefits achieved by the recommended MVP portfolio, with the primary focus on the time of present value calculations and discount rate.

Considering solely the 'Business as Usual' future scenarios with no new energy policies, the recommended MVP portfolio will produce an estimated \$12.4 to \$40.9 billion in 20 to 40 year present value adjusted production cost savings, depending on the time, discount rates and rate of energy and demand growth. This benefit would increase to a maximum present value of \$91.7 billion under the Combined Energy Policy future scenario.

Figure 8.4: Adjusted Production Cost Benefits from recommended MVP portfolio

8.2 Operating reserves

In addition to the energy benefits quantified in the production cost analyses, the recommended MVP portfolio will also reduce operating reserve costs. The recommended MVP portfolio decreases congestion on the system, increasing the transfer capability into several key areas that would otherwise have to hold additional operating reserves under certain system conditions.

Figure 8.5: Operating reserve zones

MISO determined that the addition of the recommended MVP portfolio will eliminate the need for the Indiana operating reserve zone, as shown in Figure 8.5, and the need for additional system reserves to be held in other zones across the footprint would be reduced by half. This creates the opportunity to locate an average of 690,000 MWh of operating reserves annually where it would be most economical to do so, as opposed to holding these reserves in prescribed zones, creating benefits of \$28 to \$87 million in 20 to 40 year present value terms.

8.2.1 Analyses

Operating reserve zones are determined, on an ongoing basis, by monitoring the energy flowing through certain flowgates across the system. The zonal operating reserve requirements, based on the actual conditions from June 2010 through May 2011, are shown below in Table 8.2.

Zone	Total Requirement (MW)	Days with Requirement (#)	Average daily requirement (MW)
Missouri	95	1	95.1
Indiana	14966	53	282.4
N-Ohio	9147	15	609.8
Michigan	4915	17	289.1
Wisconsin	227	2	113.4
Minnesota	376	1	376.3

 Table 8.2: Historic operating requirements

Transfer analyses were performed to determine the changes in flows due to the addition of the recommended MVP portfolio to the system. These analyses were performed on both the most recent model used to create the operating reserve limitations, as well as on the 2021 MTEP11 power flow model.

Zone	Limiter	Contingency	Operating Model Change in Flows	MTEP11 Model Change in Flows
Missouri	Coffeen - Roxford 345	Newton-Xenia 345	-0.8%	-18.5%
Indiana	Bunsonville-Eugene 345	Casey-Breed 345	-17.5%	-87.2%
Indiana	Crete-St. Johns Tap 345	Dumont-Wilton Center 765	-4.5%	-9.4%
Michigan	Benton Harbor - Palisades 345	Cook - Palisades 345	-10.8%	-4.6%
Wisconsin	MWEX	N/A	-20.2%	-2.3%
Minnesota	Arnold-Hazleton 345	N/A	-60.9%	15.9%

Table 8.3: Change in transfers, pre-MVP minus post-MVP

As a result of these transfer analyses, it was determined that the need for the Indiana operating zone would be eliminated by the addition of the recommended MVP portfolio to the transmission system. Also, it was determined that the need for operating reserve requirements in other zones throughout the MISO footprint would be reduced by half.

The ability to locate reserves at the least-cost location, rather than in a specific zone, will drive a benefit equal to between \$5/MWh and \$7/MWh. These benefits were assumed to grow with load growth, at

roughly 1% per year. As a result, the recommended MVP portfolio will create \$33 to \$116 million in present value benefits.

IN Operating Reserve, no-MVP (MWh)	IN Operating Reserves, with MVP (MWh)	Other Zonal Operating Reserve, no-MVP (MWh)	Other Zonal Operating Reserves, with MVP (MWh)	Total Zonal Operating Reserves, no-MVP	Total Zonal Operating Reserves, with MVP	Nominal Benefits - Low (\$M)	Nominal Benefits - High (\$M)
359,195	0	354,252	177,126	713,446	177,126	\$2.68	\$3.75

8.3 System Planning Reserve Margin

The system planning reserve is calculated by determining the amount of generation required to maintain a one day in 10 years Loss of Load Expectation (LOLE). The reserve margin requirement is calculated through summing two components: the unconstrained system Planning Reserve Margin (PRM) and a congestion contribution. The recommended MVP portfolio reduces transmission congestion across MISO, thereby reducing the system PRM and decreasing the amount of generation required to meet the PRM. By reducing the PRM, the recommended MVP portfolio defers new generation, creating present value benefits equal to \$1.0 to \$5.1 billion in 2011 dollars under business as usual conditions. Results for each set of future scenarios and business case assumptions are shown in Table 8.5.

	20 year NPV		40 year NPV		
	3%	8.20%	3%	8.20%	
Business As Usual with Continued Low Demand and Energy Growth	\$1,460	\$1,023	\$1,869	\$1,151	
Business As Usual with Historic Demand and Energy Growth	\$3,811	\$1,281	\$5,093	\$1,496	
Combined Energy Policy	\$1,610	\$971	\$2,222	\$1,167	
Carbon Constraint	\$2,145	\$1,159	\$2,747	\$1,309	

Table 8.5: Planning	Reserve Marg	in Capacity	Reduction
---------------------	---------------------	-------------	-----------

8.3.1 Congestion Impact

Additional transmission investment may ease congestion in the system, reducing the congestion component used to calculate the system PRM and reducing the future capacity required to meet system load. The reduction in system congestion, as calculated through the production cost models as the reduction in congestion costs, was determined to be 21%.

In the 2011 Planning Year LOLE Study Report, it was determined that the system Planning Reserve Margin would begin to increase due to congestion in 2016. Congestion was found to increase by 0.3 percent annually, rising to 1.5 percent by 2020²⁶ and 4.5 percent by 2030.

The recommended MVP portfolio will decrease this congestion by 21 percent, when the entire portfolio is in-service. The reduction was phased-in to account for the different in-service dates of the various projects in the portfolio, with the congestion reduction starting at 3.5 percent in 2016 and growing linearly to 21 percent by 2021. This congestion reduction was multiplied by the pre-MVP congestion to find the total impact of the recommended MVP portfolio. This resulted in the congestion components shown in Table 8.6.

Year	Pre-MVP Congestion Component [1]	MVP Congestion Reduction Percentage [2]	MVP Congestion Reduction Impact [3]=[1]*[2]	Post-MVP Congestion Component [4]=[1]-[3]	
2011	0.0 percent	0.0 percent	0.0 percent	0.0 percent	
2012	0.0 percent	0.0 percent	0.0 percent	0.0 percent	
2013	0.0 percent	0.0 percent	0.0 percent	0.0 percent	
2014	0.0 percent	0.0 percent	0.0 percent	0.0 percent	
2015	0.0 percent	0.0 percent	0.0 percent	0.0 percent	
2016	0.3 percent	3.5 percent	0.0 percent	0.3 percent	
2017	0.6 percent	7.0 percent	0.0 percent	0.6 percent	
2018	0.9 percent	10.5 percent	0.1 percent	0.8 percent	
2019	1.2 percent	14.0 percent	0.2 percent	1.0 percent	
2020	1.5 percent	17.5 percent	0.3 percent	1.2 percent	
2021	1.8 percent	21.0 percent	0.4 percent	1.4 percent	
2022	2.1 percent	21.0 percent	0.4 percent	1.7 percent	
2023	2.4 percent	21.0 percent	0.5 percent	1.9 percent	
2024	2.7 percent	21.0 percent	0.6 percent	2.1 percent	
2025	3.0 percent	21.0 percent	0.6 percent	2.4 percent	
2026	3.3 percent	21.0 percent	0.7 percent	2.6 percent	
2027	3.6 percent	21.0 percent	0.8 percent	3.0 percent	
2028	3.9 percent	21.0 percent	0.8 percent	3.1 percent	
2029	4.2 percent	21.0 percent	0.9 percent	3.3 percent	
2030	4.5 percent	21.0 percent	0.9 percent	3.6 percent	

Table 8.6: Planning Reserve Margins Congestion Component

²⁶For more information, refer to table 5.1 in the Planning Year 2011 LOLE Study Report, at the link below: <u>https://www.misoenergy.org/Library/Repository/Study/LOLE/2011%20LOLE%20Study%20Report.pdf</u>

8.3.2 Planning Reserve Margin Reduction

The uncongested Planning Reserve Margin was set to 17.4 percent for the full study period. This margin was summed with the congestion component, as calculated above, to find the full Planning Reserve Margin Requirement, both with and without the recommended MVP portfolio. Figure 8.6 shows the expected system PRM for 2011 through 2030 accounting for congestion and system PRM relief from the recommended MVP portfolio.

Figure 8.6: Expected System PRM, with and without the recommended MVP portfolio

8.3.3 Deferred Capacity Calculation

Sufficient generation must be built to ensure that, as the system Planning Reserve Margin increases, enough capacity is available to meet the system load and Planning Reserve Margin requirements. A lower PRM will require less future generation investment, resulting in a reduction in required capital outlays.

Electric Power Research Institute (EPRI's) Electric Generation Expansion Analysis System (EGEAS) was used to calculate the capacity benefits from PRM reduction due to transmission investment. The EGEAS model requires load forecast data, existing generation data, planned generation capacity and Planning Reserve Margin target as inputs.

Two series of analyses were run. The first set of analyses, representing the pre-MVP case, contained higher Planning Reserve Margins. The second set of analyses held all the variables constant except for the Planning Reserve Margin, modeling the lower Planning Reserve Margin created by the proposed Multi Value Project portfolio. The difference in the required capacity expansion between the two models is a benefit of the recommended MVP portfolio.

Capacity Cost Savings = Cost Reference Case - Cost Change Case

EGEAS accurately captures the type and timing of resource additions that would occur with and without the Planning Reserve Margin (PRM) congestion relief. EGEAS outputs unit-by-unit capital fixed charge reports for each of these new capacity additions by year from 2011 through 2030. The capital cost of these capacity projections were then calculated as the 20-year or 40-year present values figures. These benefits include the reduction in annual fixed operations and maintenance charges from deferred capacity, as well as the capital charges from the reduced capacity requirements.

As can be seen in Figure 8.8 below, 400 MW of CT would be deferred by the additional of the recommended MVP portfolio in 2020, and 200 MW would be deferred in 2024. These results were documented for the Business as Usual with continued low demand growth rate future. Similar results were documented for the other futures.

Figure 8.8: Business as Usual capacity expansion results, PRM benefit

Figure 8.7: Capacity cost savings will be calculated by running two EGEAS cases.

8.4 Transmission line losses

The addition of the recommended MVP portfolio to the transmission network reduces overall system losses, which also reduces the generation needed to serve the combined load and transmission line losses. The energy value of these loss reductions is considered in the congestion and fuel savings benefits, but the loss reduction also helps to reduce future generation capacity needs. Specifically, when installed generation capacity is just sufficient to meet peak system load plus the planning reserve margin, a reduction in transmission losses reduces the amount of generation that must be built. This saves \$111 million to \$396 million in 2011 dollars, excluding the impacts of any potential future policies. Table 8.7 shows the capacity deferral results, depending on the timeline of the present value calculations, the discount rate and future scenarios analyzed.

	20 year NPV		40 year NPV	
	3%	8.20%	3%	8.20%
Business As Usual with Continued Low Demand and Energy Growth	\$317	\$229	\$396	\$251
Business As Usual with Historic Demand and Energy Growth	\$111	\$305	\$196	\$358
Combined Energy Policy	\$655	\$525	\$834	\$532
Carbon Constraint	\$737	\$229	\$749	\$248

Table 8.7: Transmission Line Losses Capacity Deferral

8.4.1 Transmission Losses Reduction

The transmission loss reduction was calculated through the PSS/E model. More specifically, the transmission line losses in the MTEP11 2021 summer peak models were compared, both with and without the recommended MVP transmission. This value was then used to extrapolate the transmission line losses for 2016 through 2021, assuming escalation at the normal demand growth rate.

8.4.2 Capacity Deferral Simulations

The change in required system capacity expansion due to the impact of the recommended MVP portfolio was calculated through a series of EGEAS simulations. In these simulations, the total system generation requirement was set to the system Planning Reserve Margin multiplied by the system load plus the system losses (Generation Requirements = $(1+PRM)^*(Load + Losses)$). To isolate the impact of the transmission line loss benefit, all variables in these simulations were held constant, except for the system losses.

Figure 8.9: System peak demand, with and without the recommended MVP portfolio

Multi Value Project Analysis Report

The difference in capital fixed charges and fixed operation and maintenance costs in the reference, or pre-MVP case, and the post-MVP case is equal to the capacity benefit from transmission loss reduction, due to the addition of the recommended MVP portfolio to the transmission system. This capacity benefit was studied for the four MTEP11 future scenarios and observed during the study period (2011-2030). The capital impact of the change in capacity was then captured between 2021-2040 for a 20-year benefit value, and 2021-2060 for a 40-year capacity benefit value. As can be seen in Figure 8.10, 200 MW of CT is deferred in 2020 in the Business As Usual with a Low Demand and Energy Future at 8.2 percent discount rate.

Figure 8.10: Business as Usual with Low Demand and Energy Capacity Additions, pre and post MVP

8.5 Wind turbine investment

As discussed previously, MISO determined a wind siting approach that results in a low cost solution, when transmission and generation capital costs are considered. This approach sources generation in a combination of local and regional locations, placing wind local to load, where less transmission is required; and regionally, where the wind is the strongest. However, this strategy depends on a strong regional transmission system to deliver the wind energy. Without this regional transmission backbone, the wind generation would have to be sited close to load, requiring the construction of significantly larger amounts of wind capacity to produce the renewable energy mandated by public policy.

Figure 8.11: Local versus combination wind siting

In the RGOS study, it was determined that 11 percent less wind would need to be built to meet renewable energy mandates in a combination local/regional methodology relative to a local only approach. This change in generation was applied to energy required by the renewable energy mandates, as well as the total wind energy enabled by the recommended MVP portfolio. This resulted in a total of 2.9 GW of avoided wind generation, as shown in Table 8.8

Year	Recommended MVP Portfolio Enabled Wind (MW)	Equivalent Local Wind Generation (MW)	Incremental Wind Benefit (MW)
Pre-2016	12,408	13,802	1,394
2016	17,276	19,217	547
2021	21,173	23,552	438
2026	23,445	26,079	255
Full Wind Enabled	25,675	28,559	251

Table 8.8: Renewable Energy Requirements, Combination versus Local Approach

The incremental wind benefits were monetized by applying a value of \$2.0 to \$2.9 million/MW, based on the US Energy Information Administration's estimates of the capital costs to build onshore wind, as updated in November 2010. The total wind enabled benefits were then spread between 2015 and 2030, with half of the pre-2021 values lumped into 2021 for the purpose of this analysis. Also, to avoid overstating the benefits of the combination wind siting, a transmission cost differential of approximately \$1.5 billion was subtracted from the overall wind turbine capital savings to represent the expected lower transmission costs required by a local-only siting strategy.

The low cost wind siting methodology enabled by the recommended MVP portfolio creates benefits ranging from a present value of \$1.4 to \$2.5 billion in 2011 dollars, depending on which business case assumptions are applied.

8.6 Transmission investment

In addition to relieving constraints under shoulder peak conditions, the recommended MVP portfolio will eliminate some future baseline reliability upgrades. A model simulating 2031 summer peak load conditions was created by growing the load in the 2021 summer peak model by approximately 8 GW, and this model was run both with and without the recommended MVP portfolio. The investment avoided through the addition of the recommended MVP portfolio into the transmission system, as determined through this analysis, is shown below in Table 8.9.

Avoided Investment	Upgrade Required	Miles
Galesburg to East Galesburg 138 kV	Bus Tie	N/A
Portage to Columbia 1 138 kV	Transmission line, < 345 kV	6
Portage to Columbia 2 138 kV	Transmission line, < 345 kV	6
Arrowhead to Bear Creek 230 kV	Transmission line, < 345 kV	1
Forbes to 44 Line Tap 115 kV	Transmission line, < 345 kV	1
Stone Lake Transformer 345/161 kV	Transformer	N/A
Port Washington to Saukville Bus 6 138 kV	Transmission line, < 345 kV	5
Port Washington to Saukville Bus 5 138 kV	Transmission line, < 345 kV	5
Ipava South to Macomb West 138 kV	Transmission line, < 345 kV	21
Lafayette Cincinnati St. to Purdue 138 kV	Transmission line, < 345 kV	1
Grace VT7 to Ortonville 115 kV	Transmission line, < 345 kV	25
East Kewanee to Kewanee South Street 138 kV	Transmission line, < 345 kV	0
Cloverdale to Stilesville 138 kV	Transmission line, < 345 kV	13
Wilmarth to Field South 345 kV	Transmission line, 345 kV	29
Dundee Transformer 161/115 KV	Transformer	N/A
Stileville to WVC Valley 138 kV	Transmission line, < 345 kV	6
Lafayette South to Lafayette Shadeland 138 kV	Transmission line, < 345 kV	3
Purdue Nw Junction Tap 1 to Westwood 2 138kV	Transmission line, < 345 kV	3
Plainfield South to WVC Valley 138 kV	Transmission line, < 345 kV	5
Antigo to Aurora Street 115 kV	Transmission line, < 345 kV	2
Latham to Kickapoo 138 kV	Transmission line, < 345 kV	5
Bunker Hill to Black Brook 115 kV	Transmission line, < 345 kV	8
Grace VT7 to Morris 115 kV	Transmission line, < 345 kV	14

Table 8.9: Avoided transmission investment

The cost of this avoided investment was estimated using generic transmission costs, as estimated from projects in the MTEP database. The costs of this transmission investment was estimated to be spread between 2027 and 2031. Also, to represent potential production cost benefits that may be missed through avoiding this investment, the value of avoiding the 345 kV transmission line was reduced by half.

Avoided Transmission Investment	Estimated Upgrade Cost
Bus Tie	\$1,000,000
Transformer	\$5,000,000
Transmission lines (per mile, for voltages under 345 kV)	\$1,500,000
Transmission lines (per mile, for 345 kV)	\$2,500,000

The recommended MVP portfolio eliminates the need for baseline reliability upgrades on 23 lines between 2026 and 2031. This creates benefits which have 20 and 40 year present values of \$268 and \$1,058 million, respectively.

Figure 8.12: Avoided transmission investment

8.7 Business case variables and impacts

The recommended MVP portfolio provides significant benefits under every scenario studied. The base business case was built upon a fixed set of energy policies, with variances in discount rates and time horizons driving the range of benefits. However, additional variables also have the potential to impact the benefits provided by the recommended MVP portfolio.

The most critical variables considered were:

- Future energy policies
 - o Includes a range of policy, demand and energy growth assumptions
 - Sensitivities were conducted to determine the impact of a legislated cost of carbon or national renewable energy mandate
- Length of Present Value Calculations: 20 or 40 years from the portfolio's in service date
- Discount Rate: 3 percent or 8.2 percent
- Natural gas prices: \$5-\$8 (Business as Usual Scenarios)

\$8-\$10 (Combination Policy and Carbon Constrained Futures)

• Wind turbine capital cost: 2.0 or 2.9 \$M/MW

To calculate the impact of any particular variable on the benefits provided by the recommended MVP portfolio, a series of analyses were performed. These analyses required changing a single variable, then comparing the resulting benefits and costs to a nominal case, which was defined as a 20 year present-value under an 8.2% discount rate. The maximum benefit-cost ratio was determined to be under a 40 year present value, using a 3% discount rate, high natural gas prices, and under the Combination Energy Policy future. The minimum benefit-cost ratio was calculated under a 20-year present value, using an 8.2% discount rate and assuming current economic policies continue under a continued economic recession.

Sensitivity Results (\$M)										
	Nominal Benefits	Low Wind Turbine Capital	High Wind Turbine Capital	3% Discount Rate	40 Year Present Values	Future Policy Scenario (Low Demand and Energy Growth)	Future Policy Scenario (Combination Policy)	Natural Gas Price (High)	Maximum Benefit Cost	Minimum / Benefit / Cost
Congestion and Fuel Savings	\$16,747	\$16,747	\$16,747	\$25,846	\$22,421	\$14,740	\$37,710	\$21,534	\$118,011	\$14,740
Operating Reserves	\$40	\$40	\$40	\$59	\$50	\$40	\$40	\$40	\$116	\$33
Transmission Line Losses	\$1,461	\$1,461	\$1,461	\$3,406	\$1,680	\$272	\$699	\$1,461	\$1,111	\$272
System Planning Reserve Margin	\$340	\$340	\$340	\$262	\$388	\$1,216	\$1,293	\$340	\$2.961	\$1,216
Wind Turbine Investment	\$2,635	\$1,936	\$3,334	\$2,194	\$2,635	\$2,635	\$2,635	\$2,635	\$2,778	\$1,936
Future Transmission Investment	\$295	\$ 295	\$295	\$537	\$406	\$295	\$ 295	\$ 295	\$ 1,058	\$268
Total Benefits	\$21,518	\$ 20,819	\$22,217	\$32,304	\$27,581	\$19,198	\$42,672	\$26,305	\$126,035	\$18,465
Total Costs	\$11,076	\$ 11,076	\$11,076	\$15,699	\$12,419	\$10,444	\$11,709	\$11,076	\$21,858	\$10,444
B/C	1.9	1.9	2.0	2.1	2.2	1.8	3.6	2.4	5.8	1.8

Table 8.11: Recommended MVP portfolio benefits sensitivities
Multi Value Project Analysis Report

Depending on which variables are assumed, the present value of the benefits created by the entire portfolio can vary between \$18.5 and \$126.0 billion in 20 to 40 year present value terms. This savings yield benefits ranging from 1.8 to 5.8 times the portfolio cost.

Figure 8.13: Benefit – cost variations due to business case assumptions

It should be noted that the benefits of the portfolio do not depend upon the implementation of any particular future energy policy to exceed the portfolio costs. Under existing energy policies, a conservative discount rate of 8.2 percent and 20 year present value terms, the portfolio produces benefits that are 1.8 times its cost. However, if other energy policies or enacted, or a lower discount rate is used, this benefit has the potential to greatly increase.

9 Qualitative and social benefits

The previous sections demonstrated that the recommended MVP portfolio provides widespread economic benefits across the MISO system. However, these metrics do not fully quantify the benefits of the portfolio. Other benefits, based on qualitative or social values, are discussed in the next section. These sections suggest that the quantified values from the economic analysis may be conservative because they do not account for the full potential benefits of the portfolio.

9.1 Enhanced generation policy flexibility

Although the recommended MVP portfolio was primarily evaluated on its ability to reliably deliver energy required by the renewable energy mandates, the portfolio will provide value under a variety of different generation policies. The energy zones, which were a key input into the MVP portfolio analysis, were created to support multiple generation fuel types. For example, the correlation of the energy zones to the existing transmission lines and natural gas pipelines were a major factor considered in the design of the zones as shown in Figure 9.1.

Figure 9.1: Energy zone correlation with natural gas pipelines

9.2 Increased system robustness

A transmission system blackout, or similar event, can have wide spread repercussions, resulting in billions of dollars of damage. The blackout of the Eastern and Midwestern U.S. during August 2003 affected more than 50 million people and had an estimated economic impact of between \$4 and \$10 billion.²⁷

The recommended MVP portfolio creates a more robust regional transmission system which decreases the likelihood of future blackouts by:

- Strengthening the overall transmission system by decreasing the impacts of transmission outages.
- Increasing access to additional generation under contingent events.
- Enabling additional transfers of energy across the system during severe conditions.

Figure 9.2: June 2011 LMP map with recommended MVP portfolio overlay

For example, the recommended MVP portfolio will allow the system to respond more efficiently during high load periods. During the week of July 17, 2011, high load conditions existed in the eastern portion of the MISO footprint, while the western portion of the footprint experienced lower temperatures and loads. Thermal limitations on west to east transfers across the system limited the ability of low cost generation from the west to serve the high load needs in the east, as shown in Figure 9.2. The recommended MVP portfolio will increase the transfer capability across the system, allowing access to additional generation resources to offset the impact and cost of severe or emergency conditions.

²⁷ Data sourced from: The Economic Impacts of the August 2003 Blackout, The Electricity Consumers Resource Council (ELCON)

9.3 Decreased natural gas risk

Figure 9.3: Historic U.S. natural gas electric power prices

Natural gas prices vary widely, causing corresponding fluctuations in the cost of energy from natural gas. Also, recent Environmental Protection Agency (EPA) regulations and proposed regulations limiting the emissions permissible from power plants will likely lead to more natural gas generation. This may cause the cost of natural gas to increase as demand increases. The recommended MVP portfolio can partially offset the natural gas price risk by providing additional access to generation that uses fuels other than natural gas (e.g. nuclear, wind, solar and coal) during periods with high natural gas prices. Assuming a natural gas price increase of 25 percent to 60 percent, the recommended MVP portfolio provides approximately a 5 to 40 percent higher adjusted production cost benefits.

9.3.1 Sensitivity Assumptions

A set of sensitivity analyses were performed in PROMOD to quantify the impact of changes in natural gas prices. The sensitivity cases maintained the same production cost modeling assumptions from the base business case analyses, except for the gas prices. The gas prices were increased from \$5 to \$8/MMBtu under the Business as Usual policy scenarios, and they were increased from \$8 to \$10/MMBtu under the Carbon Constrained and Combined Energy Policy scenarios. For each future scenario, the gas prices were increased starting in year 2011 and escalated by inflation thereafter.

9.3.2 Production cost benefit impact

The system production cost is driven by many variables, including fuel prices, carbon emission regulations, variable operations, management costs and renewable energy mandates. The increase in natural gas prices imposed additional fuel costs on the system, which in turn produced greater production cost benefits due to the inclusion of the recommended MVP portfolio. These increased benefits were driven by the efficient usage of renewable and low cost generation resources, as shown in

Figure 9.4.

Figure 9.4: Recommended MVP Portfolio Adjusted Production Cost savings by future

9.3.3 Market price impact

The increase in market prices, or Locational Marginal Pricing (LMPs), was also calculated through the PROMOD sensitivities. The LMP is driven by the characteristics of the generation fleet and congestion on the system. With a \$2-\$3 increase in natural gas prices, the generation weighted average LMP increased by an average value of \$7/MWh under a range of policy scenarios.

Figure 9.5: Annual generation weighted LMP with recommended MVP portfolio

9.4 Decreased wind generation volatility

As the geographical distance between wind generation increases, the correlation in the wind output decreases. This leads to a higher average output from wind for a geographically diverse set of wind plants, relative to a closely clustered group of wind plants. The recommended MVP portfolio will increase the geographic diversity of wind resources that can be delivered, increasing the average wind output available at any given time.

Figure 9.6: Wind Output correlation to distance between wind sites

9.5 Local investment and job creation

In addition to the direct benefits of the recommended MVP portfolio, studies have shown the indirect economic benefits of transmission investment. They estimated that, for each million dollars of transmission investment:

- Between \$0.2 and \$2.9 million of local investment is created.
- Between 2 and 18 employment years are created.²⁸

The wide variations in these numbers are primarily due to the extent to which materials, equipment and workers can be sourced from a 'local' region. For example, each million dollars of local investment supports 11 to 14 employment years of local employment, as compared to 2 to 18 employment years which are created for non-location specific transmission investment.

Figure 9.7: Annual Job Creation by Recommended MVP Portfolio

The recommended MVP portfolio supports the creation of between 17,000 and 39,800 local jobs, as well as \$1.1 to \$9.2 billion in local investment. This calculation is based upon a creation of \$0.3 to \$1.9 million local investment and 3 to 7 employment years per million of transmission investment. It also assumes that the capital investment for each MVP occurred equally over the 3 years prior to the project's in-service date.

²⁸ Source: *Employment and Economic Benefits of Transmission Infrastructure Investment in the U.S. and Canada*, The Brattle Group

9.6 Carbon reduction

With the recommended MVP portfolio delivering significant amounts of wind energy across MISO and the neighboring regions, carbon emissions were reduced because of the more efficient usage of the generation fleet with conventional generation resources displaced by wind. Figure 9.8 summarizes the carbon emission reductions in million tons for each scenario with a range of 8.3 to 17.8 million tons annually.

Figure 9.8: Carbon reduction by scenario

Multi Value Project Analysis Report

For the Combined Energy Policy and Carbon Constrained future scenarios, a \$50/ton carbon cost was included to meet aggressive carbon reduction targets, as required by the proposed Waxman-Markey legislation. If policies were enacted that mandate a financial cost of carbon, the benefits provided by the recommended MVP portfolio would increase by between \$3.8 and \$15.4 billion in 20 and 40 year present value terms respectively, as depicted in Figure 9.9.

Figure 9.9: Potential carbon benefits

10 Proposed Multi Value Project Portfolio Overview

Figure 10.1: 2011 recommended MVP portfolio

The recommended MVP portfolio consists of 17 projects spread across the MISO footprint. These projects work together with the existing transmission network to enhance the reliability of the system, support public policy goals and enable a more efficient dispatch of market resources. Table 10.1 describes the projects that make up the recommended MVP portfolio.

	Project		Voltage (kV)	In Service Year	Cost (M, 2011\$) ²⁹
1	Big Stone–Brookings	SD	345	2017	\$191
2	Brookings, SD–SE Twin Cities	MN/SD	345	2015	\$695
3	Lakefield Jct. Winnebago–Winco–Burt area & Sheldon–Burt area–Webster		345	2016	\$506
4	Winco–Lime Creek–Emery–Black Hawk–Hazleton	IA	345	2015	\$480
5	N. LaCrosse–N. Madison–Cardinal & Dubuque Co.–Spring Green–Cardinal		345	2018/2020	\$714
6	Ellendale-Big Stone		345	2019	\$261
7	Adair-Ottumwa	IA/MO	345	2017	\$149
8	Adair–Palmyra Tap		345	2018	\$98
9	Palmyra Tap-Quincy-Merdosia-Ipava & Meredosia-Pawnee	IL	345	2016/2017	\$392
10	Pawnee-Pana		345	2018	\$88
11	Pana–Mt. Zion–Kansas–Sugar Creek	IL/IN	345	2018/2019	\$284
12	Reynolds-Burr Oak-Hiple	IN	345	2019	\$271
13	Michigan Thumb Loop expansion	MI	345	2015	\$510
14	Reynolds–Greentown		765	2018	\$245
15	Pleasant Prairie–Zion Energy Center		345	2014	\$26
16	Fargo-Galesburg-Oak Grove	IL	345	2018	\$193
17	Sidney–Rising	IL	345	2016	\$76
Total					\$5,180

Table 10.1: Recommended MVP portfoli	Table	e 10.1:	Recommended	MVP	portfoli
--------------------------------------	-------	---------	-------------	-----	----------

²⁹ Costs shown are inclusive of transmission underbuild upgrades and upgrades driven by short circuit requirements.

10.1 Underbuild requirements

To ensure that the recommended MVP portfolio works well with the existing system to maintain reliability, MISO conducted analyses to determine any constraints that are present with the recommended MVP portfolio and not present without the portfolio. Any new constraints were identified for mitigations, and the appropriate mitigation was determined in coordination with the impacted Transmission Owners.

Below is a full list of the underbuild upgrades. These upgrades were identified through the steady state reliability analyses, using both off peak and peak models. No additional upgrades were identified through the stability analyses. Overall, approximately \$70 million of transmission investment is associated with the underbuild upgrades.

Table 10.2: Recommended MVP portfolio underbuild requirements

³⁰ Burr Oak to East Winamac upgrade also identified as part of the Meadow Lake wind farm upgrades.

10.2 Portfolio benefits and cost spread

A key principle of the MISO planning process is that the benefits from a given transmission project must be spread commensurate with its costs. The MVP cost allocation methodology distributes the costs of the portfolio on a load ratio share across the MISO footprint, so the recommended MVP portfolio must be shown to deliver a similar spread of benefits.

Each economic business case metric calculated for the full recommended MVP portfolio was analyzed to determine how it would accrue to stakeholders across the footprint. These results were then rolled up to a zonal level, based on the proposed Local Resource Zones for Resource Adequacy. This level of detail was chosen to provide stakeholders with an understanding of the benefits spread, without getting into a detail level which may be falsely precise due to the impact of individual stakeholder actions on actual benefit spreads.

The allocation of each of the economic metrics is discussed in more detail below.

10.2.1 Congestion and Fuel Savings

The Production Cost model simulations return results at a granular, generator-specific level. These results were then rolled up from this detailed level to a zonal level.

10.2.2 Operating Reserve Benefits

The costs of Operating Reserves were allocated across the footprint on a load-ratio share basis. This distribution matches the allocation of these costs through the MISO Energy and Ancillary Service markets. As such, although certain areas in the footprint may see reductions in the Operating Reserves they must hold within their area, the benefits of the more economic dispatch of these resources will be shared by the full MISO footprint.

10.2.3 System Planning Reserve Margin Benefits

The benefits accruing from the reduction in the system Planning Reserve Margin (PRM) were distributed across the footprint on a load-ratio share basis. This allocation was selected due to the widespread nature of the system PRM; the reduced planning margin will apply to all load in the MISO system, reducing the capacity needs for the full system.

10.2.4 Transmission Line Loss Benefits

The benefits accruing from the reduction in transmission line losses were allocated across the footprint on a load-ratio share basis. This approach reflects the integrated nature of the transmission system, as the market allows generation to be transported large distances to remote load. This integrated nature is enhanced by the inclusion of the recommended MVP portfolio into the transmission system, as congestion is reduced, and transfer capacity is increased, across the system.

10.2.5 Wind Turbine Investment

The benefits of reducing the required investment in wind turbines are not applicable for areas that do not have either renewable energy mandates or goals that can be sourced from outside the area. This benefit is also enhanced for areas with lower wind capacity factors, as the differential in wind turbine investment is substantially higher for these areas than for those with, on average, higher wind speeds. As a result, this benefit was allocated to the zones through a weighted average of the renewable energy mandates or needs that can be sourced outside of the zone, along with the relative wind capacity factors, when compared to the system's highest wind speed area.

Zone	Average Capacity Factor	Capacity Factor Differential From System Maximum	Average Out- of-State Renewable Mandates or Goals (%)	Out-of-State Renewable Generation Mandates or Goals (MW)	2026 Projected Load (GWh)	Out-of-State Renewable Generation Mandates or Goals (GWh)	Renewable Generation Weighted by Capacity Factor Differential	Zonal Allocation
1	38%	5%	28%		108,371	29,927	1,446	19%
2	28%	16%	10%		80,267	8,027	1,260	16%
3	36%	8%	N/A	3,000	55,648	9,338	716	9%
4	28%	16%	18%		60,063	11,087	1,730	22%
5	33%	10%	14%		55,485	7,788	809	10%
6	29%	14%	9%		143,528	13,013	1,833	24%
7	28%	15%	0%		119,017	-	-	0%

Table 10.3: Wind Turbine Investment Allocation³¹

³¹ All values shown in the table exclude in-state renewable energy goals or mandates.

10.2.6 Future Transmission Investment

Higher voltage Baseline Reliability Projects (BRPs), under Attachment FF of the MISO Tariff, are allocated as a mixture of system wide costs and local costs. More specifically, 20% of the costs of the transmission upgrades are allocated across the system, and 80% of the project costs are allocated to affected pricing zones.

The benefits accruing from the ability of the recommended MVP portfolio to avoid future Baseline Reliability Project investment was allocated using this methodology.

10.2.7 Costs Distribution

The costs of the portfolio were allocated across the footprint on a load-ratio share basis, as required by the Multi Value Project cost allocation methodology. Additional information on the distribution of the costs of the Multi Value Project portfolio may be found in the following section, section 10.3.

10.2.8 Zonal Benefit-Cost Ratio

Figure 10.2: Recommended MVP portfolio production cost benefits spread

The recommended MVP portfolio provides benefits across the MISO footprint in a manner that is roughly equivalent to its costs allocation. For each of the local resource zones, as shown in Figure 10.2, the portfolio's benefits are at least 1.6 to 2.9 times the cost allocated to the zone.

10.3 Cost allocation

Multi Value Projects represent a new project type eligible for cost sharing effective since July 16, 2010, and conditionally accepted by the Federal Energy Regulatory Commission on December 16, 2010. Multi

The costs of Multi Value Projects will have a 100 percent regional allocation and will be recovered from customers through a monthly energy usage charge calculated using the applicable MVP Usage Rate. Value Projects provide numerous benefits, including, improved reliability, reduced congestion costs, and meeting public policy objectives.

The proposed Multi Value Project portfolio described in this report includes the Michigan Thumb Loop project, approved in August 2010; the Brookings to Minneapolis-St. Paul project, conditionally approved in June 2011; and 15 additional projects being proposed to the MISO Board of Directors for approval in December 2011. The cost of the recommended MVP portfolio in 2011 dollars is \$5.2 billion, including the \$1.2 billion in projects that have previously been approved or conditionally approved by the MISO Board of Directors. See Table 10.1 for individual project costs.

The costs of Multi Value Projects will have a uniform 100

percent regional allocation based on withdrawals and will be recovered from customers through a monthly energy usage charge. This charge will apply to all MISO load, excluding load under Grandfathered Agreements, and also to export and wheel-through transactions not sinking in PJM.

Figure 10.3 shows a 40-year projection of indicative annual MVP Usage Rates based on the recommended MVP portfolio using current year cost estimates and estimated in-service dates. Additional detail on the indicative MVP Usage Rate, including indicative annual MVP charges by Local Balancing Authority, is included in Appendix A-3 of the MTEP11 report.

Figure 10.3: Indicative MVP usage rate for recommended MVP portfolio from 2012 to 2051

11 Conclusions and recommendations

MISO staff recommends the recommended MVP portfolio to the MISO Board of Directors for their review and approval. This recommendation is premised on the ability of the portfolio to meet MVP criterion 1, as each project in the portfolio was shown to more reliably enable the delivery of wind generation in support of the renewable energy mandates of the MISO states in a cost effective manner.

The recommendation is also supported by the strong economic benefits of the portfolio, which delivers a large amount of value in excess of costs under all conditions and policy scenarios studied. Furthermore, these benefits are spread across the MISO footprint, in a manner commensurate with the allocation of the portfolio's costs.

MTEP17 MVP Triennial Review

A 2017 review of the public policy, economic, and qualitative benefits of the Multi-Value Project Portfolio

September 2017

Schedule JTS-2 Page 1 of 51

Table of Contents

Exe	Executive Summary4					
1.	Stu	itudy Purpose and Drivers				
2.	2. Study Background					
3.	MTI	EP17 MVP Review Model Development				
3	.1	Economic Models	15			
3	.2	Capacity Expansion Models	17			
3	.3	Reliability Models	17			
3	.4	Capacity Import Limit Models				
3	.5	Loss of Load Expectation Models				
4.	Pro	ject Costs and In-Service Dates				
5.	Por	tfolio Public Policy Assessment	21			
5	.1	Wind Curtailment	21			
5	.2	Wind Enabled	21			
6.	Por	tfolio Economic Analysis	23			
6	.1	Congestion and Fuel Savings	25			
6	.2	Operating Reserves				
6	.3	Planning Reserve Margin Requirements				
6	.4	Transmission Line Losses				
6	.5	Wind Turbine Investment				
6	.6	Future Transmission Investment				
7.	Qua	alitative and Social Benefits				
7			Error! Bookmark not defined.			
7	.1	Enhanced Generation Flexibility				
7	.2	Increased System Robustness				
7	.3	Decreased Natural Gas Risk				
7	.4	Decreased Wind Generation Volatility				
7	.5	Local Investment and Jobs Creation	40			
7	.6	Carbon Reduction	<u>م</u> ۱۱			
8.	Hist	torical Data Review	41			
			Error! Bookmark not defined.			
2 2	. 1	Introduction	<i></i>			
0						

2017 MVP TRIENNIAL REVIEW REPORT

8.2	Congestion Costs and Energy Prices	41		
8.3	Fuel Costs	45		
8.4	Planning Reserve Margin Requirements	46		
8.5	Newly Interconnected Resources	47		
8.6	Share of Energy Supplied	48		
8.7	Conclusions	50		
9. Co	9. Conclusions and Going Forward			

Executive Summary

The MTEP17 Triennial Multi-Value Project (MVP) Review provides an update of the projected economic, public policy and qualitative benefits of the MVP Portfolio. The MTEP17 MVP Triennial Review's business case is on par with, if not better than, MTEP11, providing evidence that the MVP criteria and methodology works as expected. Analysis shows that projected MISO North and Central Region benefits provided by the MVP Portfolio have increased since MTEP11, the analysis from which the portfolio's business case was approved.

Analysis shows that projected benefits provided by the MVP Portfolio have increased since MTEP11.

The MTEP17 results demonstrate the MVP Portfolio:

- Provides benefits in excess of its costs, with its benefit-to-cost ratio ranging from 2.2 to 3.4; an increase from the 1.8 to 3.0 range calculated in MTEP11
- Creates \$12.1 to \$52.6 billion in net benefits over the next 20 to 40 years
- Enables 52.8 million MWh of wind energy to meet renewable energy mandates and goals through year 2031

Benefit increases are primarily congestion and fuel savings, largely driven by the changing MISO fleet, carbon costs and updated system landscape.

The fundamental goal of the MISO's planning process is to develop a comprehensive expansion plan that meets the reliability, policy and economic needs of the system. Implementation of a value-based planning process creates a consolidated transmission plan that delivers regional value while meeting near-term system needs. Regional transmission solutions, or MVPs, meet one or more of three goals:

- · Reliably and economically enable regional public policy needs
- Provide multiple types of regional economic value
- Provide a combination of regional reliability and economic value

MISO conducted its second triennial MVP Portfolio review, per tariff requirement, for MTEP17. The MVP Review has no impact on the existing MVP Portfolio cost allocation and is performed solely for

informational purposes. The intent of the MVP Review is to use the review process and results to identify potential modifications to the MVP methodology and its implementation for projects to be approved at a future date.

The MVP Review uses stakeholder-vetted models and makes every effort to follow procedures and assumptions consistent with the MTEP11 analysis. Metrics that required any changes to the benefit valuation due to changing tariffs, procedures or conditions are highlighted. Consistent with The Triennial MVP Review has no impact on the existing MVP Portfolio cost allocation. The intent of the MVP Review is to identify potential modifications to the MVP methodology for projects to be approved at a future date.

MTEP11, the MTEP17 MVP Review assesses the benefits of the entire MVP Portfolio and does not differentiate between facilities currently in-service and those still in planning stages. Because the MVP Portfolio's costs are allocated solely to the MISO North and Central Regions, only MISO North and Central Region benefits are included in the MTEP17 MVP Triennial Review.

Public Policy Benefits

The MTEP17 MVP Review reconfirms the MVP Portfolio's ability to deliver wind generation, in a costeffective manner, in support of MISO States' renewable energy mandates. Renewable Portfolio Standards assumptions¹ have only had minor changes since the MTEP11 analysis.

Updated analyses find that 11.3 GW of dispatched wind would be curtailed in lieu of the MVP Portfolio, which extrapolates to 60.5 percent of the 2031 full Renewable Portfolio Standard (RPS) energy. MTEP14 and MTEP11 analyses both showed a similar percentage of their full RPS energy would be curtailed without the installation of the MVP Portfolio. The minor differences between studies can be attributed to new transmission upgrades represented in the system models and the changes in actual physical locations of installed wind turbines.

In addition to allowing energy to not be curtailed, analyses determined that 5.1 GW of wind generation in excess of the 2031 requirements is enabled by the MVP Portfolio. For their respective models years, MTEP11 and MTEP14 analyses determined that 2.2 GW and 3.4 GW of additional generation could be sourced from the incremental energy zones.

When the results from the curtailment analyses and the wind-enabled analyses are combined, MTEP17 results show the MVP Portfolio enables a total of 52.8 million MWh of renewable energy to meet the renewable energy mandates through 2031. System wide, the MTEP17 wind enablement amount is substantively similar to 2014 and 2011 analyses — 43 million MWh and 41 million MWh, respectively.

Economic Benefits

MTEP17 analysis shows the Multi-Value Portfolio creates \$22.1 to \$74.8 billion in total benefits to MISO North and Central Region members (Figure E-1). Total portfolio costs have increased from \$5.56 billion in MTEP11 to \$6.65 billion in MTEP17. Even with the increased portfolio cost estimates, the increased MTEP17 congestion and fuel savings benefit forecasts result in portfolio benefit-to-cost ratios that have increased since MTEP11.

¹ Assumptions include Renewable Portflio Standard levels and fulfillment methods

Benefit by Value Driver (20 to 40 year present values, in 2017\$ million)

Figure E-1: MVP Portfolio Economic Benefits from MTEP17 MVP Triennial Review

Increased Market Efficiency

The MVP Portfolio allows for a more efficient dispatch of generation resources, opening markets to competition and spreading the benefits of low-cost generation throughout the MISO footprint. The MVP Review estimates that the MVP Portfolio will yield \$20 to \$71 billion in 20- to 40-year present value adjusted production cost benefits to MISO's North and Central regions.

The MVP Review estimates that the MVP Portfolio will yield \$20 to \$71 billion in 20- to 40-year present value adjusted production cost benefits to MISO's North and Central regions.

The MVP Portfolio allows access to wind units with a nearly \$0/MWh production cost and primarily replaces natural gas units in the dispatch, which makes the MVP Portfolio's fuel savings benefit projection highly correlated to the natural gas price assumption. A sensitivity applying the MTEP14 Business-as-Usual gas price assumptions to the MTEP17 MVP Triennial Review model showed a 27 percent reduction in the 20-year MTEP14 Present Value congestion and fuel savings benefits. Also, approximately 38 percent of the difference between the MTEP17 and MTEP14 present value congestion and fuel savings benefit is attributable to the carbon costs, wind enablement, coal retirements and topology changes (Figure E-2).

MISO

2017 MVP TRIENNIAL REVIEW REPORT

Figure E-2: Breakdown of Congestion and Fuel Savings Increase from MTEP14 to MTEP17

The MTEP17 Policy Regulation future's national CO_2 emissions were priced at \$5.80/ton, which increased the congestion and fuel savings benefit by 10 percent relative to MTEP14. The MTEP14 model did not include carbon emission costs in the production cost calculation. The wind enabled through the MVP's offset more expensive generation, with carbon costs, to lead to the slight increase in MVP benefits.

Within the MTEP17 Policy Regulatory (PR) future assumptions MISO forecasted approximately 16 GW of coal retirements driven by both age and policy assumptions. The MTEP14 Triennial Review models included 12.6 GW of assumed coal retirements. The coal unit retirement assumption in MTEP17 PR future resulted in an increase in congestion and fuel savings of 9.4 percent. The additional 18.9 percent in increased benefits is driven by the increase in wind enabled by the MVPs as well as topology changes from MTEP14 to MTEP17.

In addition to the energy benefits quantified in the production cost analyses, the 2011 business case showed the MVP Portfolio also reduces operating reserve costs. The MVP Review does not estimate a reduced operating reserve benefit in 2017, as a conservative measure, because of the decreased number of days a reserve requirement was calculated since the MTEP11 analysis.

Deferred Generation Investment

The addition of the MVP Portfolio to the transmission network reduces overall system losses, which also reduces the generation needed to serve the combined load and transmission line losses. Using current

capital costs, the deferment from loss reduction equates to a MISO North and Central Regions' savings of \$234 to \$1,061 million — nearly double the MTEP11 values as a result of tighter reserve margins.

The previous MVP Triennial Review in MTEP14 estimated a deferred capacity value of \$75.8 million due to the expected capacity shortage in Local Resource Zone (LRZ) 3 without the addition of the MVPs. With the refreshed analysis using updated system topology and expected capacity resources, MISO no longer expects a capacity shortfall in LRZ 3. As a result, the MVP Review does not estimate any deferred capacity benefits in the MTEP17 MVP Review.

Other Capital Benefits

The MTEP17 Triennial MVP Review found that the benefits from the optimization of wind generation siting to be \$1.2 to \$1.4 billion. These benefits are lower relative to MTEP11 and MTEP14 which is primarily due to a 40 percent decrease in the estimated wind capital costs.

Consistent with MTEP11, the MTEP17 MVP Triennial Review shows that the MVP Portfolio eliminates the need for \$300 million in future baseline reliability upgrades. The magnitude of estimated benefits is in close proximity to the estimates from MTEP11 and MTEP14; however, the actual identified upgrades are different as a result of load growth, generation dispatch, wind levels and transmission upgrades.

Distribution of Economic Benefits

The MVP Portfolio provides benefits across the MISO footprint in a manner that is roughly equivalent to costs allocated to each LRZ (Figure E-3). The MVP Portfolio's benefits are at least 1.5 to 2.6 times the cost allocated to each zone. Differences in zonal distribution relative to MTEP11 and MTEP14 are a result of changing tariffs/business practices (planning reserve margin requirement and baseline reliability project cost allocation), generation dispatch, wind siting and load levels.

Qualitative and Social Benefits

Aside from widespread economic and public policy benefits, the MVP Portfolio also provides benefits based on qualitative or social values. The MVP Portfolio:

- Enhances generation flexibility
- Creates a more robust regional transmission system that decreases the likelihood of future blackouts
- Increases the geographic diversity of wind resources that can be delivered, increasing the average wind output available at any given time
- Supports the creation of thousands of local jobs and billions in local investment
- Reduces carbon emissions by 13 to 21 million tons annually

These benefits suggest quantified values from the economic analysis may be conservative because they do not account for the full potential benefits of the MVP Portfolio.

Historical Review

The MTEP17 MVP Review is the first cycle to provide a quantitative and qualitative look at how the inservice MVPs may have impacted certain historical market metrics. With only four of the 17 MVPs presently in service, no definitive conclusions could be made as a result of this analysis. However, correlations between congestion improvements on targeted flow gates and upward trends of wind resource interconnections and energy supplied were observed from the limited available data. As a larger statistical sample size becomes available in future reviews, a more detailed discussion on MVP impacts will be provided.

Going Forward

MTEP18 and MTEP19 will feature a Limited Review of the MVP Portfolio benefits. Each Limited Review will provide an updated assessment of the congestion and fuel savings using the latest portfolio costs and in-service dates. The next full triennial review will be performed in MTEP20.

9

1. Study Purpose and Drivers

In 2017, MISO performed its second triennial review of the Multi-Value Project (MVP) Portfolio benefits. The MVP Portfolio was studied and approved in 2011 as a part of MISO's annual transmission expansion plan (MTEP), with a tariff requirement to conduct a full review every three years. The first triennial review was completed in 2014. The MTEP17 Triennial MVP Review provides an updated view into the projected

The MVP Triennial Review has no impact on the existing Multi-Value Project Portfolio cost allocation. The study is performed solely for information purposes.

economic, public policy and qualitative benefits of the MTEP11-approved MVP Portfolio.

The MVP Review has no impact on the existing MVP Portfolio cost allocation. Analysis is performed solely for information purposes. The intent of the MVP Reviews is to use the review process and results to identify potential modifications to the MVP methodology and its implementation for projects to be approved at a future date. The MVP Reviews are intended to verify if the MVP criteria and methodology is working as expected.

The MVP Review uses stakeholder-vetted models and makes every effort to follow consistent procedures and assumptions as the Candidate MVP, also known as the MTEP11 analysis. Any metrics that required changes to the benefit valuation due to revised tariffs, procedures or conditions are highlighted throughout the report. Wherever practical, any differences between MTEP17, MTEP14 and MTEP11 assumptions are noted and the resulting differences quantified.

Consistent with MTEP11, the MTEP17 MVP Review assesses the benefits of the entire MVP Portfolio and does not differentiate between facilities currently in-service and those still being planned. The latest MVP cost estimates and in-service dates are used for all analyses.

Schedule JTS-2 Page 10 of 51

2. Study Background

The MVP Portfolio (Figure 2-1 and Table 2-1) represents the culmination of more than eight years of planning efforts to find a cost-effective regional transmission solution that meets local energy and reliability needs.

In MTEP11, the MVP Portfolio was justified based its ability to:

- Provide benefits in excess of its costs under all scenarios studied, with its benefit-to-cost ratio ranging from 1.8 to 3.0
- Maintain system reliability by resolving reliability violations on approximately 650 elements for more than 6,700 system conditions and mitigating 31 system instability conditions
- Enable 41 million MWh of wind energy per year to meet renewable energy mandates and goals
- Provide an average annual value of \$1,279 million over the first 40 years of service, at an average annual revenue requirement of \$624 million
- Support a variety of generation policies by using a set of energy zones that support wind, natural gas and other fuel sources

Figure 2-1: MVP Portfolio²

² Figure for illustrative purposes only. Final line routing may differ.

ID	Project	State	Voltage (kV)
1	Big Stone–Brookings	SD	345
2	Brookings, SD–SE Twin Cities		345
3	Lakefield JctWinnebago-Winco-Burt Area & Sheldon-Burt Area-Webster		345
4	Winco-Lime Creek-Emery-Black Hawk-Hazleton	IA	345
5	LaCrosse–N. Madison–Cardinal & Dubuque Co–Spring Green–Cardinal	WI	345
6	Ellendale-Big Stone	ND/SD	345
7	Adair-Ottumwa	IA/MO	345
8	Adair-Palmyra Tap	MO/IL	345
9	Palmyra Tap–Quincy–Merdosia–Ipava & Meredosia–Pawnee	IL	345
10	Pawnee-Pana	IL	345
11	Pana-Mt. Zion-Kansas-Sugar Creek	IL/IN	345
12	Reynolds-Burr Oak-Hiple	IN	345
13	Michigan Thumb Loop Expansion	MI	345
14	Reynolds-Greentown	IN	765
15	Pleasant Prairie–Zion Energy Center	WI/IL	345
16	Fargo-Galesburg–Oak Grove	IL	345
17	Sidney–Rising	IL	345

Table 2-1: MVP Portfolio

In 2008, the adoption of Renewable Portfolio Standards (RPS) (Figure 2-2) across the MISO footprint drove the need for a more regional and robust transmission system to deliver renewable resources from often remote renewable energy generators to load centers.

Figure 2-2: Renewable Portfolio Standards, 2011

Beginning with the MTEP 2003 Exploratory Studies, MISO and stakeholders began to explore how to best provide a value-added regional planning process to complement the local planning of MISO members. These explorations continued in later MTEP cycles and in specific targeted studies. In 2008, MISO began the Regional Generation Outlet Study (RGOS) to identify a set of value-based transmission projects necessary to enable Load Serving Entities (LSEs) to meet their RPS mandates. It accomplished this with the assistance of state regulators and industry stakeholders such as the Midwest Governor's Association (MGA), the Upper Midwest Transmission Development Initiative (UMTDI) and the Organization of MISO States (OMS).

While much consideration was given to wind capacity factors when developing the energy zones utilized in the RGOS and MVP Portfolio analyses, the zones were chosen with consideration of more factors than wind capacity. Existing infrastructure, such as transmission and natural gas pipelines, also influenced the selection of the zones. As such, although the energy zones were created to serve the renewable generation mandates, they could be used for a variety of different generation types to serve various future generation policies.

Common elements between the RGOS results and previous reliability, economic and generation interconnection analyses were identified to create the 2011 candidate MVP portfolio. This portfolio represented a set of "no regrets" projects that were believed to provide multiple kinds of reliability and economic benefits under all alternate futures studied. Over the course of the MVP Portfolio analysis, the Candidate MVP Portfolio was refined into the portfolio that was approved by the MISO Board of Directors in MTEP11.

The MVP Portfolio enables the delivery of the renewable energy required by public policy mandates in a manner more reliable and economical than without the associated transmission upgrades. Specifically, the portfolio mitigates approximately 650 reliability constraints under 6,700 different transmission outage conditions for steady state and transient conditions under both peak and shoulder load scenarios. Some of these conditions could be severe enough to cause cascading outages on the system. By mitigating these constraints, approximately 41 million MWh per year of renewable generation can be delivered to serve the MISO state renewable portfolio mandates.

Under all future policy scenarios studied, the MVP Portfolio delivered widespread regional benefits to the transmission system. To use conservative projections relating only to the state renewable portfolio mandates, only the Business as Usual future was used in developing the candidate MVP business case.

The projected benefits are spread across the system, in a manner commensurate with costs (Figure 2-3).

2017 MVP TRIENNIAL REVIEW REPORT

Figure 2-3: MTEP11 MVP Portfolio Benefit Spread

Taking into account the significant economic value created by the portfolio, the distribution of these value, and the ability of the portfolio to meet MVP criteria through its reliability and public policy benefits, the MVP Portfolio was approved by the MISO Board of Directors in MTEP11.

Schedule JTS-2 Page 14 of 51

3. MTEP17 MVP Review Model Development

The MTEP17 MVP Triennial Review uses MTEP17 economic models as the basis for the analysis. The MTEP17 economic models were developed in 2016 with topology based on the MISO powerflow models from the MTEP16 reliability study. To maintain consistency between economic and reliability models, MVP Triennial Review wind curtailment and enablement analysis was performed with MTEP16 vintage powerflows.

MTEP17 economic models, developed in 2016, are the basis for the MTEP17 MVP Triennial Review.

The MTEP models were developed through an open stakeholder process and vetted through the appropriate MISO stakeholder committees, including MISO Planning Advisory Committee, Planning Subcommittee, Modeling Users Group and Economic Planning Users Group. The details of the economic and reliability models used in the MTEP17 MVP Triennial Review are described in the following sections. The MTEP models are available via the MISO FTP site with proper licenses and confidentiality agreements.

3.1 Economic Models

The MVP Benefit Review uses PROMOD IV as the primary tool to evaluate the economic benefits of the MVP Portfolio. The MTEP17 MISO North/Central economic models, stakeholder vetted in 2016, are used as the basis for the MTEP17 Review. The same economic models are used in the MTEP17 Market Congestion Planning Study.

In previous reviews, including MTEP11, MISO utilized a Business as Usual (BAU) future scenario to represent a status quo environment; generally including existing standards for renewable mandates and little or no change in environmental legislation. A BAU future was not developed for MTEP17. To replicate the MTEP11 MVP business case³ as close as possible, the MTEP17 Review will rely on the Policy Regulation (PR) future.

To replicate the MTEP11 MVP business case as close as possible, the MTEP17 Review will rely on the Policy Regulation (PR) future.

Similar to previous cycles' BAU futures, the MTEP17 PR future includes mid or base levels of demand and energy growth rates, fuel prices and uncertainty variables. The primary difference between the MTEP17 PR and previous cycles' BAU futures is the inclusion of a carbon reduction target in the MTEP17 PR. The MTEP17 Triennial Review was performed both with and without the carbon reduction target applied for comparability, but default values in the MTEP17 include the carbon constraint per the future definition.

MTEP11 analysis relied on two definitions of the BAU future — one with a slightly higher baseline growth rate and one with a slightly lower growth rate (Table 3-1), and MTEP14 utilized a single BAU future scenario in the previous review. As such, all MTEP17 Triennial MVP Review results in this report will be compared to the arithmetic mean of the MTEP11 Low BAU and High BAU results and MTEP14 BAU results (where applicable).

³ The Candidate MVP Analysis provided results for information purposes under all MTEP11 future scenarios; however, the business case only used the Business as Usual futures.

2017 MVP TRIENNIAL REVIEW REPORT

		MTEP17 PR	MTEP14 BAU	MTEP11 Low BAU	MTEP11 High BAU
Demand and	Demand Growth Rate	0.64%	1.06%	1.26%	1.86%
Energy	Energy Growth Rate	0.65%	1.06%	1.26%	1.86%
	Starting Point	2.26 \$/MMBTU	3.75 \$/MMBTU	5.38 \$/MMBTU	5.38 \$/MMBTU
Natural	2021 Price	3.85 \$/MMBTU	6.26 \$/MMBTU	6.07 \$/MMBTU	6.58 \$/MMBTU
Forecast ⁴	2026 Price	4.45 \$/MMBTU	8.36 \$/MMBTU	6.62 \$/MMBTU	7.59 \$/MMBTU
	Demand Growth Rate	5.20 \$/MMBTU	10.59 \$/MMBTU	7.22 \$/MMBTU	8.77 \$/MMBTU
Fuel Cost	Oil	Powerbase Default	Powerbase Default	Powerbase Default	Powerbase Default
(Starting Price)	Coal	Powerbase Default	Powerbase Default	Powerbase Default	Powerbase Default
	Uranium	1.08 \$/MMBTU	1.23 \$/MMBTU	1.21 \$/MMBTU	1.21 \$/MMBTU
Fuel	Oil	2.50%	2.50%	1.74%	2.91%
Fuel	Coal	2.50%	2.50%	1.74%	2.91%
Esculation	Uranium	2.50%	2.50%	1.74%	2.91%
	Inflation	2.50%	2.50%	1.74%	2.91%
Other Variables	Retirements	Known + Historical Retirement Trend ~16,000 MW	Known + EPA Driven Forecast MISO ~12,600 MW	Known Retirements MISO ~400 MW	Known Retirements MISO ~400 MW
	Renewable Levels	State Mandates	State Mandates	State Mandates	State Mandates
MISO Footprint		Duke and FE in PJM; includes MISO South	Duke and FE in PJM; includes MISO South	MTEP11	MTEP11

Table 3-1: MTEP17, MTEP14 and MTEP11 Key PROMOD Model Assumptions

Models include all publically announced retirements as well as baseline generation retirements driven by economics.

MISO footprint changes since the MTEP11 analysis are modeled verbatim to current configurations, i.e. Duke Ohio/Kentucky and First Energy are modeled as part of PJM and the MISO pool includes the MISO South Region. While the MISO pool includes the South Region, only the MISO North and Central Region benefits are being included in the MTEP17 MVP Triennial Review's business case.

MTEP16 powerflow models for the year 2026 are used as the base transmission topology for the MVP Triennial Review. Because there are no significant transmission topology changes known between years 2026 and 2031, the 2031 production cost models use the same transmission topology as 2026.

PROMOD uses an "event file" to provide pre- and post-contingent ratings for monitored transmission lines. The latest MISO Book of Flowgates and the NERC Book of Flowgates are used to create the event file of transmission constraints in the hourly security constrained model. Ratings and configurations are updated for out-year models by taking into account all approved MTEP Appendix A projects for the model series.

⁴ MTEP11 and MTEP13 use different natural gas escalation methodologies; all numbers from previous reviews inflated by 2.5% for comparability with MTEP17 model years

3.2 Capacity Expansion Models

The MTEP17 Triennial Review decreased transmission line losses benefit (Section 6.4) is monetized using the Electricity Generation Expansion Analysis System (EGEAS) model. EGEAS is designed by the Electric Power Research Institute to find the least-cost integrated resource supply plan given a demand level. EGEAS expansions include traditional supply-side resources, demand response and storage resources. The EGEAS model is used annually in MISO's MTEP process to identify future capacity needs beyond the typical five-year project-planning horizon.

The EGEAS optimization process is based on a dynamic programming method where all possible resource addition combinations that meet user-specified constraints are enumerated and evaluated. The EGEAS objective function minimizes the present value of revenue requirements. The revenue requirements include both carrying charges for capital investment and system operating costs.

MTEP17 Triennial MVP Review analysis was performed using the MTEP17 Policy Regulation future, developed in 2016. The capacity model shares the same input database and assumptions as the economic models (Section 3.1).

3.3 Reliability Models

To maintain consistency between economic and reliability models, MTEP16-vintage MISO powerflow models are used as the basis for the MTEP17 MVP Triennial Review reliability analysis. The MTEP17 economic models are developed with topology based on the MTEP16 MISO powerflow models. Siemens PTI Power System Simulator for Engineering (PSS/E) and Transmission Adequacy & Reliability Assessment (TARA) are utilized for the MTEP17 MVP Triennial Review analysis.

Powerflow models are built using MISO's Model on Demand (MOD) model data repository. Models include approved MTEP Appendix A projects (through MTEP16) and the Eastern Interconnection Reliability Assessment Group (ERAG) Multiregional Modeling Working Group (MMWG) modeling for the external system. Load and generation profiles are seasonal dependent (Table 3-2). MTEP powerflow models have wind dispatched at 90 percent connected capacity in Shoulder models and at capacity credit level (approximately 15.6 percent) in the Summer Peak.

A 10-year Shoulder model was not required as a part of the MTEP16 reliability study. To create this sensitivity case, loads were proportionally scaled on the MTEP16 10-year Summer Peak model by comparing the existing MTEP16 five-year Summer Peak and Shoulder Peak load levels. Additional wind units were also added to the MTEP16 MVP Triennial Review cases to meet renewable portfolio standards.

Demand is grown in the Future Transmission Investment case using the extrapolated growth rate between the year 2021 MTEP16 Summer Peak case and the 2026 MTEP16 Summer Peak Case.

Analysis	Model(s)
Wind Curtailment	2026 MTEP16 Shoulder (90% Wind)
Wind Enabled	2026 MTEP16 Shoulder with Wind at 2031 Levels
Transmission Line Losses	2026 MTEP16 Summer Peak (15.6% Wind)
Future Transmission Investment	2026 MTEP16 Summer Peak with Demand and Wind at 2036 Levels

Table 3-2: Reliability Models by Analysis

3.4 Capacity Import Limit Models

The MTEP16 series of MISO powerflow models are used as the basis for the MTEP17 MVP Triennial Review capacity import limit analysis. Zonal Local Clearing Requirements are calculated using the capacity import limits identified through transfer analysis. The MTEP17 MVP Triennial Review incorporates capacity import limits calculated using a year 2026 model both with and without the MVP Portfolio. Single-element contingencies in MISO and seam areas are evaluated with subsystem files from MTEP16 reliability studies. The monitored file includes all facilities under MISO functional control and seam facilities 100 kV and above.

Additional details on the models used in the Planning Reserve Margin benefit estimation can be found in the <u>2017 Loss of Load Expectation Report</u>.

3.5 Loss of Load Expectation Models

For the 2017 Planning Year, MISO utilized the General Electric-developed Multi-Area Reliability Simulation (MARS) program to calculate the Loss of Load Expectation. GE MARS uses a sequential Monte Carlo simulation to model a generation system and assess the system's reliability based on any number of interconnected areas. GE MARS calculates the annual LOLE for the MISO system and each Local Resource Zone (LRZ) by stepping through the year chronologically and taking into account generation, load, load modifying and energy efficiency resources, equipment forced outages, planned and maintenance outages, load forecast uncertainty and external support.

Going forward, MISO will no longer use GE MARS for LOLE studies. Instead, Astrape Consulting's Strategic Energy & Risk Valuation Model (SERVM) will be used to calculate the Loss of Load Expectation for the applicable Planning Year. The 2017 Planning Year LOLE models, updated to include generation retirements, were the basis for the MTEP17 MVP Triennial Review models. Additional model details can be found in the 2017 Loss of Load Expectation Report.

4. Project Costs and In-Service Dates

The MTEP17 MVP Triennial Review cost and in-service data was updated in August 2017 through coordination with Transmission Owners (Figure 4-1). All cost and schedule updates are maintained in the MTEP project database, with reports provided regularly for stakeholders. Additional details on cost and schedule variation are available with the full MVP Dashboard posted on the <u>MISO public website</u>.

MVP No.	Project Name	State	Estimated In Service Date	State Regulatory Status	Construction	Estimated Cost (\$M)
1	Big Stone - Brookings	SD	2017		Underway	\$141
2	Brookings, SD - SE Twin Cities	MN/SD	2013-2015		Complete	\$670
3	Lakefield Jct - Winnebago - Winco - Burt area & Sheldon - Burt Area - Webster	MN/IA	2015-2018	•	Underway	\$651
4	Winco - Lime Creek - Emery - Black Hawk- Hazleton	IA	2015-2019	●	Underway	\$564
5	N. LaCrosse - N. Madison - Cardinal (a/k/a Badger - Coulee Project)	WI	2018	•	Underway	\$1,016
	Cardinal - Hickory Creek	WI/IA	2023	0	Pending	
6	Big Stone South - Ellendale	ND/SD	2019		Underway	\$320
7	Ottumwa - Zachary	IA/MO	2018-2019	O	Pending	\$226
8	Zachary - Maywood	мо	2016-2019	O	Pending	\$172
9	Maywood - Herleman - Meredosia - Ipava & Meredosia - Austin	M0/IL	2016-2017	\bullet	Underway	\$723
10	Austin - Pana	IL	2016-2017		Underway	\$135
11	Pana - Faraday - Kansas - Sugar Creek	IL/IN	2015-2019		Underway	\$423
12	Reynolds - Burr Oak - Hiple	IN	2018		Underway	\$388
13	Michigan Thumb Loop Expansion	МІ	2012-2015		Complete	\$504
14	Reynolds - Greentown	IN	2013-2018		Underway	\$388
15	Pleasant Prairie - Zion Energy Center	WI	2013		Complete	\$36
16	Fargo- Sandburg - Oak Grove	IL	2016-2018		Pending	\$204
17	Sidney - Rising	IL	2016		Complete	\$88
					Total	\$6 651

State Regulatory Status Indicator Scale	
Pending	0
In regulatory process or partially complete	0
Regulatory process complete or no regulatory process Requirements	•

Figure 4-1: MVP Cost and In-Service Dates August 2017⁵

For MTEP17, all benefit calculations start in year 2023, the first year when all projects are in service. For MTEP11, year 2021 was the first year when the MVP Portfolio was expected in service.

⁵ Costs provided in nominal dollars unless otherwise specified; see facility level costs details in the MVP Triennial Review detailed business case.

The costs contained within the MTEP database are in nominal, as-spent, dollars unless otherwise specified. Consistent with previous analyses, and to simplify the benefit-to-cost ratio calculations, all MVP facilities are assumed to go into service in the portfolio in-service year, so nominal costs are escalated using a 2.5 percent inflation rate from the facility in-service date up to the year 2023.

A load ratio share was developed to allocate the benefit-to-cost ratios in each of the seven MISO North/Central local resource zones (LRZ). Load ratios are based off the actual 2016 energy withdrawals with the Policy Regulation (PR) future MTEP growth rate applied.

MTEP17 MVP Triennial Review benefit-to-cost calculations only include direct benefits to MISO North and Central members. MISO South Region benefits are excluded from all estimations. Export Revenue share, including PJM exports⁶, are factored into the calculation at an estimate rate of 1.31 percent.

Total costs are annualized using the MISO North/Central-wide average Transmission Owner annual charge rate/revenue requirement. Consistent with the MTEP11 analysis and other Market Efficiency Projects, the MTEP17 MVP Triennial Review assumes that costs start in 2023, such as year one of the annual charge rate is 2023 and construction work in progress (CWIP) is excluded from the total costs.

⁶ FERC's July 13, 2016 Order in ER10-1791 directed MISO to charge the MVP rate on exports to PJM

Schedule JTS-2 Page 20 of 51

5. Portfolio Public Policy Assessment

MTEP17 MVP Triennial The Review redemonstrates the MVP Portfolio's ability to enable the renewable energy mandates of the footprint. Renewable Portfolio Standards assumptions⁷ have only had minor changes since the MTEP11 analysis and any changes in capacity requirements are solely attributed to load forecast changes and the actual installation of wind turbines.

The MVP portfolio enables a total of 52.8 million MWh of renewable energy to meet the renewable energy mandates and goals through 2031.

This analysis took place in two parts. The first part demonstrated the wind needed to meet renewable energy mandates would be curtailed but for the approved MVP Portfolio. The second demonstrated the additional renewable energy, above the mandate, that will be enabled by the portfolio. This energy could be used to serve mandated renewable energy needs beyond 2031, as most of the mandates are indexed to grow with load.

5.1 Wind Curtailment

A wind curtailment analysis was performed to find the percentage of mandated renewable energy that could not be enabled but for the MVP Portfolio. A list of 277 monitored element/contingent element pairs (flowgates) that are resolved by MVP portfolio was prepared as the basis for calculating wind curtailment. These flowgates and a study case representing year 2026 shoulder scenario without MVPs modeled in it were fed into a security constrained re-dispatch routine. This re-dispatch algorithm then fetched the amount by which committed wind units and the RGOS energy zones need to be curtailed so as to relieve the overloaded flowgates.

Results of the re-dispatch algorithm found that 11,295 MW of year 2026 dispatched wind would be curtailed. As a connected capacity, 12,550 MW would be curtailed since wind is modeled at 90 percent of its nameplate in the shoulder case. The MTEP17 results are similar in magnitude to both MTEP14 and MTEP11, which found that 11,697 MW and 12,201 MW of connected wind would be curtailed, respectively.

The curtailed energy was calculated to be 37.6 million MWh from the connected capacity multiplied by the capacity factor times 8,760 hours per year. A MISO-wide per-unit capacity factor was averaged from the 2031 incremental wind zone capacities to 34.2 percent. Comparatively, the full 2031 RPS energy is 62.1 million MWh. As a percentage of the 2031 full RPS energy, 60.5 percent would be curtailed in lieu of the MVP Portfolio. MTEP14 and MTEP11 analysis both showed a similar percentage of full RPS energy would be curtailed without the installation of the MVP portfolio: 56.4 percent and 63 percent, respectively. The minor differences between studies can be attributed to new transmission upgrades represented in the system models and the changes in actual physical locations of installed wind turbines.

5.2 Wind Enabled

Additional analyses were performed to determine the incremental wind energy in excess of the RPS requirements enabled by the approved MVP Portfolio. This energy could be used to meet renewable energy mandates beyond 2031, as most of the state mandates are indexed to grow with load. An Optimal

⁷ Assumptions include Renewable Portflio Standard levels and fulfillment methods

Transfer Capability analyses were run on the Shoulder case model to determine how much the wind in each zone could be ramped up prior to additional reliability constraints occurring.

Transfers were sourced from the wind zones. All Bulk Electric System (BES) elements in the MISO system were monitored, with constraints being flagged at 100 percent of the applicable ratings. All single contingencies in the MISO footprint were evaluated during the transfer analysis. This transfer was sunk against MISO, PJM and SPP units (Table 5-1). More specifically, the power was sunk to the smallest units in each region, with the assumption that these small units would be the most expensive system generation.

Region	Sink
MISO	33 percent
PJM	44 percent
SPP	23 percent

Table 5-1: Transfer Sink Distribution

MTEP17 analysis determined that 5,123 MW of additional generation could be sourced from the incremental energy zones to serve future renewable energy mandates (Table 5-2). For their respective model years, MTEP14 and MTEP11 analysis determined that 4,335 MW and 2,230 MW of additional generation could be sourced from the incremental energy zones.

Wind Zone	Incremental Wind Enabled
IN-K	672
MI-B	989
MI-E	1,001
MI-F	727
MI-I	853
MO-C	31
WI-B	399
WI-D	451

Table 5-2: Incremental Wind Enabled Above 2031 Mandated Level, by Zone

Incremental wind-enabled numbers were calculated using a single optimal transfer pass technique, which implements a linear programming solver to come up with the maximum MW transfer that can be made without causing additional violations. When the results from the curtailment analyses and the wind-enabled analyses are combined, MTEP17 results show the MVP Portfolio enables a total of 52.8 million MWh of renewable energy to meet the renewable energy mandates through 2031. System wide, the MTEP17 wind enablement amount is substantively similar to 2014 and 2011 analyses — 43 million MWh and 41 million MWh, respectively. For individual zones however, this value can be heavily dependent on the details of the models — individual unit dispatches, load levels, area interchanges, topology changes, etc. In each case, market trade-offs (seen in the dispatch or unit commitment) have a big impact on what units can run. Because of these sensitivities the Wind Enablement optimization calculation is done only for the system as a whole, without looking to individual regions.

6. Portfolio Economic Analysis

MTEP17 estimates show the Multi-Value Portfolio creates \$12 to \$52.6 billion in net benefits to MISO North and Central Region members, an increase of 21 to 36 percent from MTEP11 (Figure 6-1). Differences between reviews are primarily driven by natural gas prices and retirements impacting congestion and fuel savings. Total portfolio costs have also increased from \$5.56 billion in MTEP11 to \$6.65 billion in MTEP17,

The MTEP17 Triennial MVP Review estimates the MVP benefit-to-cost ratio has increased from 1.8 – 3.0 in MTEP11 to 2.2 – 3.4 in MTEP17.

decreasing the net benefits. Even with the increased portfolio cost estimates, the increased MTEP17 benefit estimation results in portfolio benefit-to-cost ratios that have increased from 1.8 to 3.0 in MTEP11 to 2.2 to 3.4 in MTEP17.

Figure 6-1: MVP Portfolio Economic Benefits from MTEP17 MVP Triennial Review

The MVP Portfolio provides benefits across the MISO footprint in a manner that is roughly equivalent to cost allocated to each North and Central Region local resource zones (Figure 6-2). MTEP17 MVP Triennial Review results continue to indicate benefit-to-cost ratios in excess of 1.5 to 2.6 for each zone. Zonal benefit distributions have changed since the MTEP11and MTEP14 business cases as a result of changing tariffs/business practices (planning reserve margin requirement and baseline reliability project cost allocation), load growth, generation retirements and wind siting. As state demand and energy

Schedule JTS-2 Page 23 of 51

forecasts change and additional clarity is gained into the location of actual wind turbine installation, so does the siting of forecast wind.

Figure 6-2: MVP Portfolio Production Cost Benefit Spread⁸

MVP Portfolio benefits in MTEP17 include a carbon cost component embedded with the future assumptions applied to the congestion and fuel savings analysis. This assumption is not included in the futures of MTEP11 and MTEP14, but sensitivity analysis shows only a marginal impact on the zonally distributed benefit-to-cost ratios in MTEP17 (Figure 6-3).

⁸ Low – High B/C ratios are based on the 20 and 40 NPV with 3 percent and 8.2 percent discount rates applied. Values are represented graphically as the median of the B/C range.

Schedule JTS-2 Page 24 of 51

Component

6.1 Congestion and Fuel Savings

The MVP Portfolio allows for a more efficient dispatch of generation resources, opening markets to competition and spreading the benefits of low-cost generation throughout the MISO footprint. These benefits were outlined through a series of production cost analyses, which capture the economic benefits of the MVP transmission and the wind it enables. These benefits reflect the savings achieved through the reduction of transmission congestion costs and through more efficient use of generation resources.

Changes due to projected unit retirements, carbon cost modeling, wind enablement and topology changes have increased the Congestion-Fuel savings in MTEP17.

Congestion and fuel savings is the most significant portion

of the MVP benefits (Figure 6-1). The MTEP17 Triennial MVP Review estimates that the MVP Portfolio will yield \$20 to \$71 billion in 20- to 40-year present value adjusted production cost benefits, depending on the timeframe and discount rate assumptions. This value is up 32 percent to 60 percent from the original MTEP11 valuation and 5 percent to 11 percent from MTEP14 (Table 6-2).

MISO

	MTEP17	MTEP14	MTEP11
3% Discount Rate; 20 Year NPV	31,797	30,214	23,603
8% Discount Rate; 20 Year NPV	20,121	18,698	15,295
3% Discount Rate; 40 Year NPV	71,363	64,157	44,508
8% Discount Rate; 40 Year NPV	29,783	27,017	20,478

Table 6-2: Congestion and Fuel Savings Benefit (\$M-2017)

The difference in congestion and fuel savings benefits relative to MTEP14 increased primarily due to carbon cost modeling, increase in wind enablement and topology changes (Figures 6-4, 6-5). Benefits decreased due to a reduction in the out-year natural gas price forecast assumptions, leading to a net increase of 19 percent on a 20-year present value basis. MTEP14 futures utilized a natural gas price escalation rate assumption sourced from a combination of the New York Mercantile Exchange (NYMEX) and Energy Information Administration (EIA) forecasts. MTEP17 assumed natural gas price escalation rate is approximately 2.5 percent per year⁹, compared to 7.2 percent per year in MTEP14. The reduced escalation rate causes the assumed natural gas price to be 34 percent lower in MTEP17 than MTEP14 (Figure 6-4).

Henry Hub Natural Gas Price Forecasts

Figure 6-4: Natural Gas Price Forecast Comparison

⁹ 2.5% of the assumed MTEP14 natural gas price escalation rate represents inflation . Inflation rate added to the NYMEX and EIA sourced growth rate.

The MVP Portfolio allows access to wind units with a nearly \$0/MWh production cost and primarily replaces natural gas units in the dispatch, which makes the MVP Portfolio's fuel savings benefit projection highly correlated to the natural gas price assumption. A sensitivity applying the MTEP14 BAU gas price assumptions to the MTEP17 MVP Triennial Review model showed a 27 percent reduction in the 20 year MTEP14 Present Value congestion and fuel savings benefits (Figure 6-5). Also, approximately 38 percent of the difference between the MTEP17 and MTEP14 present value congestion and fuel savings benefit is attributable to the carbon costs, wind enablement, coal retirements and topology changes.

Figure 6-5: Breakdown of Net Present Value Congestion and Fuel Savings Benefit Increase from MTEP14 to MTEP17 – 20 Year NPV at 8.2 percent Discount Rate

MTEP17 Policy Regulation national CO_2 emissions were priced at \$5.80/ton, which increased the congestion and fuel savings benefit by 10 percent relative to MTEP14. The MTEP14 model did not include carbon emission costs in the production cost calculation. The wind enabled through the MVP's offset more expensive generation, with carbon costs, to lead to the slight increase in MVP benefits.

Within the MTEP17 Policy Regulatory future assumptions MISO forecasted approximately 16 GW of coal retirements driven by both age and policy assumptions. The MTEP14 Triennial Review models included 12.6 GW of assumed coal retirements. The coal unit retirement assumption in MTEP17 PR future resulted in an increase in congestion and fuel savings of 9.4 percent.

The additional 18.9 percent in increased benefits is driven by the increase in wind enabled by the MVPs as well as a combination of "Other" differences from MTEP14 to MTEP17. The Other category represents changes between study models such as topology upgrades, generation siting, demand and energy values as well as the compounding/synergic effects of all categories together.

Schedule JTS-2 Page 27 of 51 The MVP Portfolio is located solely in the MISO North and Central Regions and, therefore, the inclusion of the South Region to the MISO dispatch pool have little effect on MVP-related production cost savings.

The MTEP17 MVP Triennial Review economic analysis was performed with 2026 and 2031 Policy Regulation production cost models, with wind curtailments considered for 2026, 2031 and 2036. The 2036 case was used as a proxy case to determine the additional benefits from wind enabled above and beyond that mandated by the year 2031.

6.2 Operating Reserves

In addition to the energy benefits quantified in the production cost analyses, the 2011 business case

showed the MVP Portfolio also reduces operating reserve costs. The 2011 business case showed that the MVP Portfolio decreases congestion on the system, increasing the transfer capability into several areas that would otherwise have to hold additional operating reserves under certain system conditions.

Consistent with MTEP14, as a conservative measure, the MVP Triennial Review does not estimate a reduced operating reserve benefit in MTEP17.

Reserve zones are established to ensure that operating reserves are dispersed in a manner that prevents

adverse operating conditions that affect the reliability of the transmission system. Minimum operating reserve requirements by operating zone are typically calculated to be zero. Only a limited number of days have had non-zero minimum operating reserve requirements since MTEP11 (Table 6-4). As a conservative measure, and consistent with MTEP14, this MVP Triennial Review does not estimate a reduced operating reserve benefit in MTEP17.

		MTEP11			MTEP14			MTEP17	
	(June	2010 – May	2011)	(January 2	013 – December 2013)		(January 2016 – December 2016)		
Zone	Total Require ment (MW)	Days with Require ment (#)	Average daily require ment (MW)	Total Require ment (MW)	Days with Require ment (#)	Average daily require ment (MW)	Total Require ment (MW)	Days with Require ment (#)	Average daily require ment (MW)
Missouri/ Illinois	95	1	95.1	0	0	0	0	0	0
Indiana	14,966	53	282.4	0	0	0	0	0	0
Northern Ohio	9,147	15	609.8	N/A	N/A	N/A	N/A	N/A	N/A
Michigan	4,915	17	289.1	0	0	0	0	0	0
Wisconsin	227	2	113.4	0	0	0	0	0	0
Minnesota	376	1	376.3	32	2	16	0	0	0

Table 6-4: Historic Operating Requirements

6.3 Planning Reserve Margin Requirements

The MTEP14 Review estimated a deferred capacity value of \$75.8 million due to the expected capacity shortage in Local Resource Zone (LRZ) 3 without the addition of the MVPs. With the refreshed analysis on updated system topology and expected capacity resources, MISO no longer expects a capacity shortfall in LRZ 3. As a result, the MVP Review does not estimate any deferred capacity benefits as a product of the MVPs.

With the refreshed analysis on updated system topology, MISO no longer expects a capacity shortfall in LRZ 3. As a result, the MVP Review does not estimate any deferred capacity benefits as a product of the MVPs.

In the 2013/2014 Planning Year MISO improved the methodology¹⁰ that establishes the Planning Reserve Margin Requirement (PRMR), so beginning in 2014 the benefit analysis for the MVP Review was updated to align with the current process to include zonal capacity transfer limits. MISO now performs loss of load expectation (LOLE) analysis to determine zonal capacity import limits with and without the MVPs to calculate the impact on local clearing requirements (the amount of generation capacity required to be physically within a LRZ). In MTEP14 this analysis estimated an 852 MW of capacity shortfall in LRZ 3 without the MVP portfolio, which translated to \$946-\$2,746 million of deferred capacity expansion costs. Refreshing this analysis in MTEP17 no longer estimates a capacity shortfall in LRZ 3, and therefore, no deferred capacity benefits are expected.

Three primary variables determine if an LRZ will be short or long on capacity:

- Local Reliability Requirement (LRR): The expected load requirements (MW) of the LRZ
- Unforced Capacity (UCAP): The expected available generation (MW) in the LRZ
- Capacity Import Limit: The limit that sets the amount of resources outside of the LRZ that can serve the zone's load

All of these variables have changed since the triennial analysis of 2014: The LRR in the recent analysis is marginally smaller, the UCAP is higher due to the addition of new generation, and the CIL has increased. The UCAP MW and LRR MW changes all but remove the need to import to support LRZ 3's demand. The increase in CIL is due to multiple factors, including transmission system changes since 2014 and study methodology improvements.

Specific system changes include rating upgrades that have impacted the constraints from both scenarios, with and without MVP, studied in 2014. Increases to the ratings have contributed to these constraints no longer binding resulting in higher limits in recent analysis. Additionally, non-MVP projects coming into service have also driven current limit higher. When combined with the decreased LRR and increased UCAP MW, LRZ 3 is no longer expected to be short on capacity.

¹⁰ Prior to 2013 the MISO-wide PRMR included an embedded congestion component, which has since been replaced by a more granular zonal PRMR and local clearing requirement. The MTEP11 MVP analysis showed that the MVP portfolio reduced congestion, which would thus reduce the congestion component of the PRMR and allow MISO to reliably carry a decreased PRMR

6.4 Transmission Line Losses

The addition of the MVP Portfolio to the transmission network reduces overall system losses, which also reduces the generation needed to serve the combined load and transmission line losses. The energy value of these loss reductions is considered in the congestion and fuel savings benefits, but the loss reduction also helps to reduce future generation capacity needs.

The MTEP17 Review found that system losses decrease by 127.6 MW with the inclusion of the MVP Portfolio.

The MTEP17 Review found that system losses decrease by 127.6 MW with the inclusion of the MVP Portfolio. MTEP14 and MTEP11 estimated that the MVPs reduced losses by 122 MW and 150 MW respectively. The decrease between MTEP17 and MTEP14, relative to MTEP11 can be attributed to changes in system demand, the MISO North and Central Regions membership changes, and transmission topology upgrades in the base model.

Comparatively to MTEP11, tightening reserve margins have increased the value of deferred capacity from transmission losses in both the MTEP14 and MTEP17 reviews. In MTEP11, baseload additions were not required in the 20-year capacity expansion forecast to maintain planning reserve requirements so the decreased transmission losses from the MVP Portfolio allowed the deferment of a single combustion turbine. In MTEP17, the decreased losses cause a large shift in the proportion of baseload combined cycle units and peaking combustion turbines in the capacity expansion forecast.

The estimated benefits from reduced transmission line losses are substantively similar to MTEP14, and more than double compared to the MTEP11 values (Table 6-9) as a result of tighter reserve margins. Using current capital costs, the deferment equates to a savings of \$234 to \$1,061 million, excluding the impacts of any potential future policies.

	MTEP17	MTEP14	MTEP11
3% Discount Rate; 20 Year NPV	711	790	244
8% Discount Rate; 20 Year NPV	234	313	309
3% Discount Rate; 40 Year NPV	1,061	1,162	339
8% Discount Rate; 40 Year NPV	383	432	352

Table 6-9:	Transmission	Line Losses	Benefit (\$M	-2017)
------------	--------------	-------------	--------------	--------

The benefit valuation methodology used in the MTEP17 Review is similar to that used in MTEP11. The transmission loss reduction was calculated by comparing the transmission line losses in the 2026 summer peak powerflow model both with and without the MVP Portfolio. This value was then used to extrapolate the transmission line losses for 2016 through 2023, assuming escalation at the Policy Regulation base demand growth rate. The change in required system capacity expansion due to the impact of the MVP Portfolio was calculated through a series of EGEAS simulations. In these simulations, the total system generation requirement was set to the system PRMR multiplied by the system load plus the system losses (Generation Requirements = $(1+PRMR)^*(Load + Losses)$). To isolate the impact of the transmission line loss benefit, all variables in these simulations were held constant, except system losses.

Schedule JTS-2 Page 30 of 51 The difference in capital fixed charges and fixed operation and maintenance costs in the no-MVP case and the post-MVP case is equal to the capacity benefit from transmission loss reduction, due to the addition of the MVP portfolio to the transmission system.

6.5 Wind Turbine Investment

During the RGOS, the pre-cursor to the Candidate MVP Study, MISO developed a wind siting approach that results in a low-cost solution when transmission and generation capital costs are considered. This approach sources generation in a combination of local and regional locations, placing wind local to load, where less transmission is required; and regionally, where the wind is the strongest (Figure 6-7). However, this strategy depends on a strong regional transmission system to deliver the wind energy. Without this regional transmission backbone, the wind generation has to be sited close to

The lower expected benefits in the MTEP17 results compared to MTEP11 and MTEP14 can primarily be attributed to a 40 percent decrease in the expected wind capital costs.

load, requiring the construction of significantly larger amounts of wind capacity to produce the renewable energy mandated by public policy.

Figure 6-7: Local versus Combination Wind Siting

The MTEP17 Triennial MVP Review found that the benefits from the optimization of wind generation siting are lower in magnitude when compared with MTEP11 and MTEP14 (Table 6-10). The lower

Schedule JTS-2 Page 31 of 51

expected benefits in the MTEP17 results compared to MTEP11 and MTEP14 can primarily be attributed to a 40 percent decrease in the expected wind capital costs.

	MTEP17	MTEP14	MTEP11
3% Discount Rate; 20 Year NPV	1,264	2,361	1,992
8% Discount Rate; 20 Year NPV	1,451	2,717	2,393
3% Discount Rate; 40 Year NPV	1,264	2,361	1,992
8% Discount Rate; 40 Year NPV	1,451	2,717	2,393

Table 6-10: Wind Turbine Investment Benefit (\$M-2017)

In the RGOS study, it was determined that 11 percent less wind would need to be built to meet renewable energy mandates in a combination local/regional methodology relative to a local only approach. This change in generation was applied to energy required by the renewable energy mandates, as well as the total wind energy enabled by the MVP Portfolio (Section 5). This resulted in a total of 3.4 GW of avoided wind generation (Table 6-11).

Year	MVP Portfolio Enabled Wind (MW)	Equivalent Local Wind Generation (MW)	Incremental Cumulative Wind Benefit (MW)
Pre-2021	15,949	17,741	1,792
2021	21,139	23,514	2,375
2026	24,612	27,377	2,765
2031	25,689	28,575	2,886
Full Wind Enabled	30,812	34,273	3,461

Table 6-11: Renewable Energy Requirements, Combination versus Local Approach

The incremental wind benefits were monetized by applying a value of \$1.2 to \$2 million/MW, based on the NREL Annual Technology Baseline report that estimates of the capital costs to build onshore wind¹¹. The total wind-enabled benefits were then spread over the expected life of a wind turbine. Consistent with the MTEP11 and MTEP14 business case that avoids overstating the benefits of the combination wind siting, a transmission cost differential of approximately \$1.5 billion was subtracted from the overall wind turbine capital savings to represent the expected lower transmission costs required by a local-only siting strategy.

¹¹ Updated in 2016

Schedule JTS-2 Page 32 of 51

6.6 Future Transmission Investment

Consistent with MTEP11, the MTEP17 MVP Triennial Review shows that the MVP Portfolio eliminates the need for approximately \$300 million in future baseline reliability upgrades (Table 6-12). The magnitude of estimated benefits is in close proximity to the estimates from MTEP11 and MTEP14; however, the actual identified upgrades are different due to differences in bus-level load growth, generation dispatch, wind levels and transmission upgrades.

MTEP17 analysis shows the MVP Portfolio eliminates the need for approximately \$300 million in future baseline reliability upgrades.

	MTEP17	MTEP14	MTEP11
3% Discount Rate; 20 Year NPV	615	726	561
8% Discount Rate; 20 Year NPV	299	352	308
3% Discount Rate; 40 Year NPV	1,101	1,317	1,003
8% Discount Rate; 40 Year NPV	410	487	424

Table 6-12: Future Transmission Investment Benefits (\$M-2017)

Reflective of the post-Order 1000 Baseline Reliability Project cost allocation methodology, capital cost deferment benefits were fully distributed to the LRZ in which the avoided investment is physically located; a change from the MTEP11 business case that distributed 20 percent of the costs regionally and 80 percent locally.

A model simulating 2036 summer peak load conditions was created by growing the load in the 2026 summer peak model. The 2036 model was run both with and without the MVP Portfolio to determine which out-year reliability violations are eliminated with the inclusion of the MVP Portfolio (Table 6-13).

Schedule JTS-2 Page 33 of 51

Avoided Investment	Element	kV	Upgrade Required	Miles
BIGSTON4-BROWNSV4	Line	230	Transmission line, < 345 kV	36.71
ARROWHD7-GRE-BERGNTP7	Line	115	Transmission line, < 345 kV	1
17REYNOLDS-17MAGNET	Line	138	Transmission line, < 345 kV	0.77
08LAFCIN-08PURDUE	Line	138	Transmission line, < 345 kV	1.29
BIGSTON7-HIWY12 7	Line	115	Transmission line, < 345 kV	2
TRK RIV5-STONEMAN	Line	161	Transmission line, < 345 kV	2.71
40REANA-4ADM NORTH	Line	138	Transmission line, < 345 kV	3.23
4OREANA-4ADM NORTH	Line	138	Transmission line, < 345 kV	3.91
HIWY12 7-ORTONVL7	Line	115	Transmission line, < 345 kV	4.5
INVRGRV7-GRE-PILOTKB7	Line	115	Transmission line, < 345 kV	5.6
NOM 138-ALB 138	Line	138	Transmission line, < 345 kV	9.21
08WAB R-08WTR ST	Line	138	Transmission line, < 345 kV	9.55
ALB 138-BASSCRK	Line	138	Transmission line, < 345 kV	11.88
08HORTVL-08WHITST	Line	345	Transmission line, 345 kV	14.35
SHEYNNE7-MAPLTN 7	Line	115	Transmission line, < 345 kV	14.78
08CAYUGA-08VDSBRG	Line	230	Transmission line, < 345 kV	18.4
HANKSON4-WAHPETN4	Line	230	Transmission line, < 345 kV	25.55
BIGSTON4-BLAIR 4	Line	230	Transmission line, < 345 kV	33.13
BROWNSV4-HANKSON4	Line	230	Transmission line, < 345 kV	33.46
CANBY 7-GRANITF7	Line	115	Transmission line, < 345 kV	39.22
08DRESSR-08DRESSR	Transformer	345/138	Transformer	
16THOMPS-16THOMPS	Transformer	345/138	Transformer	
7PALMYRA-5PALMYRA	Transformer	345/161	Transformer	
RUTLAND5-WINBAGO5	Transformer	161/161	Transformer	
BIGSTON7	Transformer	230/115	Transformer	
08PER SE	Transformer	230/69/13.8	Transformer	

Table 6-13: Avoided Transmission Investment

The cost of this avoided investment was valued using generic transmission costs, as estimated from projects in the MTEP database and recent transmission planning studies (Table 6-14). Generic estimates, in nominal dollars, are unchanged from those used in the MTEP11 and MTEP14 analysis. Transmission investment costs were assumed to be spread between 2031 and 2035. To represent potential production cost benefits that may be missed by avoiding this transmission investment, the 345 kV transmission line savings was reduced by half.

MISO

Schedule JTS-2 Page 34 of 51

Avoided Transmission Investment	Estimated Upgrade Cost
Bus Tie	\$1,000,000
Transformer	\$5,000,000
Transmission lines (per mile, for voltages under 345 kV)	\$1,500,000
Transmission lines (per mile, for 345 kV)	\$2,500,000

 Table 6-14: Generic Transmission Costs

7. Qualitative and Social Benefits

Aside from widespread economic and public policy benefits, the MVP Portfolio also provides benefits

based on qualitative or social values. Consistent with the MTEP11 analysis, these benefits are excluded from the business case. The quantified values from the economic analysis may be conservative because they do not account for the full potential benefits of the MVP Portfolio.

The MVP Portfolio also provides benefits based on qualitative or social values, which suggests that the quantified values from the economic analysis may be conservative because they do not account for the full benefit potential.

7.1 Enhanced Generation Flexibility

The MVP Portfolio is primarily evaluated on its ability to reliably deliver energy required by renewable energy mandates. However, the MVP Portfolio also provides value under a variety of different generation policies. The energy zones, which were a key input into the MVP Portfolio analysis, were created to support multiple generation fuel types. For example, the correlation of the energy zones to the existing transmission lines and natural gas pipelines were a major factor considered in the design of the zones (Figure 7-1).

Schedule JTS-2 Page 35 of 51

Figure 7-1: Energy Zone Correlation with Natural Gas Pipelines

Schedule JTS-2 Page 36 of 51

7.2 Increased System Robustness

A transmission system blackout, or similar event, can have widespread repercussions and result in billions of dollars of damage. The blackout of the Eastern and Midwestern United States in August 2003 affected more than 50 million people and had an estimated economic impact of between \$4 and \$10 billion.

The MVP Portfolio creates a more robust regional transmission system that decreases the likelihood of future blackouts by:

- Strengthening the overall transmission system by decreasing the impacts of transmission outages
- Increasing access to additional generation under contingent events
- Enabling additional transfers of energy across the system during severe conditions

7.3 Decreased Natural Gas Risk

Natural gas prices vary widely (Figure 7-2) causing corresponding fluctuations in the cost of energy from natural gas. In addition, recent and pending U.S. Environmental Protection Agency regulations limiting the emissions permissible from power plants will likely lead to more natural gas generation. This may cause the cost of natural gas to increase along with demand. The MVP Portfolio can partially offset the natural gas price risk by providing additional access to generation that uses fuels other than natural gas (such as nuclear, wind, solar and coal) during periods with high natural gas prices.

Figure 7-2: Historic Henry Hub Natural Gas Prices

A set of sensitivity analyses were performed to quantify the impact of changes in natural gas prices. The sensitivity cases maintained the same modeling assumptions from the base business case analyses,

Schedule JTS-2 Page 37 of 51 except for the gas prices. The gas prices were tested at ±25 percent \$/MMBTU as well as studied with the MTEP 14 natural gas price, which is 57 percent higher than the gas prices in MTEP17.

The system production cost is driven by many variables, including fuel prices, carbon emission regulations, variable operations, management costs and renewable energy mandates. The decrease in natural gas prices lowers fuel costs on the system, which in turn produced lower production cost benefits due to the inclusion of the MVP Portfolio. These decreased benefits are offset by carbon costs, coal unit retirements, increased wind enablement and topology changes that led to the efficient usage of renewable and low-cost generation resources (Figure 7-3).

Figure 7-3: MVP Portfolio Adjusted Production Cost Savings by Natural Gas Price

7.4 Decreased Wind Generation Volatility

As the geographical distance between wind generators increases, the correlation in the wind output decreases (Figure 7-4). This relationship leads to a higher average output from wind for a geographically diverse set of wind plants, relative to a closely clustered group of wind plants. The MVP Portfolio will increase the geographic diversity of wind resources that can be delivered, increasing the average wind output available at any given time.

Schedule JTS-2 Page 38 of 51

Figure 7-4: Wind Output Correlation to Distance between Wind Sites

Schedule JTS-2 Page 39 of 51

7.5 Local Investment and Jobs Creation

In addition to the direct benefits of the MVP Portfolio, studies performed by the State Commissions have shown the indirect economic benefits of the MVP transmission investment. The MVP Portfolio supports thousands of local jobs and creates billions in local investment. In MTEP11, it was estimated that the MVP Portfolio supports between 17,000 and 39,800 local jobs, as well as \$1.1 to \$9.2 billion in local investment.

7.6 Carbon Reduction

The MVP Portfolio reduces carbon emissions by 13 to 21 million tons annually (Figure 7-5).

The MVP Portfolio enables the delivery of significant amounts of wind energy across MISO and neighboring regions, which reduces carbon emissions.

Figure 7-5: Forecasted Carbon Reduction from the MVP Portfolio by Year

Schedule JTS-2 Page 40 of 51

8. Historical Data Review

8.1 Introduction

MTEP17 marks the first cycle in which the MVP Review will provision available historical market data for trend analysis. In accordance with Attachment FF the review will take a quantitative and qualitative look into how the in-service MVPs impact certain tariff-defined metrics:

- Congestion Costs
- Energy Prices
- Fuel Costs
- Planning Reserve Margin
- Newly Interconnected Resources
- Share of Energy Supplied

The prospective benefits quantified in previous chapters of this review assume the entire MVP portfolio is in-service over 20- and 40-year time-frames. As of the second quarter of 2017, only four of the 17 MVPs have gone into service, all of which have less than four years of historical market data (Table 8-1).

MVP #	Project Name	In-Service Date	MTEP Project ID
2	Brookings - Twin Cities	3/26/2015	1203
15	Pleasant Prairie – Zion Energy Center	12/6/2013	2844
17	Sidney – Rising	9/21/2016	2239
13	Michigan Thumb Loop	12/31/2015	3168

Table 8-1: In-Service MVPs as of the second quarter 2017

In breaking down the results of each metric, several positive correlations between targeted congestion areas and increasing renewable energy integration trends are observed, but without a larger statistical sample size, no definitive conclusions can be made from the limited available data. Once the entire MVP portfolio is energized, additional clarity can be provided around the realized MVP system impacts.

Where available, data regarding each benefit metric for the previous five years¹² has been provided, along with contextual and qualitative discussion regarding the collection process, data sources and inservice MVP impact.

8.2 Congestion Costs and Energy Prices

Congestion and fuel savings provide a significant portion of the prospective system-wide benefits over a 20- to 40-year time frame (see section 6.1). With only a small portion of the entire MVP portfolio in service, the MVP impact on congestion costs can be difficult to isolate on a system-wide review. To better capture this impact for the limited in-service portfolio, a targeted review of each project was performed using operational and planning experience to identify Day-Ahead (DA) binding constraints.

To evaluate congestion costs, the number of binding hours per year was collected from the Hourly MISO DA market database for each identified constraint during the sample period (January 2012 – July 2017). These DA congestion hours were then matched with the congestion dollar amounts and congestion savings are quantified, by constraint and year, for each project. Where congestion was present after the

¹² Sample period encompasses January 1, 2012-July 31, 2017

MVP in-service date, values are provided as negative. If no year is listed for a given constraint it means the binding constraint was not seen in the DA binding constraint database for that year.

Day-Ahead Locational Marginal Price (LMP) is the most common measure of energy prices, but because changes in DA LMPs are driven to a large extent by variations in fuel prices (particularly natural gas prices), this is not a reliable metric for evaluating the impact of the MVP projects. Instead, the binding constraints identified in the congestion cost analysis were evaluated for impact on energy price.

A binding constraint increases the prices at the raise-help nodes (where injecting power mitigates the flows creating congestion) by contributing to the Marginal Congestion Component (MCC). Each constraint and contingency was matched to the DA constraint and impacted Pnodes. DA shift factors for the significantly impacted (i.e. sensitivity of at least 5 percent) Pnodes were obtained along with Shadow Price of the constraints, and the energy price impact was calculated using the formula:

Average Price Impact for Most Significant Raise Help nodes = Average {Shift Factor * Shadow Price}

Finally, price impacts are compared before versus after the associated MVP in-service date.

MVP 15: Pleasant Prairie – Zion Energy Center (In Service December 6, 2013):

The Pleasant Prairie – Zion Energy Center MVP was designed to address congestion on the southeast Wisconsin-Illinois border by adding a third 345 kV line across the interface. The expected result was that less-expensive Wisconsin generation would be able to export during shoulder peak times (though this interface could overload in both directions depending on the scenario). Specific constraints in this region include the Lakeview - Zion 138 kV, which also required an operational Special Protection Scheme (SPS), and Pleasant Prairie – Zion 345 kV, which was binding in the Day Ahead market for different contingent scenarios.

With MVP 15 going into service in December 2013, the Pleasant Prairie – Zion 345 kV and Lakeview - Zion 138 kV constraints were significantly relieved (the new limiting element is now the MVP itself) with additional benefit of allowing the Lakeview SPS to retire. This is indicated by the limited number of binding hours occurring after the MVP in-service date, including no identified binding hours identified after 2014 (Table 8-2, 8-3).

Schedule JTS-2 Page 42 of 51

Year	DA Congestion Dollars					
Zion-Arcadian FLO Pleasant Prairie - Zion + Lakeview SPS						
2012	2012 60 \$208,309					
2013	233	\$536,373				
Zion - La	ikeview 138kV FLO Pleasant P	Prairie-Zion 345kV				
2012	64	\$102,706				
2014						
Vortex period ¹³	-8	-\$175,996				
Non-Vortex period	-52	-\$317,278				
	Pleasant Prairie-Zion 345kV BASE					
2013	178	\$891,141				
Pleasant Prairie-Zion 345kV FLO Zion-Arcadian 345kV						
2012	65	\$445,902				
2014	-3	-\$2,785				
Total 537 \$1,688,372						

Table 8-2: Congestion	Totals by	Constraint for	MVP 15 for	vears 2012 - 2017
Table 0-2. Congestion	i otais by	Constraint for		years 2012 - 2017

Constraint	Average MCC Impact (\$/MWh)	Max Nodes Impacted	Average MCC Impact (\$/MWh)	Max Nodes Impacted
	Before ISD: 12/1/2012 - 12/6/2013		After ISD: 12/6/2013 - 7/31/2017	
Zion-Arcadian FLO Pleasant Prairie - Zion + Lakeview SPS	0.611	906	0	0
Zion - Lakeview 138kV FLO Pleasant Prairie-Zion 345kV	0.445	922	0.092	1110
Pleasant Prairie-Zion 345kV BASE	0.611	906	0	0
Pleasant Prairie-Zion 345kV FLO Zion-Arcadian 345kV	0.088	151	0	0

Table 8-3: Average Energy Price Impact by Constraint for MVP 15 before and after In-Service Date

MVP 2: Brookings – Twin Cities (In Service March 26, 2015):

Brookings – Twin Cities MVP 2, in conjunction with MVP 1 and 6, was designed to reliably transfer wind energy from the Dakotas and southwestern Minnesota to the Minneapolis-St Paul load center. Two targeted constraints on this west to east path — Brookings to White and Wilmarth to Swan Lake — were identified as potentially impacted by the in-service MVP, with generation in southwestern Minnesota and lowa having limited 345 kV outlets, potentially causing binding during contingent scenarios. All binding hours and associated congestion dollars identified in the sample period occurred before the MVP inservice date (Table 8-4, 8-5), indicating the constraints were relieved as expected.

¹³ To highlight the impact of high natural gas prices during the Polar Vortex weather event, the binding hours identified in 2014 are further broken up into the "Vortex period," which includes January 2 – March 31, 2014.

Year	Binding Hours	DA Congestion Dollars			
Brookings - White					
2012	3	\$17,277			
2013	121	\$864,064			
2014	55	\$371,960			
2015	85	\$749,853			
Wilmarth - Swan Lake					
2014	53	\$391,611			
Total	317	\$2,394,765			

Table 8-4: Congestion Totals by Constraint for MVP 2 for years 2012 – 2017

Constraint	Average MCC Impact Max Nodes (\$/MWh) Impacted		Average MCC Impact (\$/MWh)	Max Nodes Impacted	
	Before ISD: 12/1/20	12 – 3/26/2015	After ISD: 3/27/2016 - 7/31/2017		
Brookings - White	4.61 10		0	0	
Wilmarth - Swan Lake	11.199	24	0	0	

Table 8-5: Average Energy Price Impact by Constraint for MVP 2 before and after In-Service Date

One additional constraint, Fox Lake – Rutland, was originally identified as potentially impacted since it is electrically close to MVP2. This constraint was not included for analysis after operational experience indicated the line only binds during outages, and the on-going construction of MVP3 impacts several substations in the corridor, potentially contributing to outage related DA binding hours.

MVP 13: Michigan Thumb Loop (In Service December 31, 2015):

The Michigan Thumb Loop MVP, by design, was not focused on congestion relief but rather, to provide the infrastructure necessary to accommodate significant wind generation (originally estimated 2300-4200 MW of wind production¹⁴) in the Michigan Thumb region. One notable constraint identified in the area prior to the MVP completion was the Lee – Sandusky 138 kV line. With the addition of the MVP, this line was able to reliably de-energize and thus, eliminate binding (Table 8-6, 8-7).

¹⁴ Michigan Public Service Commission Order U-15899 and the Final Report of the Michigan Wind Energy Resource Zone Board directed the development of transmission infrastructure needed to deliver the estimated minimum 2,367 MW and maximum 4,236 MW of wind production potential

Year	Binding hours	DA Congestion Dollars	
Lee - Sandusky			
2012	2	\$2,492	
2013	758	\$2,464,428	
2014	162	\$606,348	
Total	922	\$3,073,268	

 Table 8-6: Congestion Totals by Constraint for MVP 13 for years 2012 – 2017

Constraint	Average MCC Impact (\$/MWh)	Max Nodes Impacted	Average MCC Impact (\$/MWh)	Max Nodes Impacted
	Before ISD: 12/1/2012	2 - 12/31/2015	After ISD: 1/1/2016	- 7/31/2017
Lee - Sandusky	4.188	19	0	0

Table 8-7: Average Energy Price Impact by Constraint for MVP 13 before and after In-Service Date

An additional impact of this MVP, beyond the congestion and wind integration, was that the Harbor Beach coal-fired power station (121 MW) was able to fully retire. The unit had planned to retire in 2013 but was required to remain active as a System Support Resource (SSR) unit for reliability needs in the area. Quantifying SSR savings and benefits goes beyond the scope of this review.

MVP 17: Sidney - Rising (In Service September 2016):

The Sidney-Rising MVP, in conjunction with MVPs nine through 11, was designed to help alleviate historical West to East congestion through the State of Illinois. MVP 17 is primarily expected to help congestion in the region by creating better outlet for the Clinton generating station. Because less than one year of post in-service data is available, analysis of MVP 17 congestion relief is not included in this report. Specific constraints expected to be relieved in future reviews include the Rising transformer, Casey-Sullivan and Newton-Casey lines.

8.3 Fuel Costs

The fuel price indices associated with conventional generation in the MISO North/Central region are the Chicago Citygates natural gas and Illinois Basin coal prices. No direct correlation is observed between the limited MVP data and historic fuel prices (Figure 8-1).

The main drivers for natural gas price changes are weather related. Sustained hot summer weather drives up demand for electric generators and sustained cold winter weather drives up demand for heating. The weather influence can be best observed with the massive price spike in the winter of 2014 due to the Polar Vortex weather phenomena. This event created record setting gas demand both from electric generators as well as from residential and commercial users of natural gas (for space heating), significantly driving up fuel prices.

MISO

Schedule JTS-2 Page 45 of 51 Steady decreases in gas prices from mid-2014 through 2015 are due to increases in production related to shale gas, coupled with mild weather across the country in the 2015-2016 winter. Slight increases in gas prices over the course of 2016 are due to decreases in production, as some suppliers (responding to low price signals) left the market.

Coal prices are more closely tied to electric power generation than gas; however, price fluctuation is still impacted by a number of external factors not related to transmission. The coal power generation life cycle from mine to generator has recently been affected by competition, regulation, and financial and future expectation stability, resulting in restructured business models and lower commodity prices. With added costs and the competitive pressure of low gas prices, coal production and transportation has experienced a decrease in demand and price. This correlation can be observed in 2015 where coal prices at Illinois Basin begin a slight downward trend in-line with a dip in gas prices over the same period. While a complete MVP portfolio could potentially contribute to price pressures, the in-service MVPs on their own have most likely not resulted in any coal price influence.

Figure 8-1: Fuel Prices 2012 – 2017 with MVP In-Service Dates

8.4 Planning Reserve Margin Requirements

The methodology for Planning Reserve Margin Requirements (PRMR) was improved in 2013 to calculate a more granular zonal PRMR, but removed the congestion component from the equation (see section

Schedule JTS-2 Page 46 of 51 6.3). Without the congestion component as a factor in the calculation, changes in the transmission system topology (such as completed MVPs) will have no impact on the historical PRMR values.

As an alternative measure to PRMR, section 6.3 instead considers the impact of MVPs on Capacity Import Limits (CIL) to determine deferred investment savings. As the MISO footprint has yet to reach the point where any resource adequacy zones are short of capacity to take advantage of this benefit, a retrospective look at historical import limits cannot yet be quantified into hypothetical deferred investment. Details on PRMR and CIL calculations are available in the annual Loss of Load Expectation (LOLE) analysis.

8.5 Newly Interconnected Resources

A primary component of the MVP business case is the ability to reliably deliver wind energy to meet state renewable energy policy goals. To measure progress toward this objective, the aggregated totals of executed Generator Interconnection Agreement (GIA) Projects in MISO by fuel type were collected and analyzed. Over the five-year sample period, more than 6,000 MW of wind has been added to the MISO North/Central region (Table 8-8).

Fuel Type	2012	2013	2014	2015	2016	201715	Total
Nuclear	-	-	-	84	-	-	84
Coal	2,960	111	144	-	-	-	3,215
Gas	225	-	83	-	423	677	1,408
Wind	2,149	251	685	1,342	1,493	150	6,070
Other Renewable	14	-	-	70	258	151	493
Other	26	5	-	-	-	-	31
Total	5,374	367	912	1,495	2,174	978	11,300

Table 8-8: Executed GIA Projects (MW) by Commercial Operating Date (MISO North/Central)

15 2017 data is through 4/30/2017

Schedule JTS-2 Page 47 of 51 Additionally, the MVP Portfolio was designed to provide outlet for expected wind capacity in RGOS zones. A geospatial overlay of new wind projects in the North/Central region observes a correlation to actual wind siting and the original identified RGOS zones (Figure 8-2).

Figure 8-2: Wind Installations in MISO North/Central and RGOS Zones

8.6 Share of Energy Supplied

In addition to looking at what types of generation resources have been added to the MISO system, the share of energy supplied by resource type can also be measured using Real-Time settled generation market data (Figure 8-3). Some observed trends include a steady decline of coal from 2013-2016, while wind trends upward in each sample year correlating to more wind being added to the system (see section 8.4). The settled gas generation largely correlates with gas price fluctuations discussed in section 8.2, while the remaining resource types stay generally level. Figure 8-4 utilizes the same data set but displays the supplied energy as a percentage of MISO North/Central region energy mix for each sample year.

Schedule JTS-2 Page 48 of 51

Figure 8-3: Sum of Real-Time Hourly Settled Generation by Year (MISO North/Central)

Schedule JTS-2 Page 49 of 51

Figure 8-4: Percentage of Real-Time Hourly Settled Generation by Year (MISO North/Central)

8.7 Conclusions

All benefits assessed in the previous chapters of this review, and in the original MVP business case, are based on the MVP portfolio in its entirety, without differentiating between individual projects. In the MTEP17 review of historical market data, the results indicate some correlations between the MVPs and targeted congestion savings, as well as increasing trends of renewable energy supplied and installed. Because the in-service MVPs represent only a small portion of the entire portfolio (over a short time period), the tariff-required metrics discussed in this report may not yet be a reliable measure of MVP impacts. In future triennial reviews, when a larger statistical sample of data becomes available, a more detailed analysis on the correlation between MVP system impacts and realized benefits can be performed.

Schedule JTS-2 Page 50 of 51

9. Conclusions and Going Forward

The MTEP17 Triennial MVP Review provides an updated view into the projected economic, public policy and qualitative benefits of the MTEP11 MVP Portfolio. With the second iteration of the full MVP review, the Multi-Value Projects continue to show benefits in excess of cost, showing benefit-to-cost ratios of 2.2 to 3.4. Differences between previous analyses are primarily driven by natural gas prices, changing generation fleet and changes to model dispatch and topology.

The MTEP17 MVP Triennial Review's business case continues to be on par with MTEP11, providing confidence that the MVP criteria and methodology are working as expected. While the economic cost savings provide a quantifiable benefit, the updated MTEP17 assessment also corroborates the MVP Portfolio's ability to reliably deliver wind generation in support of the renewable energy mandates of the MISO states in a cost effective manner.

Results prepared through the MTEP17 Triennial Review are for information purposes only and have no effect on the existing MVP Portfolio status or cost allocation.

MTEP18 and MTEP19 will feature a Limited Review of the MVP Portfolio benefits. Each Limited Review will provide an updated assessment of the congestion and fuel savings (Section 6.1) using the latest portfolio costs and in-service dates. The next full Triennial Review will be featured in MTEP20.

Schedule JTS-2 Page 51 of 51