BEFORE THE PUBLIC SERVICE COMMISSION OF THE STATE OF MISSOURI

In the Matter of Evergy Metro, Inc. d/b/a Evergy)	
Missouri Metro's 2021 Triennial Compliance Filing)	File No. EO-2021-0035
Pursuant to 20 CSR 4240-22	
In the Matter of Evergy Missouri West, Inc. d/b/a)	
Evergy Missouri West's 2021 Triennial Compliance)	File No. EO-2021-0036
Filing Pursuant to 20 CSR 4240-22	

EVERGY MISSOURI METRO AND EVERGY MISSOURI WEST NOTICE OF STAKEHOLDER UPDATE

COME NOW Evergy Metro, Inc. d/b/a Evergy Missouri Metro ("Evergy Missouri Metro") and Evergy Missouri West, Inc. d/b/a Evergy Missouri West ("Evergy Missouri West")(collectively the "Company" or "Evergy"), and for their *Notice of Stakeholder Update* ("Notice") state as follows:

- 1. On July 23, 2020, Evergy held an IRP stakeholder meeting with various stakeholders wherein the presentation attached hereto as **Exhibit A** was presented.
- 2. On October 19, 2020, Evergy held an IRP stakeholder meeting with various stakeholders wherein the presentation attached hereto as **Exhibit B** was presented.

WHEREFORE, the Company files this Notice for the Commission's information.

Respectfully submitted,

|s| Robert J. Hack

Robert J. Hack, MBN 36496 Phone: (816) 556-2791

E-mail: rob.hack@evergy.com Roger W. Steiner, MBN 39586

Phone: (816) 556-2314

E-mail: roger.steiner@evergy.com

Evergy, Inc.

1200 Main – 16th Floor

Kansas City, Missouri 64105

Fax: (816) 556-2787

Attorney for Evergy Missouri Metro and Evergy Missouri West

CERTIFICATE OF SERVICE

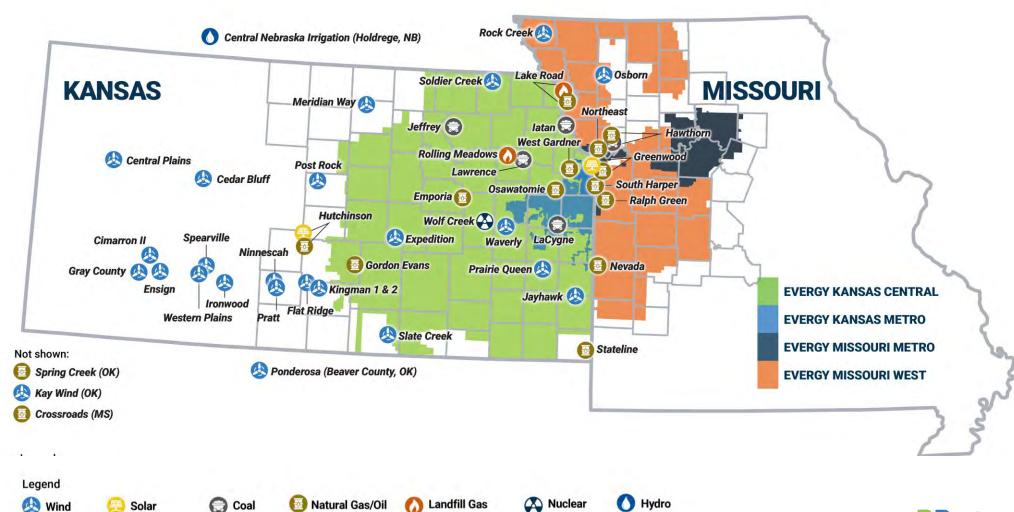
I hereby certify that a true and correct copy of the above and foregoing document was served upon all counsel of record on this 29th day of October 2020, via e-mail.

|s| Robert J. Hack

Robert J. Hack

2021 Triennial Integrated Resource Plan (IRP)

Missouri Stakeholder Meeting July 23, 2020

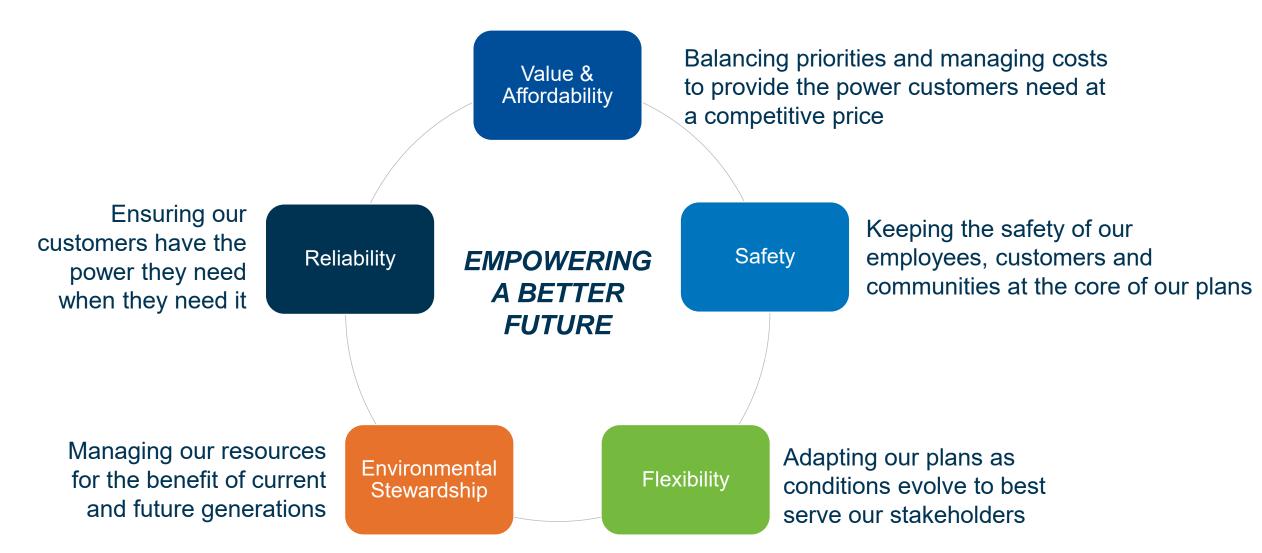


Agenda


- Evergy Overview & Objectives
- Stakeholder Engagement Approach
- Discussion of Key IRP Inputs
- Next Steps

Evergy Combined Service Area

Evergy By the Numbers¹



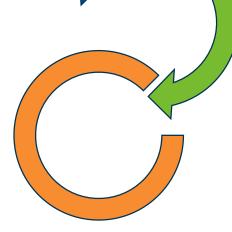
- 1. Statistics as of 12/31/19.
- 2. Market cap as of 12/31/19.
- Estimated rate base based on ordered and settled rate cases.
 - Renewables include both owned and purchase power agreements as of 12/31/19.

Core Tenets of the IRP Process

Triennial IRP Development Timeline

Gathering Input

July: Stakeholder meeting to discuss modeling assumptions / inputs


Conducting Analysis

Late Q3: Stakeholder meeting to discuss preliminary results

to introduce process

Reviewing Results

Q1 2021: Review updated results including detailed review of inputs outlined in IRP rules

Goals for Stakeholder Engagement

Encourage Transparency

Share the IRP methodology, analysis and planning process with stakeholders to build understanding and gain insight

Expand and Enrich Analysis

Engage a variety of viewpoints to expand and enrich the scenarios evaluated through the IRP process

Discuss and Balance **Trade-Offs**

Understand and balance trade-offs between the different IRP tenets (reliability, value/affordability, safety, flexibility, environmental stewardship)

Overview of Inputs for Discussion

Load Analysis & Load Forecasting

- Overview of Load Forecasting methodology
- Proposed approach for incorporating COVID-19 impacts

Demand-Side Resource Analysis

- DSM Potential Study Update
- Proposed approach for incorporation into IRP modeling

Resource Acquisition Strategy Selection

Assessment of Load Building / Beneficial Electrification in IRP

Transmission & Distribution Analysis

Economic & Reliability Assessment of Transmission Impacts

Supply-Side Resource Analysis

- Behind-the-Meter Solar & Storage Potential Study
- **Technology Assessment Approach**
- All-Source RFP Responses

Integrated Resource Plan & Risk Analysis

- **Uncertain Factor Analysis**
- Construction of Alternative Resource Plans

Load Forecasting & Analysis

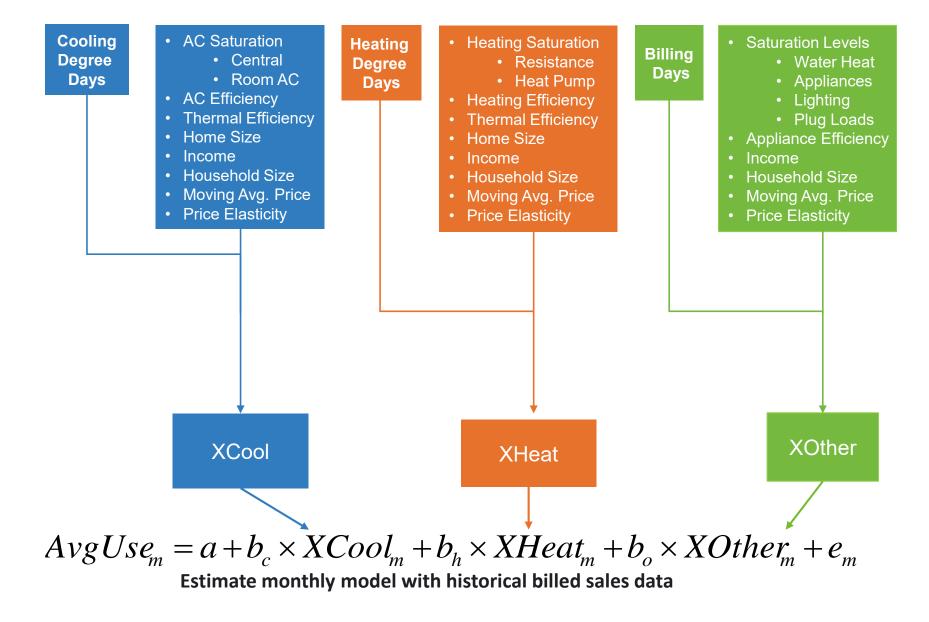
Al Bass

Load Forecasting Methodology

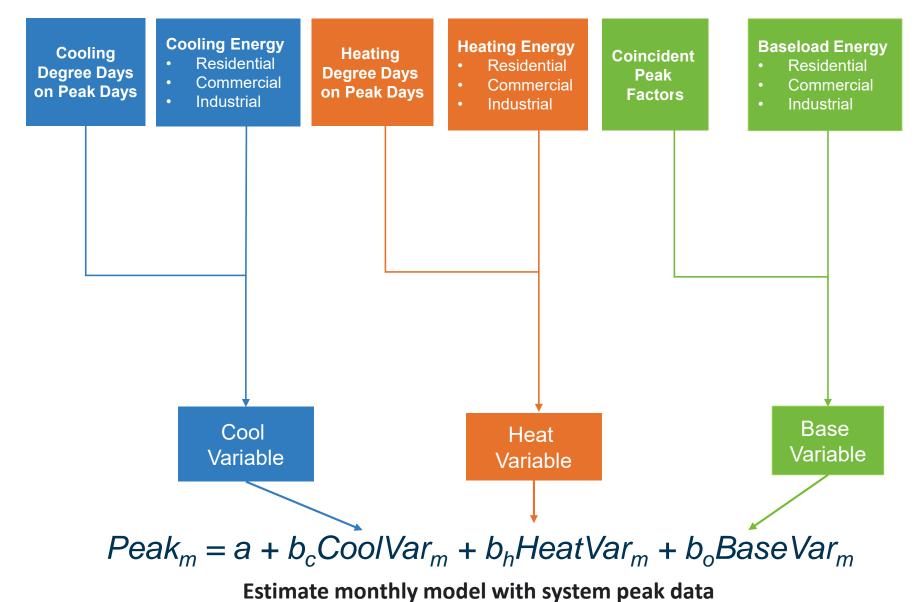
Statistically Adjusted End-Use (SAE) Models

End-use modeling approach

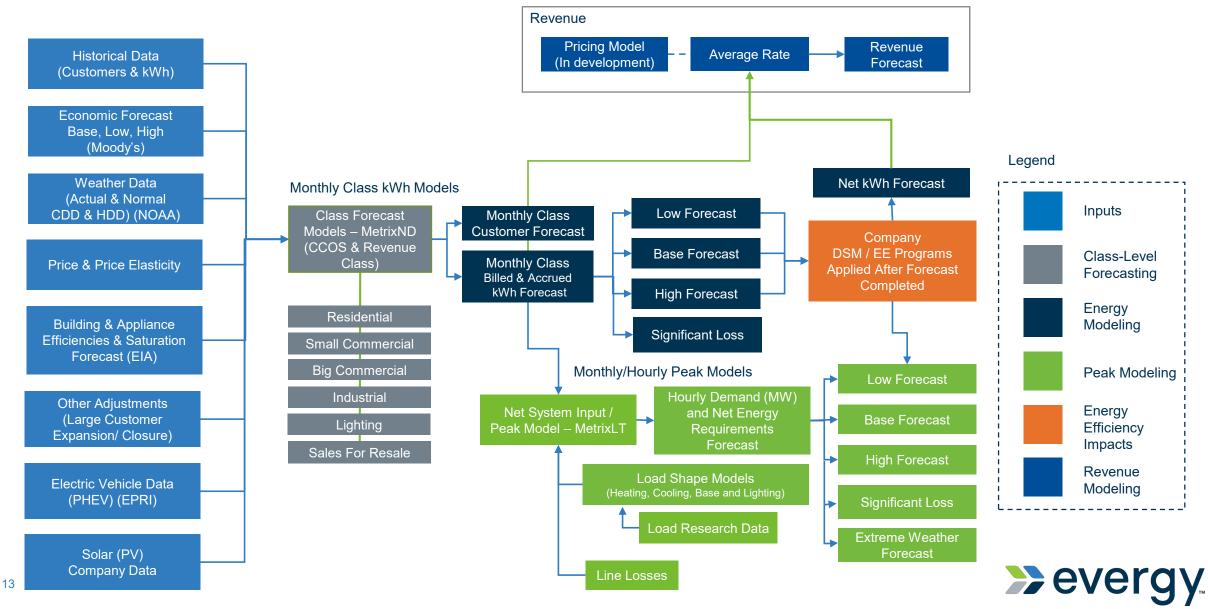
- Better ability to identify the end-use factors that drive energy usage
- Incorporates end-use structure into an econometric model
- Exploits the strengths of both end-use and econometric modeling
- End-use components are estimated for Heat, Cool, and Other
 - Heat, Cool, and Other explanatory variable are used to construct variables that are used in the monthly regression model to estimate multipliers and trend adjustments that provide the best historical fit


Strengths of SAE approach

- Equipment efficiency trends and saturation changes are embodied in the end-use forecasts
- Provides a strong bridge between a shortterm and long-term forecast
- By bundling price, economic, demographic and equipment drivers, a rich set of elasticities can be built into the model
- Provides estimates of weather sensitivity that vary over time, thus reflecting changes in equipment shares and efficiency levels



Class Energy Model (SAE Approach)


Peak Model (SAE Approach)

Energy and Peak Demand Forecasting Methodology

Incorporation of COVID-19 Impacts into Load Forecasting

Incorporation of COVID-19 into Base Case

- Based on Moody's Analytics economic forecast
- Current Expectation is short-term impact of COVID-19; Will continue to update
- Based on GMP (Non-Manufacturing and Manufacturing) and Households

Additional COVID-19 Scenarios Under Consideration

- Proposed COVID-19 scenarios based on GDP and Unemployment assumptions
- Scenarios will be based on a variety of assumptions around virus resurgence and effectiveness of intervention

Demand-Side Resource Analysis

Tim Nelson

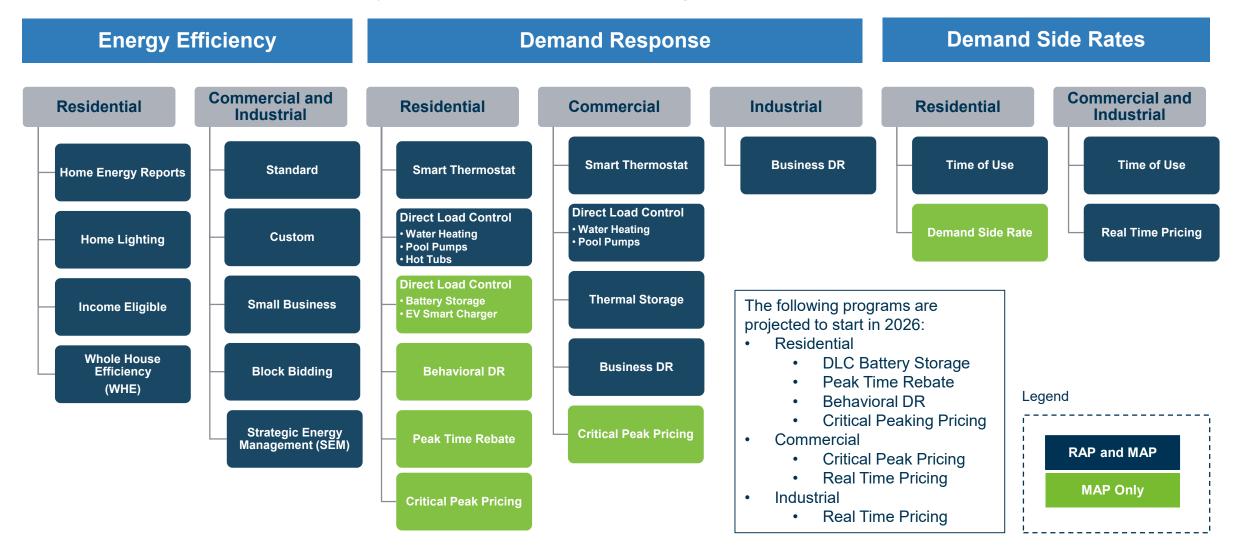
DSM Potential Study Overview

APPLIANCE SATURATION STUDY

POTENTIAL MODELING & PROGRAM DEVELOPMENT

STUDY **OUTCOMES**

- Market Characterization and Historical Load Analysis
- Identification of a Set of Potential Resources
- EE, CHP, DR, DSR, and **Emerging Technologies**
- Estimation of Technical and **Economic Potential**
- Development of Programs and **Estimation of Achievable Potential**
- Optimization, Sensitivity and **Uncertainty Analysis**


- Appliance Saturation Results
- Baseline Energy and **Demand Forecast**
- Potential Estimates:
- Technical, Economic and Achievable
- Program Details:
- Savings, Cost and Effectiveness

- Study Time Horizon 20 years (2023 2042)
- Potential Estimation includes MO Metro and MO West service territories

Potential Study Evaluated Programs

DSM Scenarios for Evaluation in IRP

MAP

 Maximum Achievable Potential without restrictions to program budget

RAP

- Realistic Achievable **Potential** Base Case
- Study
- Optimization
- Uncertainty and Sensitivity Analysis
- COVID-19 Impact will be evaluated in **Uncertainty and** Sensitivity Analysis

RAP-

 I evel of savings below RAP by benchmarking programs performance with other utilities EISA standard

applied

RAP+

 Level of savings between RAP Scenario and MAP Scenario

MEEIA Goals

 Level of savings by meeting MEEIA goal outlined in 4 CSR 240-20.094(2)

Stand Alone DR

 RAP at Demand Response **Programs Only**

Stand Alone DSR

 RAP at Demand Side Rates Only

Optimization

- **RAP Scenario**
- R-based tool integrated into DSRPM (Demand Side Resource Potential Model) through Excel
- Linear approach that allows single or multiple objectives and large number of constraints
- Leverage MEEIA goal of "achieving all cost-effective demand side savings" and IRP's criteria of "minimizing long-run utility costs"

Load-Building and Beneficial Electrification

Kim Winslow

Electrification Market Assessment Process

QUANTIFY THE MARKET

Development a high-level assessment of the electrification potential of different technologies

Understanding the electrification potential in Evergy's territory sets the landscape for identifying target technologies.

FORECAST ADOPTION

Create potential adoption forecasts based on barriers

Rating electrification potential against barriers to conversion gives insight into feasible target technologies.

ANALYZE SIX SELECTED TARGETS

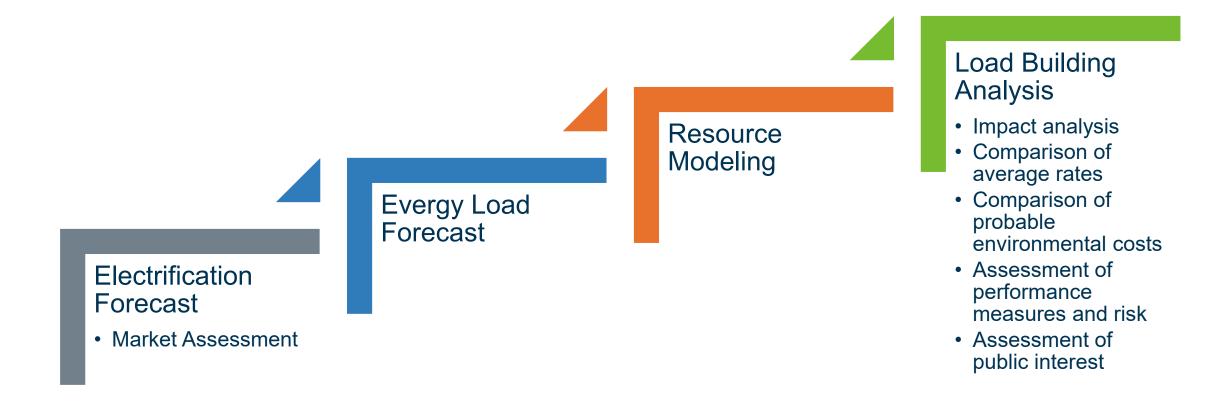
Compare financial viability of electric and non-electric technologies

Analyze if the selected target technology is financially viable from the customer's perspective.

REALIZE VALUE

Estimate potential revenue from electrification and how to realize the value

To realize revenue, customers will need support to successfully convert to electrified technology.


Other Electrification Activities

- Evergy owns and operates the Clean Charge Network, consisting of over 1,000 electric vehicle charging stations
- Evergy is evaluating other opportunities to promote beneficial electrification
 - These opportunities will be discussed with stakeholders later in 2020
 - A dedicated regulatory filing is anticipated in the first quarter of 2021

Current Plan for Incorporation into IRP Analysis

Supply-Side Analysis – Behind-the-Meter (BtM) Resources

Tim Nelson

BtM Solar/Storage Potential Study Approach

Assess the potential for adoption, the timing, and the impact of Evergy's program efforts on the market.

TECHNOLOGIES

Current Plan for Incorporation into IRP Analysis

Three forecast scenarios covering 30-year horizon

MID

- Naturally-occurring forecast (of new capacity only)
- Without intervention on the part of Evergy
- Considers interactive effects between solar and storage adoption

HIGH

- Upward adjustment to the Mid Scenario
- Estimate of upper bound on adoption
- Considers new regulatory drivers, changes in technology/project economics

LOW

- Downward adjustment to Mid Scenario
- Estimate of floor on adoption
- Uses same drivers as high scenario but considers the potential for dampening effect

T&D Analysis – Transmission Assessment

Katy Onnen

Transmission Assessment Approach

- Steady-state and stability transmission reliability analysis completed with 2020 IRP update
- 1898 & Co (Burns & McDonnell) to perform economic transmission analysis on near-term generation retirements
 - Using Southwest Power Pool's Integrated Transmission Planning models as base case, evaluate economic impact of retirements
 - Assess impact of implementing upgrades identified during reliability analysis
 - Develop solutions to address needs identified in economic analysis
 - Centered around adjusted production cost (APC) benefits

Supply-Side Analysis – Technology Assessment and All-Source RFP

Laura Becker

Supply-Side Technology Assessment

GOAL

Per Missouri IRP rules, goal is to ensure "a wide variety of supply-side resource options" with diverse fuel and generation technologies, including a wide range of renewable technologies and technologies suitable for distributed generation" are considered.

IDENTIFICATION

Identify potential supply-side resource options

SCREENING

Screening to determine viability and technology maturity of potential supply-side resource options

OPTIONS

Supply-side resource options (including existing resources) advance to the integration analysis by being incorporated into at least one Alternative Resource Plan

Technologies to be Screened

Coal

Ultra-Supercritical coal (USC) with 90% carbon capture and sequestration (CCS)

Natural Gas

- Combined-cycle-single shaft
- Combined-cycle-multiple shaft
- Combined-cycle with 90% CCS
- Combustion turbine-aeroderivative
- Combustion turbine-industrial frame
- Fuels cells
- Internal combustion engine

Uranium

- Advance nuclear
- Small modular reactor

Wind

SPP Region

Solar

- Solar thermal
- Solar photovoltaic-tracking
- Solar photovoltaic-tracking + battery storage

Biomass

Biomass

Municipal Solid Waste

Municipal Solid Waste - Landfill Gas

Battery Storage

Various sizes and durations

Summary of All-Source RFP Responses Received

SOLAR

Distributed (Rooftop/Covered Parking, etc.) from 100 kW to 15 MW and Utility-Scale up to 500 MW Ownership and PPA Options

SOLAR + ENERGY

Utility-Scale - Up to 500 MW Solar / 100 MW Battery Ownership and PPA Options

ENERGY STORAGE

New Asset - 50 MW - 100 MW PPA Option Only

WIND

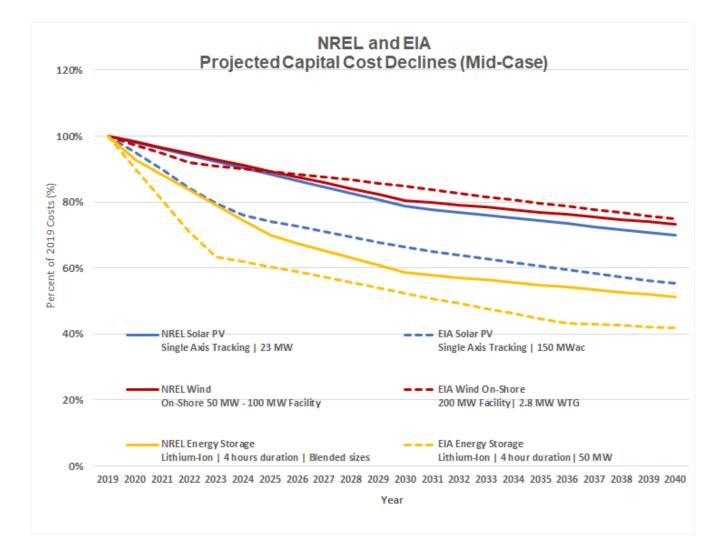
New and Existing Assets - ~75 – 400 MW Ownership and PPA Options

HYDRO

Existing Asset - 62 MW **PPA Option Only**

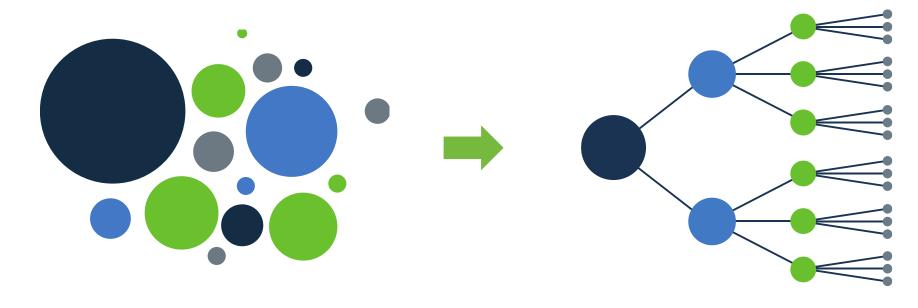
COMBINED CYCLE

New and Existing Assets - ~150 - 795 MW Ownership and PPA Options


Existing Asset - 50 MW **PPA Option Only**

Renewable Technologies

- Further declines in renewable technology costs are projected, with the rate of decline slowing as technologies mature
- Evergy will review various sources of industry data (in conjunction with RFP results) and incorporate projections for declining costs for solar, wind and battery storage technologies in the analysis


Integrated Analysis – Uncertain Factors

Burton Crawford

Critical Uncertain Factor Approach

Uncertain Factors

Analyzed individually to determine criticality (i.e., impact on Alternative Resource Plan ranking)

Scenarios

Constructed based on combinations of Critical Uncertain Factors (gas price, CO₂ pricing, load forecast, etc.)

List of Uncertain Factors Evaluated

Uncertain Factors: Commodities, events, costs, that can materially affect resource planning decisions

Future load growth range – low and high forecast cases

Future interest rate and other credit market condition effects on cost and access to capital

Future changes to legal mandates

Relative real fuel prices

New generation construction/permitting costs and schedule timing of new generations and/or transmission facilities

Purchased power cost, terms, availability, optionality, other benefits

Emission allowance pricing including sulfur dioxide, carbon dioxide, and nitrogen oxides

New and existing generation fixed and variable operations and maintenance costs

New and existing generation full and partial forced outage rates

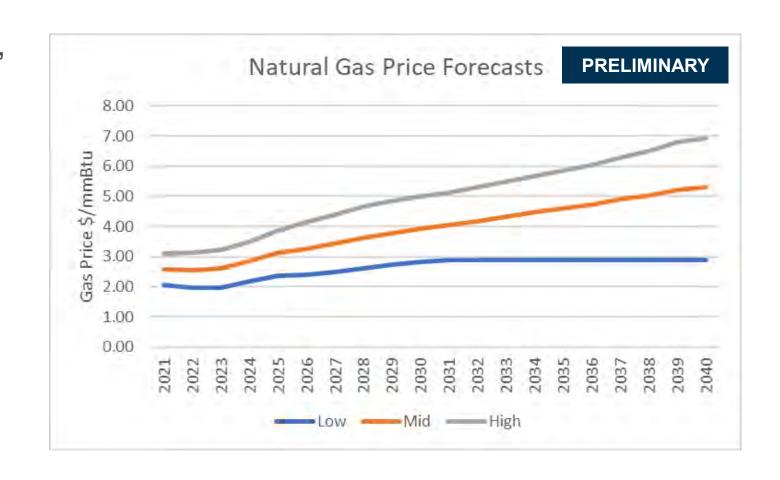
Demand-Side Management and Demand-Side Rates impacts on load

Demand-Side Management and Demand-Side Rates marketing and delivery costs

Renewable penetration potential

SPP coal plant retirements

Behind the meter solar and storage adoption


Any other uncertain factors that may be critical to the performance of the alternative resource plans

Natural Gas Price Assumptions

- Similar to prior IRPs, testing three different gas price levels
- High and Mid forecasts based on a composite of external gas price forecasts
- Low forecast capped at 5-year historical average

CO₂ Assumptions

- Prior IRP Update included two levels of CO₂ emission allowance pricing
 - Low: \$0 per ton
 - High: Confidential
- Proposing three levels for the 2021 IRP
 - Low: \$0 per ton
 - Mid: Similar to High Scenario from 2020 IRP Update
 - High: Multiple of the 2020 IRP Update High Scenario

Note CO₂ pricing assumptions are confidential as they are purchased from external sources.

New Uncertain Factor – Renewable Penetration

SPP Market Renewable Penetration

Low: 50% of energy provided by renewables by 2040

Battery Storage: 2 GW by 2040

Utility Scale Solar: 10 GW by 2040

Wind: 29 GW by 2040

High: 80% of energy provided by renewables by 2040

Battery Storage: 15 GW by 2040

Utility Scale Solar: 30 GW by 2040

Wind: 38 GW by 2040

New Uncertain Factor – Regional Coal Plant Retirements

Plan to test two regional (SPP) coal plant retirement scenarios

Retire SPP coal units at 60 years of age

Integrated Analysis – Alternative Resource Plans (ARPs)

Burton Crawford

Integrated Resource Plan & Risk Analysis

ARP #2

ARP #3

ARP #4

...

ARP #n

Combinations of Resource Retirements / New Generation / DSM over 20 years Scenario #1

Scenario #2

Scenario #3

....

Scenario #n

Net Present Value of Revenue Requirement (NPVRR) results for Individual Scenarios

Expected Value of NPVRR across all Scenarios

Made up of Critical Uncertain Factors (e.g., may consist of different wholesale market prices)

Preliminary List of Alternative Resource Plans

EVERGY METRO OPTIONS

Plant Retirement Options

(individual and combinations)

- Hawthorn 5
- LaCygne 1
- LaCygne 2
- latan 1

Variables

- Various years
- Various DSM levels
- Variety of generation additions

EVERGY MO WEST OPTIONS

Plant Retirement Options

(individual and combinations)

- Lake Road 4/6
- Jeffrey 1
- Jeffrey 2
- Jeffrey 3

Variables

- Various years
- Various DSM levels
- Variety of generation additions

Next Steps

Follow up via email with any specific comments to

before July 31st

Will schedule next stakeholder meeting for late-Summer / early-Fall

IRP Stakeholder Meeting

October 19, 2020

- Update on IRP Development Progress
- Inputs & Assumptions
- Initial Alternative Resource Plans
- Uncertain Factors & Scenarios
- Preliminary Revenue Requirement Results
- Next Steps

Triennial IRP Development Timeline

Gathering Input

July: Stakeholder meeting to discuss modeling assumptions / inputs

During and following July Stakeholder Meeting, received feedback which was considered in the process of creating today's new materials

Reviewing Results

Q1 2021: Review updated results including detailed review of inputs outlined in IRP rules

Refining Assumptions and Inputs

Early April: 2020 Annual Update Stakeholder Meeting to introduce process

Conducting Analysis

Late Q3 - Early Q1: Stakeholder meeting(s) to discuss preliminary results

- October 19th: Initial review of preliminary results
- Early-December: Additional stakeholder meeting to review next round of results
- Late-December Early Q1: Demand-Side (Electrification, DSM, Behind-the-Meter solar & storage) Focused Discussion
- As Needed: Topical meetings with specific stakeholders on comments received

Overall Analytical Process

Gather Inputs & Assumptions

Develop **Alternative** Resource Plans (ARPs) Test Critical Uncertain Factors & Create **Scenarios**

Model Revenue Requirement & Other Key Metrics

Select Preferred Plan

Load Forecasts Low, Mid, High, Electrification

> **Fuel Forecasts** Nat Gas, Coal, Fuel Oil

DSM Forecasts Maximum and Realistic Potential

New Generation Capital, O&M, Operational info

Existing Generation Capital, O&M, Operational info

ARPs include combinations of unit retirements, unit additions, DSM levels

> **Evergy Combined** 12 Initial ARPs

Combinations of Critical **Uncertain Factors** analyzed - currently 27 total combinations:

> Load Low, Mid, High

> Nat Gas Low, Mid, High

> CO, Low, Mid, High

20-Year Net Present Revenue Requirement (NPVRR) calculation of ARPs for each of the 27 scenarios

Preferred Plan Selection will not be discussed today

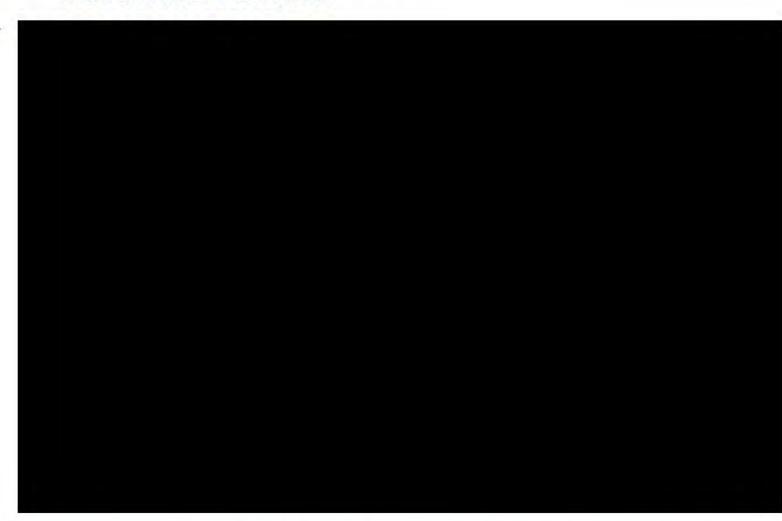
ARP providing lowest NPVRR across scenarios is generally selected as the Preferred Plan.

Higher NPVRR ARP can be selected but decision must be supported

Gather Inputs & Assumptions

Laura Becker Al Bass Tim Nelson

Natural Gas Price Assumptions


- Similar to prior IRPs, testing three different gas price levels
- High and Mid forecasts based on a composite of external gas price forecasts
- Low forecast capped at 5-year historical average



CO₂ Tax Assumption

Carbon Price Forecasts

 case includes prices comparable to the EPAestimated Social Cost of Carbon starting in 2030¹

Changes in Inputs to Load Forecasting Models

- Historical data for customers, kwh and \$/kwh: June 2020 vs June 2017
- DOE forecasts of appliance and equipment saturations and kwh/unit: 2020 vs 2017
- Class models in the 2021 Metro and MO West filing are the same as the 2018 filing: residential, small commercial, big commercial (medium, large, large power) and industrial. KS Central are based on residential, commercial and industrial.
- The Company also re-evaluated the output elasticity used in the commercial and industrial models and the elasticity used in the residential model. Adjustments made were to improve the model fit.
- EPRI electric vehicle adoption projections in the 2021 Triennial filing are updated from the 2018 filing.
- EIA West North Central end-use saturations were calibrated to the Metro, MO West, and KS Central 2020 potential study C&I saturation survey results.
- End-use intensity estimates from the EIA West North Central division were calibrated to the conditional demand outputs from the 2020 Metro, MO West, and KS Central potential study.
- An electrification adoption scenario was layered onto the high case energy and peak forecasts to produce an additional high case electrification scenario.


Peak Load Forecasts – Evergy Metro

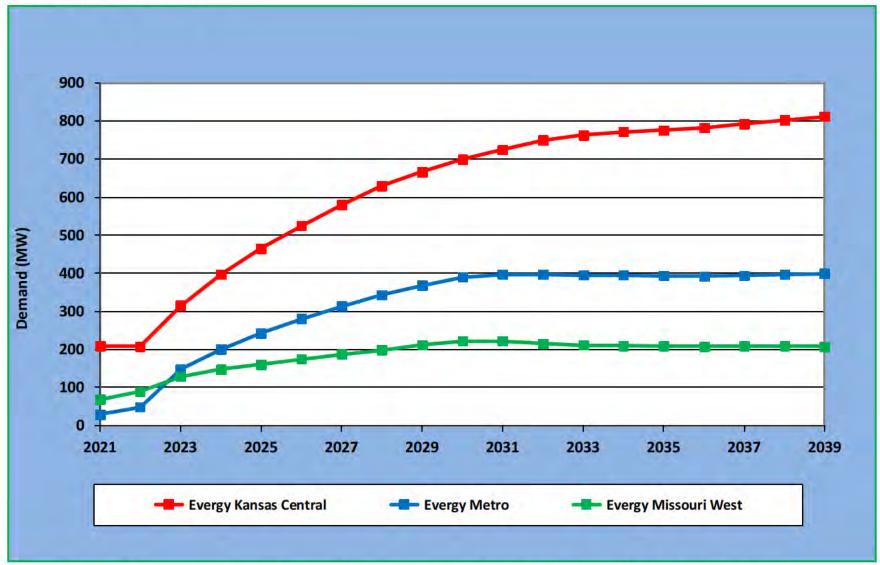
**

Load Forecasts – Evergy Metro - Energy

**

Peak Load Forecasts – Evergy Missouri West

**



**

Load Forecasts – Evergy Missouri West - Energy

^{*} Includes: Demand Response (DR), Energy Efficiency (EE), MEEIA-3, Demand Side Rates (DSR)

- Engaged 1898 Co. to perform Electrification Market Assessment
- Assessed 40 technologies
- Evaluated the market potential of each technology (technical potential)
- Included the top 5 technologies (excluding light duty EVs) in the high load forecast
- Light duty EV forecast sourced from EPRI
- Focused discussion on Electrification will be covered in future meeting

Develop Alternative Resource Plans

Laura Becker

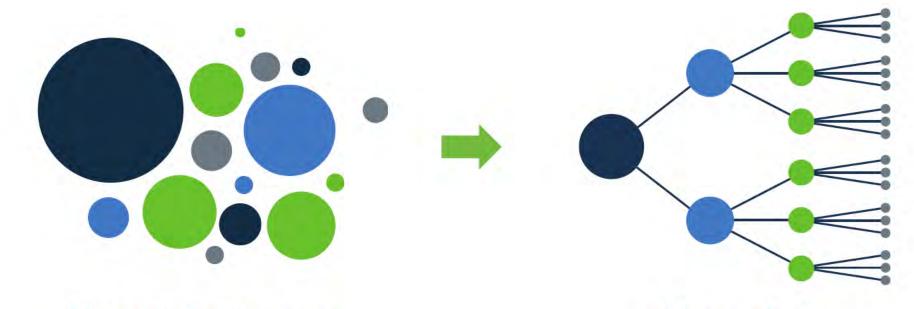
Alternative Resource Plans Evaluated To-Date

**

Alternative Resource Plans Evaluated To-Date

**

Future rounds of ARPs will include individual utility-level plans, different combinations of replacement generation options, and more combinations of plant retirements building off this initial set


Test Critical Uncertain Factors & Create Scenarios

Laura Becker

Critical Uncertain Factor Approach

Uncertain Factors

Analyzed individually to determine criticality (i.e., impact on Alternative Resource Plan ranking)

Scenarios

Constructed based on combinations of Critical Uncertain Factors (gas price, CO₂ pricing, load forecast, etc.)

List of Uncertain Factors Evaluated

Uncertain Factors: Commodities, events, costs, that can materially affect resource planning decisions

Future load growth range – low and high forecast cases

Future interest rate and other credit market condition effects on cost and access to capital

Future changes to legal mandates

Relative real fuel prices

New generation construction/permitting costs and schedule timing of new generations and/or transmission facilities

Purchased power cost, terms, availability, optionality, other benefits

Emission allowance pricing including sulfur dioxide, carbon dioxide, and nitrogen oxides

New and existing generation fixed and variable operations and maintenance costs

New and existing generation full and partial forced outage rates

Renewable penetration potential

SPP coal plant retirements

Demand-Side Management and Demand-Side Rates impacts on load

Demand-Side Management and Demand-Side Rates marketing and delivery costs

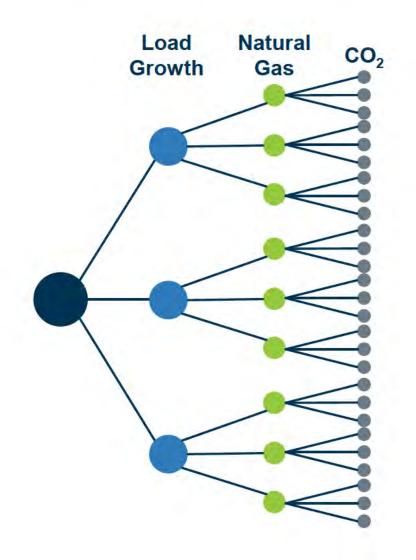
Behind the meter (BtM) solar and storage adoption

Any other uncertain factors that may be critical to the performance of the alternative resource plans

Preliminary Uncertain Factors Evaluation

Uncertain Factor	Evaluated?	Critical?	Comments
Load Growth	√	1	
Interest Rate	✓	*	
Legal Mandates	✓	×	
Fuel Prices	√	√	Only Nat. Gas prices critical
New Gen Construction / Permitting	√	×	
Purchase Power	√	×	
Emission Allowance Pricing	√	V	Only CO ₂ Prices Critical
Gen O&M costs	√	×	
Force Outage Rates	✓	×	
DSM / DSR Load Impacts	V	×	
DSM / DSR Costs	√	×	
SPP Renewable Penetration	√	×	
SPP Coal Retirements	√	×	
BtM Solar / Storage Adoption	0	TBD	
Other potential uncertain factors	TBD	TBD	

Currently considered "Critical"



Scenarios & Probabilities Modeled To-Date

Endpoint	Load Growth	Natural Gas	CO ₂	Endpoint Probability
1	High	High	High	1.6%
2	High	High	Mid	3.1%(
3	High	High	Low	1.6%
4	High	Mid	High	3.1%
5	High	Mid	Mid	6.3%
6	High	Mid	Low	3.1%
7	High	Low	High	1.6%
8	High	Low	Mid	3.1%
9	High	Low	Low	1.6%
10	Mid	High	High	3.1%
11	Mid	High	Mid	6.3%
12	Mid	High	Low	3.1%
13	Mid	Mid	High	6.3%
14	Mid	Mid	Mid	12.5%
15	Mid	Mid	Low	6.3%
16	Mid	Low	High	3.1%
17	Mid	Low	Mid	6.3%
18	Mid	Low	Low	3.1%
19	Low	High	High	1.6%
20	Low	High	Mid	3.1%
21	Low	High	Low	1.6%
22	Low	Mid	High	3.1%
23	Low	Mid	Mid	6.3%
24	Low	Mid	Low	3.1%
25	Low	Low	High	1.6%
26	Low	Low	Mid	3.1%
27	Low	Low	Low	1.6%

Model Revenue Requirement & Other Key Metrics

Laura Becker

Revenue Requirement Calculations

ARP #1 Scenario #1 **ARP #2** Scenario #2 **ARP #3** Scenario #3 **ARP #4** ... Scenario #n

Net Present Value of Revenue Requirement (NPVRR) results for **Individual Scenarios**

Expected Value of NPVRR across all Scenarios

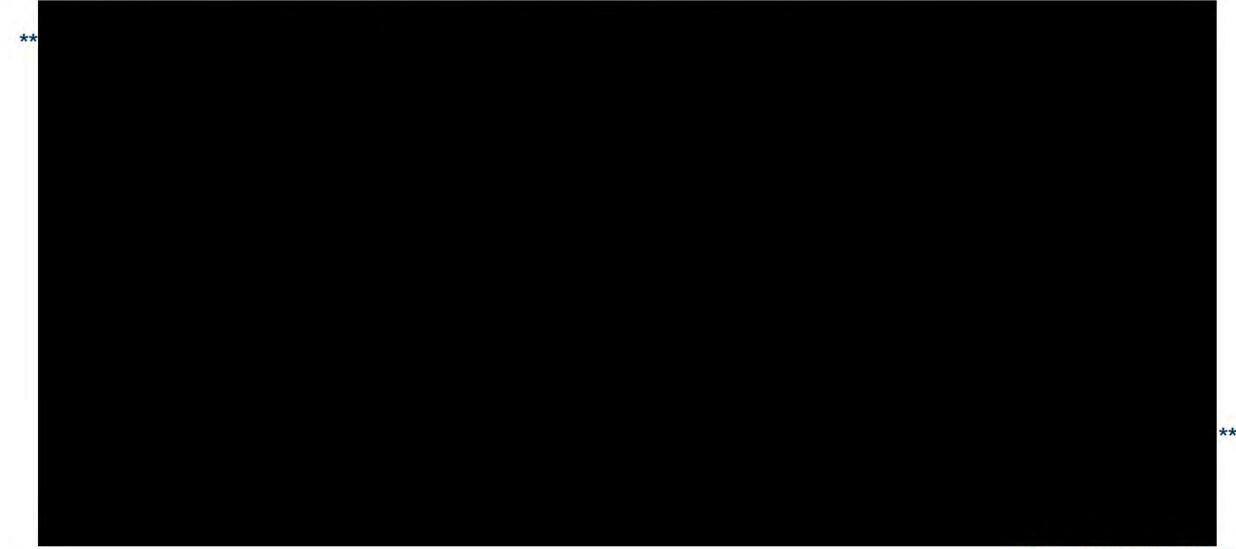
ARP #n

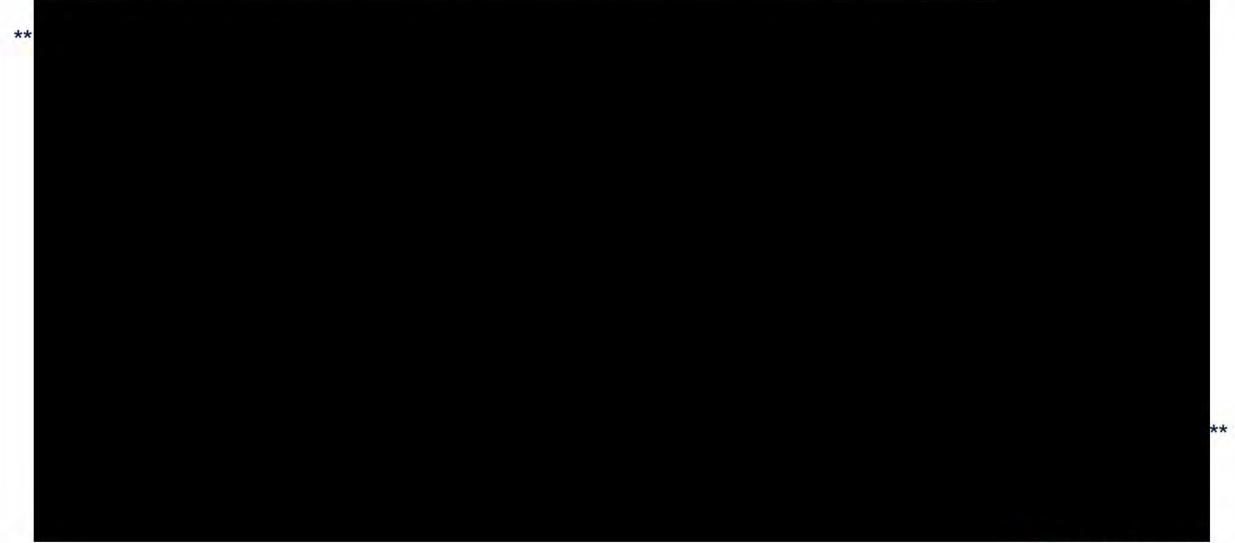
Combinations of Resource Retirements / New Generation / DSM over 20 years

Made up of Critical Uncertain Factors (e.g., may consist of different wholesale market prices)

Preliminary NPVRR Results – No CO₂ Restrictions

CONFIDENTIAL


Preliminary NPVRR Results – Mid-CO₂ Costs


Preliminary NPVRR Results - High CO₂ Costs

Preliminary NPVRR Results – Expected Value

Next Steps

Triennial IRP Development Timeline

Gathering Input

July: Stakeholder meeting to discuss modeling assumptions / inputs

Reviewing Results

Q1 2021: Review updated results including detailed review of inputs outlined in IRP rules

Refining Assumptions and Inputs

Early April: 2020 Annual **Update Stakeholder Meeting** to introduce process

Conducting Analysis

Late Q3 - Early Q1: Stakeholder meeting(s) to discuss preliminary results

- October 19 & 20th: Initial review of preliminary results
- Early-December: Additional stakeholder meeting to review next round of results
- Late-December Early Q1: Demand-Side (Electrification, DSM, BtM solar & storage) Focused Discussion
- As Needed: Topical meetings with specific stakeholders on comments received

Follow up via email with any specific comments to

before October 30th

