

Volume 2: Commercial and Industrial Measures

Ameren Missouri TRM – Volume 2: C&I Measures Revision Log

Revision	Date	Description
1.0	05/30/2018	Initial version filed for Commission approval.
1.1	06/19/2020	Updated version to include new measures and updates to
		existing measures
2.0	10/15/2020	Updated version to include updates to existing measures.
3.0	9/15/2021	Update "Deemed Tables" with PY2020 Evaluation results plus
		updates to existing measures (lighting, chiller, pool pump).
		Added EUL lookup table for lighting measures from PY19.
4.0	9/26/2022	Updated "Deemed Tables" with PY2021 Evaluation results and
		added two new measures: 2.2.2 Compressed Air Leak Repair
		(shifting Compressed Air Nozzle and VSD Air Compressor to
		2.2.3 and 2.2.4, respectively) and 2.5.10 Chiller Tune-Up.
5.0	10/05/2023	Updated baselines to 2015 IECC (effective 1/1/2024) for 2.5.5,
		2.5.6, and 2.5.8. Updated baseline table to include only 2015
		IECC for 2.5.7 PTAC/PTHP. Added "exterior" to 24/7 lighting
		coincidence factor because 24/7 interior lighting (e.g., exit
		signs) are included in the indoor lighting coincidence factor.
		Retired measures 2.6.4 and 2.6.7 in response to the EISA
		backstop provision becoming effective 8/1/2023. Expanded
		measure 2.2.4 VSD Air Compressor description to include units
		up to 200-hp.
6.0	01/15/2025	Removed measures to align with approved measure list from
		Commission on 01/15/25Added Efficient Pumps, Efficient
		Cooling Towers, Dedicated Outdoor Systems. Removed several
		measures currently not active in the programs. Reviewed and
		updated all measures including source documentation.
7.0	11/10/2025	Updated "Deemed Tables" with PY24 Evaluation results
		including updates to SEER and HSPF values for applicable
		Residential and Commercial HVAC equipment, Added new measures such as 9 multi-family air-source heat pump measure
		combinations based on PY2024 program data to fill gaps of
		SEER and baseline specific equipment, updated consistent
		naming convention for "Smart Thermostat measures", clean up
		the "program/channel" designations in appendix F to better
		align with implementation and updated Appendix G, H and I for
		consistency.

Volume 2: Commercial and Industrial Measures	1
2.2 Compressed Air	5
2.2.1 Compressed Air No Loss Condensate Drain	5
2.2.2 Compressed Air Leak Repair	7
2.2.3 Compressed Air Nozzle	10
2.2.4 VSD Air Compressor	14
2.3 Food Service	17
2.3.1 Combination Oven	17
2.3.2 Commercial Steam Cooker	23
2.3.3 Fryer	28
2.3.4 Convection Oven	32
2.3.5 Griddle	37
2.3.6 Kitchen Demand Ventilation Controls	52
2.3.7 Hot Food Holding Cabinet	55
2.3.8 Pre-Rinse Spray Valve	58
2.4 Hot Water	62
2.4.1 Low Flow Faucet Aerator	62
2.4.2 Circulator Pump	67
2.4.3 Heat Pump Water Heater	69
2.4.4 Low Flow Showerheads	74
2.5 HVAC	78
2.5.1 Small Commercial Smart Thermostats	79
2.5.2 Demand Controlled Ventilation	82
2.5.3 Advanced Roof Top Unit (RTU) Controls	87
2.5.4 Electric Chiller	90
2.5.5 Heat Pump Systems	95
2.5.6 Packaged Terminal Air Conditioner (PTAC) - Packaged Terminal Heat Pump (PTHP)	102
2.5.7 Single-Package and Split System Unitary Air Conditioner	107
2.5.8 High Volume Low Speed Fans	113
2.5.9 Chiller Tune Up	115
2.5.10 Efficient Cooling Towers	121
2.5.11 Dedicated Outdoor Systems (DOAS)	124
2.6 Lighting	128
2.6.1 LED Bulbs and Fixtures (Available for Income Eligible and BSS programs)	130

2.6.2 LED Screw Based Omnidirectional Bulb (Available for Income Eligible programs)	
2.6.3 LED Exit Sign (Available for Income Eligible and BSS programs)	145
2.6.4 LED Specialty Lamp (Available for Income Eligible and BSS programs)	148
2.6.5 Lighting Power Density (Available for Income Eligible and BSS programs)	153
2.6.6 Lighting Controls	165
2.7 Miscellaneous	170
2.7.1 Computer Server	170
2.8 Motors and Pumps	173
2.8.1 Motors	173
2.8.2 Pool Pump	177
2.8.3 Pump Optimization	179
2.8.4 Variable Frequency Drives for Pumps and Fans on Hydronic HVAC Systems	181
2.8.5 Variable Frequency Drives for HVAC Supply and Return Fans	185
2.8.6 Efficient Pumps	188
2.9 Refrigeration	191
2.9.1 Commercial Solid and Glass Door Refrigerators & Freezers	191
2.9.2 Refrigerated Beverage Vending Machine	195
2.9.3 Door Heater Controls for Cooler or Freezer	198
2.10 Shell	202
2.10.1 Windows	202
2.10.2 Ceiling and Wall Insulation	207

Volume 2: Commercial and Industrial Measures

2.2 Compressed Air

2.2.1 Compressed Air No Loss Condensate Drain

DESCRIPTION

No-loss condensate drains remove condensate as needed without venting compressed air, resulting in less air demand and better efficiency. Replacement or upgrades of existing no-loss drains are not eligible for this measure.

This measure was developed to be applicable to the following program type: RF. If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

The efficient equipment is a no-loss condensate drain.

DEFINITION OF BASELINE EQUIPMENT

The baseline equipment is a standard condensate drain (open valve, timer, or both).

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The lifetime of a no-loss condensate drain is assumed to be 13 years.¹

DEEMED MEASURE COST

The measure cost is \$778 per drain.²

LOADSHAPE

Air Comp BUS

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

 $\Delta kWh = CFM_{reduced} * kW_{CFM} * Hours$

Where:

 $CFM_{reduced}$ = Reduced air consumption (CFM) per drain

¹ Energy & Resource Solutions (prepared for the Massachusetts Joint Utilities), "Measure Life Study", Table 1-1, 2005, | https://www.ers-inc.com/wp-content/uploads/2018/04/Measure-Life-Study MA-Joint-Utilities ERS.pdf.

² Ameren MO DSM program participants 2020 to 2024, equipment and labor cost, 7 projects.

 $= 3 \text{ CFM}^3$

 kW_{CFM}

= System power demand reduction per reduced air consumption (kw/CFM), depending on the type of compressor control, see table below⁴

Compressor Control Type	kW/CFM
Reciprocating - On/off Control	0.184
Reciprocating - Load/Unload	0.136
Screw - Load/Unload	0.152
Screw - Inlet Modulation	0.055
Screw - Inlet Modulation w/ Unloading	0.055
Screw - Variable Displacement	0.153
Screw - VFD	0.178

Hours

- = Compressed air system pressurized hours
- = Use actual hours if known, otherwise assume values in table below

Shift	Hours	
Single shift (8/5)	1976 hours:	
Single sinit (6/3)	7 AM-3 PM, weekdays, less holidays & scheduled down time	
2-shift (16/5)	3952 hours:	
2-Sillit (10/3)	7AM – 11 PM, weekdays, less holidays & scheduled down time	
2 ahift (24/5)	5928 hours:	
3-shift (24/5)	24 hours per day, weekdays, less holidays & scheduled down time	
4-shift (24/7)	8320 hours:	
	24 hours per day, 7 days, less holidays & scheduled down time	

SUMMER COINCIDENT PEAK DEMAND SAVINGS

 $\Delta kW = \Delta kWh \times CF$

Where:

 Δ kWh

= Electric energy savings, calculated above

CF

= Summer peak coincidence demand (kW) to annual energy (kWh) factor

 $= 0.0001379439^{5}$

³ Reduced CFM consumption is based on a 90 CFM timer drain opening for 10 seconds every 300 seconds as the baseline. Local file: "Install NoLoss CondDrainValves worksheet, cell G44,"Industrial System Standard Deemed Saving Analysis.xls."

⁴ Calculated based on load curves from Compressed Air Challenge. Aggregated data assumed the compressor will be between 40% and 100% capacity. Worksheet "Install High Efficiency Nozzles", Range N18:AG38, . Local file: "Industrial System Standard Deemed Saving Analysis.xls."

⁵ Ameren Missouri TRM Volume 1 - Appendix G: "Table 2 - Commercial and Industrial End Use Category Monthly Shapes and Coincident Peak Factors."

MEASURE CODE:

2.2.2 Compressed Air Leak Repair

DESCRIPTION

This measure applies to an installed air compressor system that has developed leaks. Leaks in a compressed air system lead to an increase in energy use to maintain the necessary pressure in the system.

Savings are calculated by using information collected through survey and measurement of the compressed air system, including the cubic feet per minute (CFM) of the airflow of each leak using ultrasonic leak detection equipment.

DEFINITION OF EFFICIENT EQUIPMENT

Efficient Equipment is defined as the state of the air compressor system after leaks have been repaired. It is not necessarily the air compressor with no leaks left as some leaks may be impossible to reach or have substantial difficulty in fixing, therefore the efficient equipment is one that has all leaks repaired that have been stated to be repaired.

DEFINITION OF BASELINE EQUIPMENT

Baseline equipment is characterized by the condition of the compressed air system at the time of inspection before the leaks are repaired.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The effective useful life is 2 years. ⁶

DEEMED MEASURE COST

Measure cost should include the inspection and repair cost.

LOADSHAPE

Air Comp BUS

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

When a CFM-bin approach model built with trended data is not available, the simplified approach listed below may be used.

 $\Delta kWh = CFM$ leak x kW/CFM x CCAF x Hours

Where:

 CFM_{leak} = CFM leaks repaired

⁶ 2022 WI TRM, PA Consulting Group. "Focus on Energy, Business Programs: Measure Life Study Final Report". (August 25, 2009). https://focusonenergy.com/sites/default/files/bpmeasurelifestudyfinal_evaluationreport.pdf (See table 1-2 on page 1-4).

= Sum of CFM using dB from ultrasonic measurement and psig reading in the table below⁷

reading in the table colon					
Digital Reading	10 PSIG	25 PSIG	50 PSIG	75 PSIG	100 PSIG
10 dB	0.05	0.1	0.2	0.3	0.5
20 dB	0.15	0.3	0.5	0.9	0.8
30 dB	0.4	0.5	0.8	1.1	1.4
40 dB	0.5	0.8	1.1	1.4	1.7
50 dB	1.9	2	2.2	1.8	2
60 dB	2.3	2.6	2.8	3	3.6
70 dB	3	3.4	3.9	4.9	5.2
80 dB	3.6	5.1	5.6	6.8	7.7
90 dB	5.3	6.8	7.1	7.7	8.4
100 dB	6	7.3	9.6	10	10.6

kW/CFM

= System power generation efficiency, obtained from model plate or CAGI sheets, full load power/full flow. Adjust for output pressure if different than specification sheets.

=If unknown, assume 0.19 kW/CFM.

CCAF

=Trim compressor control type adjustment factor⁸

=Values applicable to trim air compressor, in following table.

Control Method	CCAF
Reciprocating – On/Off control	1.00
Reciprocating – Load/Unload	0.74
Screw-Load/Unload oil free	0.73
Screw – Load/Unload 1 gal CFM	0.43
Screw – Load/Unload 3 gal CFM	0.53
Screw – Load/Unload 5 gal CFM	0.63
Screw – Load/Unload 10 gal CFM	0.73
Screw-inlet modulation w/o blowdown	0.29
Screw-inlet modulation, blowdown	0.74
Screw-variable displacement	0.60
Screw-variable speed drive	0.97
Centrifugal IBV blowdown	0.20
Centrifugal IGV blowdown	0.26
Start/Stop	1.00

Hours = Compressed air system pressurized hours

⁷ Values extrapolated from "Compressed Air Ultrasonic Leak Detection Guide" from UE Systems. Readings compensated for atmospheric pressure and taken at 40 kHz. (See page 6) Local file: "UE Systems compressed air ultrasonic leak detection.jpg" ⁸ NREL, Factors based on power vs capacity curves from table 5 on page 16 for reciprocating, rotary screw compressors and table 2 on page 9 for centrifugal compressors, "Chapter 22: Compressed Air Evaluation Protocol", https://www.nrel.gov/docs/fy17osti/68577.pdf.

= Actual hours, or if unknown, assume values in table below, based on compressor operating schedule

Shift	Hours
Single shift (8/5)	1976 hours:
	7 AM-3 PM, weekdays, less holidays & scheduled down time
2 abift (16/5)	3952 hours:
2-shift (16/5)	7AM – 11 PM, weekdays, less holidays & scheduled down time
3-shift (24/5)	5928 hours:
3-Shift (24/3)	24 hours per day, weekdays, less holidays & scheduled down time
4-shift (24/7)	8320 hours:
	24 hours per day, 7 days, less holidays & scheduled down time

SUMMER COINCIDENT PEAK DEMAND SAVINGS

 $\Delta kW = \Delta kWh \times CF$

Where:

 Δ kWh = Electric energy savings, calculated above

CF = Summer peak coincidence demand (kW) to annual energy (kWh) factor

 $=0.0001379439^9$

MEASURE CODE:

⁹Ameren Missouri TRM Volume 1 - Appendix G: "Table 2 - Commercial and Industrial End Use Category Monthly Shapes and Coincident Peak Factors"

2.2.3 Compressed Air Nozzle

DESCRIPTION

This measure applies to the replacement of a standard air nozzle with high-efficiency air nozzle used in a compressed air system. High-efficiency air nozzles use the Coandă effect to pull in free air and use significantly less compressed air for blowing off parts or for drying. These nozzles have the added benefits of noise reduction and improved safety in systems with greater than 30 psig. The measure is applicable to continuous air blow off processing and manual air blow off tools.

This measure was developed to be applicable to the following program types: DI and RF. If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

The efficient equipment is a high efficiency compressed air nozzle meeting program requirements.

The air flow, CFM, is from the manufacturer model specification sheet, for the applicable working pressure.

DEFINITION OF BASELINE EQUIPMENT

The baseline equipment is a standard air nozzle that is OSHA approved for hand tools, or a standard blow off nozzle for continuous processing.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The measure life is 15 years.¹⁰

DEEMED MEASURE COST

Incremental measure costs are presented in the following table.¹¹

Nozzle Diameter	Measure Cost
1/8"	\$42
1/4"	\$59
3/8"	\$236
1/2"	\$335

LOADSHAPE

Air Comp BUS

¹⁰ "Focus on Energy Evaluation - Business Programs: Measure Life Study," prepared for State of Wisconsin Public Service Commission by PA Consulting Group, August 25, 2009 (See page 89 or search "compressed air nozzle").

¹¹ Costs are from EXAIR's website and are an average of nozzles that meet the flow requirements. Models include Atto Super, Pico Super, Nano Super, Micro Super, Mini Super, Super and Large Super nozzles. www.exair.com. Data in local file: "2024 Air nozzle incremental cost.xlsx."

Algorithm

CALCULATION OF ENERGY SAVINGS

ELECTRIC ENERGY SAVINGS

 $\Delta kWh = (CFM_{base} - CFM_{eff}) * kW/CFM * CCAF* Hours x % Use$

Where:

 CFM_{base} = Air flow through standard open nozzle.

= Actual rated flow at 80 psi, if known. If unknown, use CFM by orifice diameter for rounded edge, from table below. 12

Orifice Diameter	SCFM
1/16"	5
1/8"	21
1/4"	85
3/8"	193
1/2"	343

CFM_{eff} =Engineered nozzle rate flow at 80 psi.

kW/100CFM = System power generation efficiency, obtained from model plate

or CAGI sheets, full load power/full flow. Adjust for output

pressure if different than specification sheets.

=If unknown, assume 0.19 kW/100 CFM, typical air compressor

CCAF =Trim compressor control type adjustment factor¹³

=Values applicable to trim air compressor, in following table.

Control Method	CCAF
Reciprocating – On/Off control	1.00
Reciprocating – Load/Unload	0.74
Screw-Load/Unload oil free	0.73
Screw – Load/Unload 1 gal CFM	0.43
Screw – Load/Unload 3 gal CFM	0.53
Screw – Load/Unload 5 gal CFM	0.63
Screw – Load/Unload 10 gal CFM	0.73
Screw-inlet modulation w/o blowdown	0.29
Screw-inlet modulation, blowdown	0.74
Screw-variable displacement	0.60
Screw-variable speed drive	0.97
Centrifugal IBV blowdown	0.20

¹² Moss, Sanford, "Flow of gases", https://www.engineersedge.com/fluid_flow/images/oriifce-pressure-drop.gif.

¹³ NREL, Factors based on power vs capacity curves from table 5 on page 16 for reciprocating, rotary screw compressors and table 2 on page 9 for centrifugal compressors, , "Chapter 22: Compressed Air Evaluation Protocol", https://www.nrel.gov/docs/fy17osti/68577.pdf.

Centrifugal IGV blowdown	0.26
Start/Stop	1.00

Hours

= Compressed air system pressurized hours

= Use actual hours if known, otherwise assume values in table

below.

Shift	Hours
Single shift (8/5)	1976 hours:
Single sinit (8/3)	7 AM – 3 PM, weekdays, minus some holidays and scheduled down time
2-shift (16/5)	3952 hours:
2-SIIII (10/3)	7AM – 11 PM, weekdays, minus some holidays and scheduled down time
	5928 hours:
3-shift (24/5)	24 hours per day, weekdays, minus some holidays and scheduled down
	time
	8320 hours:
4-shift (24/7)	24 hours per day, 7 days a week minus some holidays and scheduled down
·	time

%Use

= Percent of the compressor total operating hours that the nozzle is

in use

= Custom, or if unknown, assume 5%¹⁴

SUMMER COINCIDENT PEAK DEMAND SAVINGS

 $\Delta kW = \Delta kWh \times CF$

Where:

 Δ kWh = Electric energy savings, calculated above

CF = Summer peak coincidence demand (kW) to annual energy (kWh) factor

 $= 0.0001379439^{15}$

NATURAL GAS SAVINGS

N/A

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

¹⁴ Assumes 50% handheld air guns and 50% stationary air nozzles. Manual air guns tend to be used less than stationary air nozzles, and a conservative estimate of 1 second of blow-off per minute of compressor run time is assumed. Stationary air nozzles are commonly more wasteful as they are often mounted on machine tools and can be manually operated resulting in the possibility of a long term open blow situation. An assumption of 5 seconds of blow-off per minute of compressor run time is used.

¹⁵ Ameren Missouri TRM Volume 1 - Appendix G: "Table 2 - Commercial and Industrial End Use Category Monthly Shapes and Coincident Peak Factors."

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE:

2.2.4 VSD Air Compressor

DESCRIPTION

This measure relates to the installation of an air compressor with a variable frequency drive, load/no load controls, or variable displacement control. A baseline modulating compressor regulates output by choking off the inlet air, which is not efficient. Efficient compressors use a variable speed drive on the motor to match output to the load. Savings are calculated using representative baseline and efficient demand numbers for compressor capacities according to the facility's load shape, and the number of hours the compressor runs at that capacity. Demand curves are as per US Department of Energy (DOE) data for a variable speed compressor versus a modulating compressor. This measure applies only to an individual compressor ≤ 200 hp. Only one compressor per compressed air distribution system is eligible.

This measure was developed to be applicable to the following program type: TOS. If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

The high efficiency equipment is a compressor 5-200 hp with variable speed control.

DEFINITION OF BASELINE EQUIPMENT

The baseline equipment is a modulating compressor with blow down 5-200 hp

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

10 years.16

DEEMED MEASURE COST¹⁷

Incremental Cost (\$) = $((127 \text{ x hp}_{compressor}) + 1446) \text{ x } 1.43^{18}$

Where:

hp_{compressor} = compressor motor nominal horsepower

127 and 1,446 = compressor motor nominal hp to incremental cost conversion factor

and offset

LOADSHAPE

Air Comp BUS

¹⁶ Based on data provided by vendors, reference file "VSD compressor lifetime and costs.xls."

¹⁷ Based on data provided by vendors, reference file "VSD compressor lifetime and costs.xls."

¹⁸ Adjustment for inflation since incremental cost study is in 2008. The U.S. Bureau of Labor Statistic CPI Inflation Calculator was used to adjust 2008 (July) to 2024 (July). The resulting factor was 1.43. This adjustment was evaluated against current pricing of compressors (2024) and found to be a reasonable and appropriate.

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

 ΔkWh = 0.9 x hp_{compressor} x HOURS x (CF_b - CF_e)

Where:

 ΔkWh = gross customer annual kWh savings for the measure

hpcompressor = compressor motor nominal horsepower

0.9 = compressor motor nominal horsepower to full load kW conversion factor¹⁹ HOURS = compressor total annual hours of operation. Custom input, if unknown use

the defaults based on shift structure below.

Shift	Hours
Single shift (8/5)	1976 hours: 7 AM – 3 PM, weekdays, minus some holidays and scheduled down
Single sinit (6/3)	time
2-shift (16/5)	3952 hours: 7AM – 11 PM, weekdays, minus some holidays and scheduled
2-SIIII (10/3)	down time
3-shift (24/5)	5928 hours: 24 hours per day, weekdays, minus some holidays and scheduled
3-SIIII (24/3)	down time
8320 hours: 24 hours per day, 7 days a week minus some holidays and	
4-shift (24/7)	scheduled down time
Unknown /	5702 hours: Weighting of 16% single shift, 23% two shift, 25% three shift and
Weighted average ²⁰	36% continual

Cobb = baseline compressor factor, refer to table below

¹⁹Conversion factor based on a linear regression analysis of the relationship between air compressor motor nominal horsepower and full load kW from power measurements of 72 compressors at 50 facilities on Long Island. See "VSD Air Compressor – Supporting Information_with40to50hpbucket.xlsx" for more information.

²⁰ Weighting based on DOE evaluation of the Compressed Air Challenge, section 2.1.5 Facility Operating Schedules. (see Table 2-5 on page 2-3 https://www.compressedairchallenge.org/data/sites/1/media/library/evaluation.pdf.

Baseline Compressor	Compressor Factor (≤ 40 hp) ²¹	Compressor Factor (> 40 – 49 hp) ²²	Compressor Factor (50 – 200 hp) ²³
Modulating w/ Blowdown	0.890	0.886	0.863
Load/No-Load w/ 1 Gallon/CFM	0.909	0.905	0.887
Load/No-Load w/ 3 Gallon/CFM	0.831	0.827	0.811
Load/No-Load w/ 5 Gallon/CFM	0.806	0.802	0.786

 CF_e

= efficient compressor factor²⁴

=0.705 for units ≤ 40 hp

=0.701 for units > 40 hp and < 50 hp

=0.658 for units 50 - 200 hp

SUMMER COINCIDENT PEAK DEMAND SAVINGS

 $\Delta k = \Delta kWh \times CF$

Where:

CF = Summer peak coincidence demand (kW) to annual energy (kWh) factor

 $= 0.0001379439^{25}$

MEASURE CODE:

_

²¹ Compressor factors were developed using DOE part load data for different compressor control types as well as load profiles from 50 facilities employing air compressors less than or equal to 40 hp. See "VSD Air Compressor – Supporting Information with 40 to 50 hpbucket.xlsx" for more information.

²² Compressor factors for the size range between 40 and 50 hp were interpolated from data used to derive the compressor factors for the other size ranges. See "VSD Air Compressor – Supporting Information_with40to50hpbucket.xlsx" for more information.

²³ Compressor factors for this size range were developed using DOE part-load data for different compressor control types as well as load profiles from 45 compressors and 20 facilities. This data comes from ComEd Custom and Industrial Systems programs. The compressors were filtered to reflect only rotary screw compressors, between 50 and 200 hp, and operating a minimum of 4 hours per day, Additionally, compressors with clear and consistent baseload profiles were excluded from this analysis. See "VSD Air Compressor – Supporting Information with40to50hpbucket.xlsx" for more information.

²⁴ Compressor factors were developed using DOE part load data for different compressor control types as well as load profiles from 50 facilities employing air compressors less than or equal to 40 hp. The "variable speed drive" compressor factor has been adjusted up from the 0.675 presented in the analysis to 0.705 to account for the additional power draw of the VSD.See "VSD Air Compressor – Supporting Information with40to50hpbucket.xlsx" for more information.

²⁵ Ameren Missouri TRM Volume 1 - Appendix G: "Table 2 - Commercial and Industrial End Use Category Monthly Shapes and Coincident Peak Factors."

2.3 Food Service

2.3.1 Combination Oven

DESCRIPTION

This measure applies to full or half-sized electric ENERGY STAR® combination ovens with a pan capacity ≥ 3 and ≤ 40 and to full or half-sized natural gas fired ENERGY STAR® combination ovens with a pan capacity ≥ 5 and ≤ 40 installed in a commercial kitchen. Combination ovens combine the function of hot air convection (convection mode), saturated and superheated steam heating (steam mode), and combination convection/steam mode for moist heating, to perform steaming, baking, roasting, re-thermalizing, and proofing of various food products. ENERGY STAR® certified combination ovens are approximately 27% more efficient than standard ovens. ²⁶

This measure was developed to be applicable to the following program type: TOS.

If applied to other program types, measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

To qualify for this measure, the installed equipment must be an ENERGY STAR® certified combination oven meeting idle energy rate (kW or Btu/hr) and cooking efficiency (%) limits, as determined by fuel type, operation mode (steam or convection), and pan capacity.

ENERGY STAR® Requirements (Version 3.0, Effective October 12, 2023) ²⁷

Fuel Type	Operation	Idle Rate (Btu/hr for Gas, kW for Electric)	Cooking-Energy Efficiency (%)
Natural Gas	Steam Mode	\leq 200P+6,511	≥ 41
(5-40 pan)	Convection Mode	$\leq 140P+3,800$	≥ 57
Electric	Steam Mode	\leq 0.133P+0.64	≥ 55
(5-40 pan)	Convection Mode	\leq 0.083P+0.35	≥ 78
Electric	Steam Mode	≤ 0.60P	≥ 51
(3-4 pan)	Convection Mode	\leq 0.05P+0.55	≥ 70

Note: P = Pan capacity as defined in Section 1.T of the Commercial Ovens Program Requirements Version 3.0^{28}

DEFINITION OF BASELINE EQUIPMENT

The baseline equipment is a new electric or natural gas combination oven that is not ENERGY STAR® certified.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

²⁶ https://www.energystar.gov/products/commercial ovens

²⁷ ENERGY STAR® | Commercial Food Service Equipment | Commercial Ovens | ENERGY STAR® version 3.0 | https://www.energystar.gov/products/commercial food service equipment/commercial ovens/key product criteria

²⁸ Pan capacity is defined as the number of steam table pans the combination oven is able to accommodate as per the ASTM F1495-20 standard specification, required for ENERGY STAR® product certification. https://www.energystar.gov/sites/default/files/asset/document/ENERGY%20STAR%20Version%203.0%20Commercial%20Ovens%20Final%20Specification.pdf

The expected measure life is assumed to be 12 years. ²⁹

DEEMED MEASURE COST

The incremental capital cost for each type of combination oven is listed in the following table.

Equipment	Size	Incremental Cost ³⁰
Electric combination oven	All sizes	\$1,850
Electric combination oven	All sizes	\$1,701

LOADSHAPE

Cooking BUS

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

Custom calculation for an electric combination oven below, default values are provided for each input and in the following tables, sourced from the "Commercial Kitchen Equipment Savings Calculator", published by ENERGY STAR® on March 2024. 31

ΔkWh	$= (\Delta CookingEnergy_{ConvElec} + \Delta CookingEnergy_{SteamElec} + \Delta IdleEnergy_{SteamElec} + \Delta IdleEnergy_{SteamElec} + \Delta PreHeatEnergy_{Elec}) x Days/1,000$
Where:	
$\Delta Cooking Energy {\tt ConvElec}$	= Difference in cooking energy between baseline and efficient combination oven in convection mode
	= FoodCookedElec x (EFOODConvElec / ElecEFFConvBase - EFOODConvElec / ElecEFFConvEE) x %Conv
$\Delta Cooking Energy {\tt SteamElec}$	= Difference in cooking energy between baseline and efficient combination oven in steam mode
	= FoodCookedElec x (EFOODSteamElec / ElecEFFSteamBase -
	EFOODSteamElec / ElecEFFSteamEE) x %Steam
$\Delta Idle Energy {\it ConvElec}$	= Difference in idle energy between baseline and efficient
	combination oven in convection mode

²⁹ ENERGY STAR®, "Results Detail" worksheet (Equipment Life field), Commercial Kitchen Equipment Savings Calculator,

⁽March 2024), https://www.energystar.gov/sites/default/files/2024-03/CFS%20Equipment%20Calculator.xlsx.

30 ENERGY STAR®, "Oven Calcs" hidden worksheet (Incremental Cost field), Commercial Kitchen Equipment Savings Calculator, (March 2024), https://www.energystar.gov/sites/default/files/2024-03/CFS%20Equipment%20Calculator.xlsx.

³¹ ENERGY STAR®, Algorithms and assumptions derived from Commercial Kitchen Equipment Savings Calculator, (March 2024), https://www.energystar.gov/sites/default/files/2024-03/CFS%20Equipment%20Calculator.xlsx.

= ((ElecIDLE_{ConvBase} x ((Hours - FoodCooked_{Elec} /ElecPC_{ConvBase}) x %_{Conv})) - (ElecIDLE_{ConvEE} x ((Hours -

FoodCooked_{Elec} /ElecPCConvEE) x %Conv)))

 Δ IdleEnergy_{SteamElec} = Difference in idle energy between baseline and efficient

combination oven in steam mode

= [(ElecIDLEsteamBase x ((Hours - FoodCookedElec/

ElecPCSteamBase) x %Steam)) - (ElecIDLESteamEE x ((Hours

- FoodCookedElec / ElecPCSteamEE) x %Steam))]

ΔPreHeatEnergy_{Elec} =Difference in preheat energy between baseline and efficient

=PreHeatconv - PreHeatEE

Days = Annual days of operation

= Actual, if unknown, use 365.25 days per year

1,000 = Watt-hour to kilowatt-hour conversion factor

FoodCooked_{Elec} = Food cooked per day for electric combination oven

= Actual, if unknown, use 200 lbs if P >4 or 125 lbs if P \geq 15

EFOOD_{ConvElec} = ASTM energy to food for electric combination oven in

convection mode

=73.2 Watt-hour/lb
ElecEff =Energy efficiency of electric combination oven

= Actual, if unknown use, use values from table below

Equipment	Base	Efficient
ElecEFF _{Conv} (5-40 Pan)	72%	78%
ElecEFF _{Conv} (>5 Pan)	65%	70%
ElecEFF _{Steam} (5-40 Pan)	52%	55%
ElecEFF _{Steam} (>5 Pan)	47%	51%

%Conv = Percentage of time in convection mode

= Actual, or if unknown, use 50%

EFOOD_{SteamElec} = ASTM energy to food for electric combination oven in steam

mode

= 30.8 Watt-hour/lb

%steam = Percentage of time in steam mode

 $= 1 - \%_{\text{conv}}$

ElecIDLE_{Base} = Idle energy rate (W) of baseline electric combination oven

= Actual, or if unknown, use values from table below

Pan Capacity	Convection Mode (ElecIDLE _{ConvBase)}	Steam Mode (ElecIDLE _{SteamBase)}
> 5	680	2,090
≥ 5 to 40	1,320	5,260

Hours = Average daily hours of operation

= Actual, or if unknown, use 12 hours per day

ElecPC_{Base} = Production capacity (lbs/hr) of baseline electric oven

= Actual, or if unknown, use values from table below

Pan Capacity	Convection Mode (ElecPC _{ConvBase)}	Steam Mode (ElecPC _{SteamBase)}
> 5	29	45
5 to 40	107	151

ElecIDLE_{convEE} = Idle energy rate of ENERGY STAR® electric combination oven

in convection mode

= (0.083xP + 0.35)x1,000 for 5-40 pan capacity = (0.05xP + 055)x1,000 for 3-4 pan capacity

ElecPC_{EE} = Production capacity (lbs/hr) of ENERGY STAR[®] electric

combination oven

= Actual, or if unknown, use values from table below

Pan Capacity	Convection Mode (ElecPC _{ConvEE})	Steam Mode (ElecPC _{SteamEE)}
> 5	37	59
5 to 40	174	247

ElecIDLEsteamEE

= Idle energy rate of ENERGY STAR $^{\circledR}$ electric combination oven

in steam mode

= (0.133 xP + 0.64) x 1,000 for 5-40 pan capacity

= (0.60xP)x1,000 for 3-4 pan capacity

SUMMER COINCIDENT PEAK DEMAND SAVINGS

 $\Delta k = \Delta kWh \times CF$

Where:

 ΔkWh = Electric energy savings, calculated above

CF = Summer peak coincidence demand (kW) to annual energy (kWh) factor

 $= 0.0001998949^{32}$

NATURAL GAS ENERGY SAVINGS

³² Ameren Missouri TRM Volume 1 - Appendix G: "Table 2 - Commercial and Industrial End Use Category Monthly Shapes and Coincident Peak Factors" Ameren Missouri TRM Volume 1 - Appendix G: "Table 2 - Commercial and Industrial End Use Category Monthly Shapes and Coincident Peak Factors."

Custom calculation for a gas combination oven below:33

 $\Delta Therms = (\Delta CookingEnergy_{ConvGas} + \Delta CookingEnergy_{SteamGas} +$

ΔIdleEnergyConvGa + ΔIdleEnergySteamGas+

ΔPreHeatEnergy_{Gas}) * Days/100,000

Where:

 Δ CookingEnergy_{ConvGas} = Difference in cooking energy between baseline and efficient

combination oven in convection mode = FoodCookedGas x (EFOODConvGas /

GasEFFConvBase EFOODConvGas/ GasEFFConvEE) x %Conv

 Δ CookingEnergy_{SteamGas} = Difference in cooking energy between baseline and efficient

combination oven in steam mode

= FoodCookedGas x (EFOODSteamGas / GasEFFSteamBase -

EFOODSteamGas / GasEFFSteamEE) x %Steam

 Δ IdleEnergyConvGas = Difference in idle energy between baseline and efficient

combination oven in convection mode

 $= ((GasIDLEConvBase \ x \ ((Hours - FoodCookedGas / GasIDLEConvBase \ x \ (($

 $GasPCConvBase) \ x \ \%Conv)) \ -$

(GasIDLEConvEE x ((Hours - FoodCookedGas /

GasPCConvEE(x %Conv)))

 Δ IdleEnergy_{SteamGas} = Difference in idle energy between baseline and efficient

combination oven in steam mode

= [(GasIDLESteamBase x ((Hours - FoodCookedGas /

 $GasPCSteamBase) \times \%Steam)) -$

(GasIDLESteamEE x ((Hours - FoodCookedGas /

GasPCSteamEE(x, %Steam))

∆PreHeatEnergySteamGas

100,000

=Difference in daily preheat energy from baseline to efficient

= Btu to therms conversion factor

FoodCooked_{Gas} = Food cooked per day for gas combination oven

= Custom, or, if unknown, use 200 lbs if P < 15, 250 lbs if $15 \le P$

30, or 400 lbs if $P \ge 30$

EFOOD_{ConvGas} = ASTM energy to food for gas combination oven in convection

mode

= 250 Btu/lb

GasEff = Cooking energy efficiency of gas combination oven

= Actual, or if unknown, use values from table below

	Base	E E
$GasEFF_{Conv}$	52%	56%
GasEFF _{Steam}	39%	41%

EFOOD_{SteamGas} = ASTM energy to food for gas combination oven in steam mode

= 105 Btu/lb

GasIDLE_{Base} = Idle energy rate (Btu/hr) of baseline gas combination oven

³³ Algorithms and assumptions derived from ENERGY STAR® Commercial Kitchen Equipment Savings Calculator.

= Actual, or if unknown, use values from table below

Pan Capacity	Convection Mode	Steam Mode
	(GasIDLE _{ConvBase)}	(GasIDLE _{SteamBase)}
< 15	9,840	24,003
$15 \le P \ 30$	11,734	27,795
≥30	15,376	27,957

GasPCBase

= Production capacity (lbs/hr) of baseline gas combination oven

= Actual, or if unknown, use values from table below

Dan Canagity	Convection Mode	Steam Mode
Pan Capacity	(GasPC _{ConvBase})	(GasPC _{SteamBase)}
< 15	125	195
15 ≤ P 30	176	211
≥30	392	579

GasIDLEconvEE

= Idle energy rate of ENERGY STAR® gas combination oven in

convection mode = 140xP + 3,800

GasPCEE

= Production capacity (lbs/hr) of ENERGY STAR® gas

combination oven

= Actual, or if unknown, use values from table below

Dan Canaaity	Convection Mode	Steam Mode
Pan Capacity	(GasPC _{ConvEE})	(GasPC _{SteamEE)}
< 15	124	172
15 ≤ P 30	210	277
≥30	394	640

GasIDLEsteamEE

= Idle energy rate of ENERGY STAR® gas combination oven in

steam mode

= 200xP + 6,511

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE:

2.3.2 Commercial Steam Cooker

DESCRIPTION

This measure applies to electric or natural gas fired ENERGY STAR® steam cookers installed in a commercial kitchen. Commercial steam cookers contain compartments where steam energy is transferred to food by direct contact. ENERGY STAR® certified steam cookers have shorter cook times, higher production rates, and reduced heat loss due to better insulation and more efficient steam delivery.

This measure was developed to be applicable to the following program type: TOS.

If applied to other program types, measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

To qualify for this measure, the installed equipment must be an ENERGY STAR® certified steam cooker meeting idle energy rate (W or Btu/hr) and cooking efficiency (%) limits, as determined by fuel type and pan capacity.

ENERGY STAR® Requirements (Version 1.2, Effective August 1, 2003)

	Electric Efficiency Requirements		Natural Gas Efficiency	
Pan Capacity	Idle Energy Rate Idle Energy Rate	Cooking Efficiency	Idle Energy Rate	Cooking Efficiency
	5.	Efficiency		Efficiency
3-pan	≤ 400 W		≤ 6,250 Btu/hr	
4-pan	≤ 530 W	> 500/	≤ 8,350 Btu/hr	> 200/ NI/A
5-pan	≤ 670 W	≥ 50%	≤ 10,417 Btu/hr	≥ 38% N/A
6-pan and larger	≤ 800 W		≤ 12,500 Btu/hr	

DEFINITION OF BASELINE EQUIPMENT

The baseline equipment is a new electric or natural gas steam cooker that is not ENERGY STAR® certified.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life is assumed to be 12 years.³⁴

DEEMED MEASURE COST

Actual incremental cost for this measure should be used. If actuals are unavailable use \$2,000 for all electric cooker pan sizes and \$1,000 for gas cooker.³⁵

LOADSHAPE

Cooking BUS

³⁴ ENERGY STAR®, "Results Detail" worksheet (Equipment Life field), *Commercial Kitchen Equipment Savings Calculator*, (March 2024), https://www.energystar.gov/sites/default/files/2024-03/CFS%20Equipment%20Calculator.xlsx.

³⁵ Cost from ENERGY STAR® Commercial Kitchen Equipment Savings Calculator, which cites reference as "EPA research using AutoQuotes, October 2020." https://www.energystar.gov/sites/default/files/2024-03/CFS%20Equipment%20Calculator.xlsx (See "Steam Cookers Calcs" tab rows 10 &51).

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

Custom calculation for an electric steam cooker below with inputs for the existing cooker and efficient cooker; otherwise use deemed values from the variable default value and the table that follows, sourced from the *EnergyStar Commercial Equipment Savings Calculator*,.³⁶

 ΔkWh = $(\Delta IdleEnergy + \Delta CookingEnergy + \Delta PreHeatEnergy) x Days/1,000$

Where:

 Δ IdleEnergy = Difference in idle energy between baseline and efficient steam cooker

 $= [(1 - SteamMode) x(IdleRate_{base} +$

 $SteamMode\ x\ Production_{base}\ x\ Pans\ xEFOOD/Eff_{base})x\ (Hours\ -$

 $FoodCooked/(ProductionBase \ x \ Pans))] - [(1 -$

 $SteamMode) x(IdleRate_{ESTAR} +$

SteamMode x Production_{ESTAR} x Pans x EFOOD/Eff_{ESTAR})x (Hours -

 $FoodCooked/(Production_{ESTAR} \ x \ Pans))]$

ΔPreHeatEnergy =Difference in preheat energy between baseline and efficient cooker

=104.3Watt-hour

 Δ CookingEnergy = Difference in cooking energy between baseline and efficient steam cooker

= $(FoodCooked \ x \ EFOOD/Eff_{base}) - (FoodCooked \ x \ EFOOD/Eff_{ESTAR})$

Days = Annual days of operation

= Actual, if unknown, use 365.25 days per year

1,000 = Watt to kWh conversion factor SteamMode = Time (%) in constant steam mode

= Actual, if unknown, use 40%

IdleRate_{Base} = Idle energy rate (W) of baseline electric steam cooker

= 1,200 W for steam generator, or 1,000 W for all others³⁷

IdleRate_{ESTAR} = Idle energy rate (W) of ENERGY STAR[®] electric steam cooker

= Actual, if unknown, use value from table below as determined by pan capacity

Pan Capacity	IdleRate _{ESTAR}	
3	400	
4	530	
5	670	
6 to 10	800	

Production_{Base} = Production capacity (lb/hr) per pan of baseline electric steam cooker

= Actual, if unknown, use 23.3 lb/hr

Production_{ESTAR} = Production capacity (lb/hr) per pan of ENERGY STAR® electric steam cooker

= Actual, if unknown, use 16.7 lb/hr

Pans = Pan capacity of steam cooker

³⁶ Algorithms and assumptions derived from ENERGY STAR® Commercial Kitchen Equipment Savings Calculator.

= Actual, if unknown, use 6 pans

EFOOD = ASTM energy to food testing standard

= 30.8 Watt-hour/lb

Eff_{Base} = Cooking efficiency (%) of baseline electric steam cooker³⁸ = Actual, if

unknown, use 30%

Effestar = Cooking efficiency (%) of ENERGY STAR® electric steam cooker

= Actual, if unknown, use 50%

Hours = Average daily hours of operation

= Acutal, if unknown, use 12 hours per day

FoodCooked = Food cooked per day (lbs)

= Actual, if unknown, use 100 pounds

Savings for all pan capacities are presented in the table below.

Energy Consumption of Electric Steam Cookers				
Pan Capacity	kWh _{Base}	kWh _{ESTAR}	Savings (kWh)	
3	37,857	17,642	7,383	
4	45,004	21,543	8,569	
5	52,047	25,509	9,693	
6	59,040	29,410	10,822	
10	86,803	41,452	16,564	
Average	56,150	27,111	10,606	

SUMMER COINCIDENT PEAK DEMAND SAVINGS

 $\Delta kW = \Delta kWh x CF$

Where:

 Δ kWh = Electric energy savings, calculated above

CF = Summer peak coincidence demand (kW) to annual energy (kWh) factor

 $= 0.0001998949^{39}$

Other variables as defined above.

³⁸ ENERGY STAR®, "Steam Cooker Calcs" hidden worksheet: Cells C21, Commercial Kitchen Equipment Savings Calculator, (March 2024), Source of algorithms and assumptions for savings, https://www.energystar.gov/sites/default/files/2024-03/CFS%20Equipment%20Calculator.xlsx.

³⁹ Ameren Missouri TRM Volume 1 - Appendix G: "Table 2 - Commercial and Industrial End Use Category Monthly Shapes and Coincident Peak Factors."

NATURAL GAS ENERGY SAVINGS

Custom calculation for a natural gas steam cooker below; otherwise use deemed value from the table that follows.⁴⁰

 $\Delta Therms = (\Delta IdleEnergy + \Delta CookingEnergy + \Delta PreHeatEnergy)* Days/100,000$

Where:

 Δ IdleEnergy = [(1 - SteamMode) x(IdleRateBase +

SteamMode x ProductionBase x Pans xEF00D/

EffBase)x (Hours - FoodCooked/ (ProductionBase x Pans))] - [(1 - SteamMode) x(IdleRateESTAR +

SteamMode x ProductionESTAR x Pans x EFOOD/

EffESTAR)x (Hours - FoodCooked/ProductionESTAR x Pans)]

 Δ CookingEnergy = (FoodCooked x EFOOD/ EffBase) -

(FoodCooked x EFOOD / EffESTAR)

ΔPreHeatEnergy =Difference in daily preheat energy from baseline to efficient

100,000 = Btu to therms conversion factor

IdleRateBase = Idle energy rate (Btu/hr) of baseline gas steam cooker

 $= 16,500 \text{ Btu/hr}^{41}$

IdleRateestar = Idle energy rate (Btu/hr) of ENERGY STAR® gas steam cooker

= Actual, or if unknown, use value from table below as determined by

pan capacity

Pan Capacity	IdleRateestar		
3	6,250		
4	8,333		
5	10,417		
6 to 10	12,500		

Production_{Base} = Production capacity (lb/hr) per pan of baseline gas steam cooker

= 23.3 lb/hr

Production_{ESTAR} = Production capacity (lb/hr) per pan of ENERGY STAR[®] gas steam

cooker

= Actual, or if unknown, use 20 lb/hr

= ASTM energy to food

= 105 Btu/lb

Eff_{Base} = Cooking efficiency (%) of baseline gas steam cooker⁴²

= 16.5%

= Cooking efficiency (%) of ENERGY STAR® gas steam cooker

Effestar = Actual, if unknown use 38%

⁴⁰ ENERGY STAR®, Algorithms and assumptions derived from *Commercial Kitchen Equipment Savings Calculator*, (March 2024), https://www.energystar.gov/sites/default/files/2024-03/CFS%20Equipment%20Calculator.xlsx.

⁴¹ Idle energy rate for baseline steam cookers is the average of rates provided by ENERGY STAR® for steam generator and boiler-based cookers (See formula in "Steam Cooker Calcs" tab cell "F26").

⁴² Cooking efficiency for baseline steam cookers is the average of efficiencies provided by ENERGY STAR® for steam generator and boiler-based cookers (See formula in "Steam Cooker Calcs" tab cell "F21").

Other variables as defined above.

Savings for all pan capacities are presented in the table below.

Energy Consumption of Gas Steam Cookers				
Pan Capacity	Therms _{Base}	Therms _{ESTAR}	Savings (Therms)	
3	1,301.5	492.8	808.7	
5	1,842.1	795.7	1,046.4	
6	2,107.2	947.8	1,159.4	
10	3,157.4	1,344.5	1,812.9	
Average	1,996.0	845.0	1,150.0	

WATER IMPACT DESCRIPTIONS AND CALCULATION

Custom calculation below; otherwise use deemed value of 134,412.0 gallons per year.⁴³ Savings are the same for electric and gas steam cookers.

 $\Delta Water = (WaterUseBase - WaterUseESTAR) x Hours x Days$

Where:

WaterUse_{Base} = Water use (gal/hr) of baseline steam cooker

=40 gal/hr

WaterUse_{ESTAR} = Water use (gal/hr) of ENERGY STAR[®] steam cooker⁴⁴

= Actual, or if unknown, use 9.3 gal/hr

Other variables as defined above

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE:

⁴³ Algorithms and assumptions derived from ENERGY STAR® Commercial Kitchen Equipment Savings Calculator.

⁴⁴ Water use for ENERGY STAR® steam cookers is the average of water use values provided by ENERGY STAR® for steam generator, boiler-based, and boiler-less cookers (See formula in "Steam Cooker Calcs" tab cell "G19" average of 15,10 &3).

2.3.3 Fryer

DESCRIPTION

This measure applies to electric or natural gas fired ENERGY STAR® certified fryers installed in a commercial kitchen. ENERGY STAR® fryers offer shorter cook times and higher production rates through advanced burner and heat exchanger designs. Fry pot insulation reduces standby losses, resulting in lower idle energy rates. Standard-sized ENERGY STAR® fryers are about 17% more efficient, and large-vat ENERGY STAR® fryers are 30% more efficient, than standard fryers. 45

This measure was developed to be applicable to the following program type: TOS.

If applied to other program types, measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

To qualify for this measure, the installed equipment must be an ENERGY STAR® certified fryer meeting idle energy rate (W or Btu/hr) and cooking efficiency (%) limits, as determined by both fuel type and fryer capacity (standard versus large vat).

ENERGY STAR® Requirements (Version 3.0, Effective October 1, 2016)

	Electric Efficiency Requirements		Natural Gas Efficiency Requirements	
Fryer Capacity	Idle Energy Rate	Cooking Efficiency Consumption	Idle Energy Rate	Cooking Efficiency Consumption
Standard Open Deep-Fat Fryer	≤ 800 W	≥ 83%	≤ 9,000 Btu/hr	> 50%
Large Vat Open Deep-Fat Fryer	≤ 1,100 W	≥ 80%	≤ 12,000 Btu/hr	≥ 30%

DEFINITION OF BASELINE EQUIPMENT

The baseline equipment is a new electric or natural gas fryer that is not ENERGY STAR® certified.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life is assumed to be 12 years.⁴⁶

DEEMED MEASURE COST

The incremental capital cost for this measure is \$1,500 for standard electric, \$500 for large vat electric, \$1,000 for standard gas, and \$2,000 for large vat gas fryers.⁴⁷

LOADSHAPE

Cooking BUS

⁴⁵ https://www.energystar.gov/products/commercial fryers.

⁴⁶ ENERGY STAR®, "Results Detail" worksheet (Equipment Life), Commercial Kitchen Equipment Savings Calculator, (March 2024), https://www.energystar.gov/sites/default/files/2024-03/CFS%20Equipment%20Calculator.xlsx.

⁴⁷ ENERGY STAR®, "Fryer Calcs" hidden worksheet (Incremental Cost), *Commercial Kitchen Equipment Savings Calculator*, (March 2024), https://www.energystar.gov/sites/default/files/2024-03/CFS%20Equipment%20Calculator.xlsx.

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

Custom calculation for an electric fryer below; otherwise use deemed value of 3,311 kWh for standard fryers and 2,720 kWh for large vat fryers.⁴⁸

 ΔkWh = $(\Delta IdleEnergy + \Delta CookingEnergy + \Delta CookingEnergy +$

 $\Delta PreHeatEnergy$) * Days/1,000

Where:

 Δ IdleEnergy = Difference in idle energy between baseline and efficient fryer

= $(ElecIdle_{base}x (Hours - FoodCooked/ElecPC_{base})) - ElecIdle_{ESTAR} x (Hours - FoodCooked/ElecPC_{ESTAR}))$

ΔPreHeatEnergy =Difference in daily preheat energy between baseline and efficient

 Δ CookingEnergy = Difference in cooking energy between baseline and efficient fryer

= $(FoodCooked \ x \ EFOODElec/ElecEff_{base}) - (FoodCooked \ x \ EFOOD_{Elec}/ElecEff_{ESTAR})$

ΔPreHeatEnergy =Difference in daily preheat energy from baseline to efficient

=Actual, or if unknown, 500 watts for standard and large vat

Days = Annual days of operation

= Actual, or if unknown, use 365.25 days per year

1,000 = Wh to kWh conversion factor

ElecIdle $_{\text{Base}}$ = Idle energy rate of baseline electric fryer

= 1,200 W for standard fryers and 1,350 W for large vat fryers

ElecIdle_{ESTAR} = Idle energy rate of ENERGY STAR[®] electric fryer

= Actual, or if unknown, use 800 W for standard fryers and 1,100 for

large vat fryers

Hours = Average daily hours of operation

= Actual, or if unknown, use 16 hours per day for a standard fryer and

12 hours per day for a large vat fryer

FoodCooked = Food cooked per day

= Actual, or if unknown, use 150 pounds

ElecPC_{Base} = Production capacity of baseline electric fryer

= 65 lb/hr for standard fryers and 100 lb/hr for large vat fryers

ElecPC_{ESTAR} = Production capacity of ENERGY STAR[®] electric fryer

= Actual, or if unknown, use 70 lb/hr for standard fryers and 110 lb/hr

for large vat fryers

EFOOD_{Elec} = ASTM energy to food

= 167 Wh/lb

ElecEff_{Base} = Cooking efficiency of baseline electric fryer

⁴⁸ ENERGY STAR®, "Results Detail" worksheet: Cells F25:F28, Commercial Kitchen Equipment Savings Calculator, (March 2024), Source of algorithms and assumptions for savings, https://www.energystar.gov/sites/default/files/2024-03/CFS%20Equipment%20Calculator.xlsx.

= 75% for standard fryers and 70% for large vat fryers = Cooking efficiency of ENERGY STAR® electric fryer

= Actual, or if unknown, use 83% for standard and 80% for large vat

ElecEffestar fryers

Other variables as defined above

SUMMER COINCIDENT PEAK DEMAND SAVINGS

 $\Delta k = \Delta kWh x CF$

Where:

 Δ kWh = Electric energy savings, calculated above

CF = Summer peak coincidence demand (kW) to annual energy (kWh) factor

 $= 0.0001998949^{49}$

Other variables as defined above.

NATURAL GAS ENERGY SAVINGS

Custom calculation for a natural gas fryer below; otherwise use deemed value of 512 therms/yr for standard fryers and 420 therms/yr for large vat fryers.⁵⁰

 $\Delta Therms = (\Delta IdleEnergy + \Delta CookingEnergy + \Delta PreHeatEnergy) x Days/100,000$ Where:

 \triangle IdleEnergy = $(GasIdleBase \ x \ (Hours - FoodCooked/GasPCBase)) -$

(GasIdleESTAR x)

(Hours - FoodCooked/GasPCESTAR))

 Δ CookingEnergy = (FoodCooked x EFOODGas/ GasEffBase) -

(FoodCooked x EFOODGas/GasEffestar)

ΔPreHeatEnergy =Difference in daily preheat energy between baseline and efficient

100,000 = Btu to therms conversion factor GasIdle_{Base} = Idle energy rate of baseline gas fryer

= 14,000 Btu/hr for standard fryers and 16,000 Btu/hr for large vat

fryers

GasIdle_{ESTAR} = Idle energy rate of ENERGY STAR[®] gas fryer

= Actual, or if unknown, use 9,000 Btu/hr for standard fryers and 12,000

Btu/hr for large vat fryers

GasPc_{Base} = Production capacity of baseline gas fryer

= 60 lb/hr for standard fryers and 100 lb/hr for large vat fryers

GasPcestar = Production capacity of ENERGY STAR® gas fryer

⁴⁹ Ameren Missouri TRM Volume 1 - Appendix G: "Table 2 – Commercial and Industrial End Use Category Monthly Shapes and Coincident Peak Factors."

Algorithms and assumptions derived from ENERGY STAR® Commercial Kitchen Equipment Savings Calculator https://www.energystar.gov/sites/default/files/2024-03/CFS%20Equipment%20Calculator.xlsx (See "Fryer Calcs" tab).

= Actual, or if unknown, use 65 lb/hr for standard fryers and 110 lb/hr

for large vat fryers

 $EFOOD_{Gas}$ = ASTM energy to food

= 570 Btu/lb

GasEff_{Base} = Cooking efficiency of baseline gas fryer

= 35% for both standard and large vat fryers

= Cooking efficiency of ENERGY STAR® gas fryer

GasEffestar = Actual, or if unknown, use 50% for both standard and large vat fryers

Other variables as defined above

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE:

2.3.4 Convection Oven

DESCRIPTION

This measure applies to either full or half-sized electric ENERGY STAR® convection ovens and to full sized natural gas fired ENERGY STAR® convection ovens installed in a commercial kitchen. Convection ovens are general purpose ovens that use fans to circulate hot, dry air over the food surface. ENERGY STAR® certified convection ovens are approximately 27% more efficient than standard ovens.⁵¹

This measure was developed to be applicable to the following program type: TOS.

If applied to other program types, measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

To qualify for this measure, the installed equipment must be an ENERGY STAR® certified convection oven meeting idle energy rate (kW or Btu/hr) and cooking efficiency (%) limits, as determined by both fuel type and oven capacity (full size versus half size).

ENERGY STAR® Requirements (Version 3.0, Effective January 12, 2023) 52

	Efficiency Requirements		
Oven Capacity	Idle Energy Rate	Cooking Efficiency	
Electric, Full Size, ≥ 5 pans	≤ 1.40 kW	≥ 76%	
Electric, Full Size, < 5 pans	≤ 1.00 kW	≥ 76%	
Half Size	≤ 1.00 kW	≥ 71%	
Gas, full size	≤ 9,500 Btu/hr	≥ 49%	

DEFINITION OF BASELINE EQUIPMENT

The baseline equipment is a new electric or natural gas convection oven that is not ENERGY STAR® certified.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life is assumed to be 12 years.⁵³

DEEMED MEASURE COST

⁵¹ https://www.energystar.gov/products/commercial ovens.

⁵²https://www.energystar.gov/products/commercial food service equipment/commercial ovens/key product criteria.

⁵³ ENERGY STAR®, "Results Detail" worksheet (Equipment Life), Commercial Kitchen Equipment Savings Calculator, (March 2024), https://www.energystar.gov/sites/default/files/2024-03/CFS%20Equipment%20Calculator.xlsx.

The incremental capital cost for this measure is \$828 for half-size oven and \$1,191 for full size ovens.⁵⁴

LOADSHAPE

Cooking BUS

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

Custom calculation for an electric convection oven below; otherwise use 1,090 W for ≥5 pan full-size ovens, 4,576 W for <5 pan and 2,491 W for half-size ovens.⁵⁵

 ΔkWh = $(\Delta IdleEnergy + \Delta CookingEnergy + \Delta PreHeatEnergy) x$

Days/1,000

Where:

 Δ IdleEnergy = Difference in idle energy between baseline and efficient oven

= (ElecIdleBasex (Hours - FoodCooked/ElecPCBase)) - (ElecIdleESTAR x (Hours - FoodCooked/ElecPCESTAR))

 Δ CookingEnergy = Difference in cooking energy between baseline and efficient oven

= (FoodCooked x EFOODElec/ ElecEffBase) - (FoodCooked x EFOODElec/ ElecEffESTAR)

ΔPreHeatEnergy =Difference in daily preheat energy from baseline and efficient oven

Days = Annual days of operation

= Actual, or if unknown, use 365.25 days per year

1,000 = Wh to kWh conversion factor

ElecIdle_{Base} = Idle energy rate of baseline electric convection oven

= 1,630 W for \geq 5 pan full-size ovens, 2,000 W for \leq 5 pan and 1,510W

for half-size ovens

ElecIdle_{ESTAR} = Idle energy rate of ENERGY STAR® electric convection oven

= Actual, or if unknown, use values in efficient equipment table

Measure cost from ENERGY STAR® https://www.energystar.gov/sites/default/files/2024-03/CFS%20Equipment%20Calculator.xlsx (See "Oven Calcs" tab rows 11 and 149) which cites reference as https://www.energystar.gov/sites/default/files/2024-03/CFS%20Equipment%20Calculator.xlsx (See "Oven Calcs" tab rows 11 and 149) which cites reference as https://www.energystar.gov/sites/default/files/asset/document/ENERGY%20STAR%20Version%203.0%20Commercial%20Ovens%20Final%20Specification.pdf.

⁵⁵ ENERGY STAR®, "Results Detail" worksheet: Cells F26:F43, Commercial Kitchen Equipment Savings Calculator, (March 2024), Source of algorithms and assumptions for savings, https://www.energystar.gov/sites/default/files/2024-03/CFS%20Equipment%20Calculator.xlsx.

Hours = Average daily hours of operation

= Actual, or if unknown, use 12 hours per day

FoodCooked = Food cooked per day

= Actual, or if unknown, use 100 pounds

ElecPC_{Base} = Production capacity of baseline electric convection oven, lb/hr

= 102 for \geq 5 pan full-size ovens, 68 for \leq 5 pan and 45 for half-size

ovens

ElecPC_{ESTAR} = Production capacity of ENERGY STAR® electric convection oven

= Actual, or if unknown, use 98 for \geq 5 pan full-size ovens, 60 for \leq 5

pan and 42 for half-size ovens

EFOOD_{Elec} = ASTM energy to food for electric convection oven

= 73.2 Wh/lb

ElecEff_{Base} = Cooking efficiency of baseline electric convection oven

= 74% for \geq 5 pan full-size ovens, 65% for \leq 5 pan and 64% for half-

size ovens

ElecEffestar = Cooking efficiency of ENERGY STAR® electric convection oven

= Actual, or if unknown, use values in efficient equipment table

SUMMER COINCIDENT PEAK DEMAND SAVINGS

 $\Delta kW = \Delta kWh x CF$

Where:

 Δ kWh = Electric energy savings, calculated above

CF = Summer peak coincidence demand (kW) to annual energy (kWh) factor

 $= 0.0001998949^{56}$

Other variables as defined above.

NATURAL GAS ENERGY SAVINGS

Custom calculation for a natural gas convection oven below, otherwise use deemed value of 111 therms/yr.⁵⁷

 $\Delta Therms = (\Delta IdleEnergy + \Delta CookingEnergy + \Delta PreHeatEnergy) *$

Days/100,000

Where:

 $\triangle IdleEnergy = (GasIdleBasex (Hours - FoodCooked/GasPCBase)) -$

 $(GasIdleESTAR \ x \ (Hours - FoodCooked/GasPCESTAR))$

 $\Delta CookingEnergy = (FoodCooked \ x \ EFOODGas / GasEffBase) - (FoodGooked \ x \ EFOODGas / GasEffESTAR)$

(FoodCooked x EFOODGas/ GasEffESTAR)

ΔPreHeatEnergy =Difference in daily preheat energy from baseline and efficient

oven, if unknown, assume 1,190 BTU/hr

= Btu to therms conversion factor

GasIdle_{Base} = Idle energy rate of baseline gas convection oven

= 12,245 Btu/hr

GasIdle_{FSTAR} = Idle energy rate of ENERGY STAR® gas convection oven

= Actual, or if unknown, use 9,500 Btu/hr

GasPC_{Base} = Production capacity of baseline gas convection oven

= 95 lb/hr

GasPCESTAR = Production capacity of ENERGY STAR® gas convection oven

= Actual, or if unknown, use 91 lb/hr

EFOOD_{Gas} = ASTM energy to food for gas convection oven

= 250 Btu/lb

GasEff_{Base} = Cooking efficiency of baseline gas convection oven

=48%

GasEffestar = Cooking efficiency of ENERGY STAR® gas convection oven

= Actual, or if unknown, use 49%.

⁵⁶ Ameren Missouri TRM Volume 1 - Appendix G: "Table 2 – Commercial and Industrial End Use Category Monthly Shapes and Coincident Peak Factors."

⁵⁷ Algorithms and assumptions derived from ENERGY STAR® Commercial Kitchen Equipment Savings Calculator. https://www.energystar.gov/sites/default/files/2024-03/CFS%20Equipment%20Calculator.xlsx.

Other variables as defined above.

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE:

2.3.5 Griddle

DESCRIPTION

This measure applies to electric or natural gas fired ENERGY STAR® certified griddles installed in a commercial kitchen. ENERGY STAR® commercial griddles achieve approximately 17% higher efficiency than standard griddles with strategies such as highly conductive or reflective plate materials and improved thermostatic controls⁵⁸.

This measure was developed to be applicable to the following program type: TOS.

If applied to other program types, measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

To qualify for this measure the installed equipment must be a new ENERGY STAR® electric or natural gas fired griddle meeting idle energy rate limits as determined by fuel type.

ENERGY STAR® Requirements (Version 1.2, Effective May 8, 2009 for natural gas and January 1, 2011 for electric griddles) ⁵⁹

Electric Efficiency Requirements		Natural Gas Efficiency Requirements	
Idle Energy Rate	ergy Rate Cooking Efficiency Consumption		Cooking Efficiency Consumption
≤ 320 W/ft²	Reported	\leq 2,650 Btu/hr/ft ²	Reported

DEFINITION OF BASELINE EQUIPMENT

The baseline equipment is a new electric or natural gas fired griddle that is not ENERGY STAR® certified.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life is assumed to be 12 years.⁶⁰

DEEMED MEASURE COST

The incremental capital cost for this measure is:

Electric: \$850 for a single sided and \$0 for double sided

Gas: \$1,250 for a single sided and \$0 for double sided. 61

LOADSHAPE Cooking BUS

⁵⁸ https://www.energystar.gov/products/commercial griddles.

⁵⁹https://www.energystar.gov/products/commercial_food_service_equipment/commercial_griddles/key_products_criteria.

60 ENERGY STAR®, "Results Detail" worksheet (Equipment Life), Commercial Kitchen Equipment Savings Calculator, (March 2024), https://www.energystar.gov/sites/default/files/2024-03/CFS%20Equipment%20Calculator.xlsx.

⁶¹ Measure costs from ENERGY STAR® Commercial Kitchen Equipment Savings Calculator, which cites reference as "EPA research on available models using AutoQuotes, July 2016." https://www.energystar.gov/sites/default/files/2024-03/CFS%20Equipment%20Calculator.xlsx (See "Griddle Calcs" tab rows 23 & 51).

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

Custom calculation for an electric griddle below; otherwise use deemed value of 2,641kWh.62

 ΔkWh = $(\Delta IdleEnergy + \Delta CookingEnergy +$

 $\Delta PreHeatEnergy$) x Days/1,000

Where:

ΔIdleEnergy = Difference in idle energy between baseline and efficient griddle

 $= [(ElecIdle_{Base}x Width x Depth) x (Hours -$

 $FoodCooked/ElecPC_{Base})$ | - [(ElecIdle_{ESTAR} x Width x Depth) x

(Hours – FoodCooked/ElecPC_{ESTAR}))

 Δ CookingEnergy = Difference in cooking energy between baseline and efficient

griddle

 $= (FoodCooked \ x \ EFOOD_{Elec} / ElecEff_{Base}) - (FoodCooked \ x)$

EFOOD_{Elec} / ElecEff_{ESTAR})

ΔPreHeatEnergy =Difference in daily preheat energy baseline and efficient griddle

=Actual, if unknown, assume 2,000 W, 1 per day

Days = Annual days of operation

= Actual, or if unknown, use 365.25 days per year

1,000 = Wh to kWh conversion factor

ElecIdle_{Base} = Idle energy rate of baseline electric griddle

 $= 400 \text{ W/ft}^2$

ElecRate_{ESTAR} = Idle energy rate of ENERGY STAR[®] electric griddle

= Actual, or if unknown, use 320 W/ft²

Width = Griddle width

= Actual, or if unknown, use 3 feet

Depth = Griddle depth

= Actual, or if unknown, use 2 feet

Hours = Average daily hours of operation

= Actual, or if unknown, use 12 hours per day

FoodCooked = Food cooked per day

= Actual, or if unknown, use 100 pounds

ElecPC_{Base} = Production capacity of baseline electric griddle

=35 lb/hr

ElecPC_{ESTAR} = Production capacity of ENERGY STAR[®] electric griddle

= Actual, or if unknown, use 40 lb/hr

 $EFOOD_{Elec}$ = ASTM energy to food

= 139 Wh/lb

⁶² ENERGY STAR®, "Results Detail" worksheet, Commercial Kitchen Equipment Savings Calculator, (March 2024), Source of algorithms and assumptions for savings, https://www.energystar.gov/sites/default/files/2024-03/CFS%20Equipment%20Calculator.xlsx.

ElecEff_{Base} = Cooking efficiency of baseline electric griddle

=65%

ElecEffestar = Cooking efficiency of ENERGY STAR® electric griddle

= Actual, or if unknown, use 70%

Other variables as defined above.

SUMMER COINCIDENT PEAK DEMAND SAVINGS

 $\Delta kW = \Delta kWh \times CF$

Where:

 Δ kWh = Electric energy savings, calculated above

CF = Summer peak coincidence demand (kW) to annual energy (kWh) factor

 $= 0.0001998949^{63}$

Other variables as defined above.

NATURAL GAS ENERGY SAVINGS

Custom calculation for a natural gas griddle below; otherwise use deemed value of 131.4 therms.⁶⁴

 $\Delta Therms = (\Delta IdleEnergy + \Delta CookingEnergy) * Days/100,000$

Where:

 Δ IdleEnergy = $[GasIdle_{Base} x (Width x Depth) x (Hours - GasIdle_{Base} x (Width x Depth) x (Hours - Gas$

 $FoodCooked/GasPC_{Base}$] – $[GasIdle_{ESTAR} x (Width x Depth) x]$

 $(Hours - FoodCooked/GasPC_{ESTAR}))$

 Δ CookingEnergy = $(FoodCooked \ x \ EFOOD_{Gas}/\ GasEff_{Base}) - (FoodCooked \ x)$

EFOODGas/ GasEffestar)

ΔPreHeatEnergy =Difference in daily preheat energy baseline and efficient griddle

= Btu to therms conversion factor

GasIdle_{Base} = Idle energy rate of baseline gas griddle

 $= 3,500 \text{ Btu/hr/ft}^2$

GasIdle_{ESTAR} = Idle energy rate of ENERGY STAR[®] gas griddle

= Actual, or if unknown, use 2,650 Btu/hr/ft²

GasPC_{Base} = Production capacity of baseline gas griddle

= 25 lb/hr

GasPC_{ESTAR} = Production capacity of ENERGY STAR[®] gas griddle

= Actual, or if unknown, use 45 lb/hr

 $EFOOD_{Gas}$ = ASTM energy to food

= 475 Btu/lb

GasEff_{Base} = Cooking efficiency of baseline gas griddle

2025 MEEIA 4 Plan Revision 7.0 Page 39

⁶³ Ameren Missouri TRM Volume 1 - Appendix G: "Table 2 - Commercial and Industrial End Use Category Monthly Shapes and Coincident Peak Factors."

⁶⁴ Algorithms and assumptions derived from ENERGY STAR® Commercial Kitchen Equipment Savings Calculator.

= 32%

= Cooking efficiency of ENERGY STAR® gas griddle

GasEffestar = Actual, or if unknown, use 38%

Other variables as defined above.

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

2.3.6 Kitchen Demand Ventilation Controls

DESCRIPTION

Installation of commercial kitchen demand ventilation controls that vary the ventilation based on cooking load and/or time of day. This measure applies to the following program types: RF, NC. If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

To qualify for this measure the installed equipment must be a control system that varies the exhaust rate of kitchen ventilation (exhaust and/or makeup air fans) based on the energy and effluent output from the cooking appliances (i.e., the more heat and smoke/vapors generated, the more ventilation needed). This involves installing a new temperature sensor in the hood exhaust collar and/or an optic sensor on the end of the hood that sense cooking conditions which allows the system to automatically vary the rate of exhaust to what is needed by adjusting the fan speed accordingly.

DEFINITION OF BASELINE EQUIPMENT

The baseline equipment is kitchen ventilation that has constant speed ventilation motor.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT⁶⁵

The expected measure life is assumed to be 15 years.

MEASURE COST⁶⁵

The incremental capital cost for this measure is:

Measure Category	Incremental Cost (\$/HP)
DVC Control Retrofit	\$1,991
DVC Control New	\$1,991

LOADSHAPE

Cooking BUS

Algorithm

Calculation of Savings

Annual energy use was based on monitoring results from five different types of sites, as summarized in PG&E Food Service Equipment work paper.

Electric Energy Savings⁶⁶

⁶⁵ Pacific Gas & Electric Company Work Paper PGECOFST116 Demand Ventilation Controls Revision # 4.

https://www.nvenergy.com/publish/content/dam/nvenergy/brochures_arch/about-nvenergy/rates-regulatory/recent-regulatory-filings/nve/irp/NVE-18-06003-IRP-VOL9.pdf (NVE-18-06003-IRP-VOL9.pdf See page 147,182,340 first paragraph).

Measure Name	Annual Energy Savings per Unit (kWh/HP)
DVC Control Retrofit	4,197
DVC Control New	4,197

SUMMER COINCIDENT PEAK DEMAND SAVINGS

 $\Delta kW = \Delta kWh \times CF$

Where:

= Electric energy savings, calculated above ΛkWh

CF = Summer peak coincidence demand (kW) to annual energy (kWh) factor

 $= 0.0001998949^{67}$

NATURAL GAS SAVINGS

 $\Delta Therms = CFM \times HPx \quad Annual \quad Heating \quad Load \quad /(Eff(heat) \times 100,000)$

Where:

CFM = the average airflow reduction with ventilation controls per hood

=430 cfm/HP

HP = actual if known, otherwise assume 7.75 HP⁶⁸

Annual Heating = Annual heating energy required to heat fan exhaust make-up air

dependent on location. Actual, else value in table below. Load

Zone	Annual Heating Load (BTU/cfm)	
Missouri Average ⁶⁹	137,000	
= Heating Efficiency		

Eff(heat)

= actual if known, otherwise assume 80%⁷⁰

100,000 = conversion from Btu to Therm

⁶⁷ Ameren Missouri TRM Volume 1 - Appendix G: "Table 2 - Commercial and Industrial End Use Category Monthly Shapes and Coincident Peak Factors."

^{68 &}quot;Illinois Statewide Technical Reference Manual for Energy Efficiency Version 6.0, Volume 2: Commercial and Industrial Measures," Section 4.2.16, Kitchen Demand Ventilation Controls; IL Statewide TRM IL Statewide TRM Version 6.0 - Illinois Energy Efficiency Stakeholder Advisory Group (ilsag.info).

⁶⁹ Opinion Dynamics Used IL-TRM Version 8.0 dated October-17-2019 Final Volumes 1-4 Compiled "AMO TRM Updates Heating Load Estimate for Kitchen DCV 2020-06-12.xlsx" to compare savings values by weather zone from the IL TRM to zone-specific HDD values, and determined a linear relationship between Heating Load and HDD, then applied that linear relationship to HDD values (using base 60) for MO weather stations to estimate Heating Load values for zones in Ameren Missouri territory.

⁷⁰ "Illinois Statewide Technical Reference Manual for Energy Efficiency Version 6.0, Volume 2: Commercial and Industrial Measures", Section 4.2.16, Kitchen Demand Ventilation Controls; IL Statewide TRM IL Statewide TRM Version 6.0 - Illinois Energy Efficiency Stakeholder Advisory Group Illinois Energy Efficiency Stakeholder Advisory Group (ilsag.info).

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

Measure Code:

2.3.7 Hot Food Holding Cabinet

DESCRIPTION

This measure applies to electric ENERGY STAR® certified hot food holding cabinets (HFHCs) installed in a commercial kitchen. ENERGY STAR® HFHCs achieve approximately 70% higher efficiency than standard models by incorporating better insulation which reduces heat loss, offers better temperature uniformity within the cabinet from top to bottom, and keeps the external cabinet cooler. In addition, many certified HFHCs may include additional energy saving devices such as magnetic door gaskets, auto-door closures, or dutch doors.

This measure was developed to be applicable to the following program type: TOS.

If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

To qualify for this measure, the installed equipment must be a new ENERGY STAR® electric HFHC meeting idle energy rate limits as determined by product interior volume.

ENERGY STAR® Requirements (Version 2.0, Effective October 1, 2011) 71

Interior Volume (ft ³)	Idle Energy Consumption Rate (W)
0 < V < 13	≤ 21.5 V
$13 \le V \le 28$	\leq 2.0 V + 254.0
28 ≤ V	\leq 3.8 V + 203.5

DEFINITION OF BASELINE EQUIPMENT

The baseline equipment is a new electric HFHC that is not ENERGY STAR® certified.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life is assumed to be 12 years.⁷²

DEEMED MEASURE COST

Actual incremental costs should be used if available. If actual costs are unknown, assume \$1,000.73

LOADSHAPE

Cooking BUS

⁷¹ ENERGY STAR®,

[,]https://www.energystar.gov/products/commercial_food_service_equipment/commercial_hot_food_holding_cabinets/key_product_t_criteria.

⁷² ENERGY STAR®, "Results Detail" worksheet (Equipment Life), Commercial Kitchen Equipment Savings Calculator, (March 2024), https://www.energystar.gov/sites/default/files/2024-03/CFS%20Equipment%20Calculator.xlsx.

⁷³ ENERGY STAR® https://www.energystar.gov/sites/default/files/2024-03/CFS%20Equipment%20Calculator.xlsx.

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS⁷⁴

 $\Delta kWh = (IdleRate_{Base} - IdleRate_{EE}) * Hours * Days/1,000$

Where:

IdleRate_{Base} = Idle energy rate (W) of baseline HFHC

= 30 x V

V = Interior volume (ft^3) of new HFHC

= Custom

IdleRate_{ESTAR} = Idle energy rate (W) of ENERGY STAR® HFHC

= See table below for idle energy rates based on interior volume

Interior Volume	Idle Energy Consumption Rate
(ft^3)	(Watt)
0 < V < 13	21.5 x V
13 ≤ V < 28	(2.0 x V) + 254.0
28 ≤ V	(3.8 x V) + 203.5

Hours = Average daily hours of operation

= Actual, or if unknown, use 15 hours per day

Days = Annual days of operation

= Actual, or if unknown, use 365.25 days per year

1,000 = Wh to kWh conversion factor

SUMMER COINCIDENT PEAK DEMAND SAVINGS

 $\Delta k = \Delta kWh x CF$

Where:

 ΔkWh = Electric energy savings, calculated above

CF = Summer peak coincidence demand (kW) to annual energy (kWh) factor

 $=0.0001998949^{75}$

⁷⁴ ENERGY STAR®, "Results Detail" worksheet, Commercial Kitchen Equipment Savings Calculator, (March 2024), Source of algorithms and assumptions for savings, https://www.energystar.gov/sites/default/files/2024-03/CFS%20Equipment%20Calculator.xlsx.

⁷⁵ Ameren Missouri TRM Volume 1 - Appendix G: "Table 2 – Commercial and Industrial End Use Category Monthly Shapes and Coincident Peak Factor.s"

NATURAL GAS ENERGY SAVINGS

N/A

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

2.3.8 Pre-Rinse Spray Valve

DESCRIPTION

Pre-rinse valves use a spray of water to remove food waste from dishes prior to cleaning in a dishwasher. More efficient spray valves use less water, thereby reducing water consumption, water heating cost, and waste water (sewer) charges. Pre-rinse spray valves include a nozzle, squeeze lever, and dish guard bumper. The primary impacts of this measure are water savings. Reduced hot water consumption saves either natural gas or electricity, depending on the type of energy the hot water heater uses.

This measure was developed to be applicable to the following program types: TOS, RF, and DI.

If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

To qualify for this measure, the new or replacement pre-rinse spray nozzle must use less than the maximum flow for the product class, as listed by the DOE Energy Efficiency Standards, effective January 2019.

Product Class (spray force, ozf)	Maximum Flow Rate
Class $1, \le 5.0$ ozf	<1.00 gpm
Class 2, >5.0 ozf to ≤ 8.0 ozf	<1.20 gpm
Class 3, >8.0 ozf	<1.28 gpm

DEFINITION OF BASELINE EQUIPMENT

The baseline equipment will vary based on the delivery method with the maximum flow rate from the DOE Energy Conservation Standards⁷⁶. The current standard, effective January 2019 is the baseline for TOS, the previous standard, effective January 2006, the baseline for retrofits and direct install.

Product Class (spray force, ozf)	Time of Sale Flow Rate	Retrofit, Direct Install, Flow Rate
Class $1, \le 5.0$ ozf	1.00 gpm	1.6 gpm
Class 2, >5.0 ozf to ≤ 8.0 ozf	1.20 gpm	1.6 gpm
Class 3, >8.0 ozf	1.28 gpm	1.6 gpm

2025 MEEIA 4 Plan Revision 7.0 Page 58

⁷⁶ US Energy Policy and Conservation Act, "Commercial Prerinse spray Valves, (January 2019), https://www.ecfr.gov/current/title-10/chapter-II/subchapter-D/part-431/subpart-O#431.266.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life is assumed to be 5 years.⁷⁷

DEEMED MEASURE COST

When available, the actual cost of the measure should be used. If unknown, a default value of \$92.90⁷⁸ may be assumed.

LOADSHAPE

Cooking BUS

Algorithm

CALCULATION OF ENERGY SAVINGS

ELECTRIC ENERGY SAVINGS (NOTE WATER SAVINGS MUST FIRST BE CALCULATED)

$$\Delta kWH = \Delta Gallons \times 8.33 \times 1 \times (T_{out} - T_{in}) \times (1/EFF_{Elec}) / 3,413$$

Where:

$\Delta Gallons$	= amount of water saved as calculated below in Water Impact Calculation
8.33	= specific mass in pounds of one gallon of water (lbm/gal)
1	= Specific heat of water: 1 Btu/lbm/°F
T_{out}	= Water Heater Outlet Water Temperature
	= Custom, otherwise assume Tin + 70°F temperature rise from Tin ⁷⁹
T_{in}	= Inlet Water Temperature
	= Custom, otherwise assume 59.3F ⁸⁰
EFF_{Elec}	= Efficiency of electric water heater supplying hot water to pre-rinse spray
	valve
	=Actual, otherwise assume 97% ⁸¹

SUMMER COINCIDENT PEAK DEMAND SAVINGS

 $\Delta kW = \Delta kWh x CF$

⁷⁷ Consistent with Ameren Missouri MEEIA 2016-18 and KCPL TRM assumptions. Also consistent with DOE Final Determination Technical Support Document: Commercial Pre-Rinse Spray Valves, https://www.regulations.gov/document/EERE-2019-BT-STD-0034-0020.

⁷⁸Average of costs recognized by Ameren Missouri (\$85.8) and KCPL (\$100).

⁷⁹ If unknown, assume a 70 degree temperature rise from Tin per Food Service Technology Center calculator assumptions to account for variations in mixing and water heater efficiencies.

⁸⁰ National Weather Service. Average soil temperature at 40" depth during 2015 - 2023 data of six stations in Ameren Missouri service territory. https://www.weather.gov/ncrfc/LMI_SoilTemperatureDepthMaps.

⁸¹ This efficiency value is based on IECC 2012/2015 performance requirement for electric resistant water heaters rounded without the slight adjustment allowing for reduction based on size of storage tank.

Where:

 ΔkWh = Electric energy savings, calculated above

CF = Summer peak coincidence demand (kW) to annual energy (kWh) factor

=0.000199894982

NATURAL GAS ENERGY SAVINGS

$$\Delta$$
Therms = Δ Gallons x 8.33 x 1 x (T_{out} - T_{in}) x ($1/EFF_{Gas}$) / 100,000

Where:

 EFF_{Gas} = Efficiency of gas water heater supplying hot water to pre-rinse

spray valve

= Actual, otherwise assume 80%83

Other variables as described above.

WATER IMPACT CALCULATION

$$\Delta Gallons = (FLO_{base} - FLO_{eff}) \times 60 \times HOURS_{day} \times DAYS_{vear}$$

Where:

FLO_{base} = Base case flow in gallons per minute (gal/min). Use actual when appropriate if available, otherwise use values in table below.⁸⁴

Product Class (spray force, ozf)	Time of Sale Flow (gpm)	Retrofit, Direct Install, Flow Rate
Class $1, \le 5.0$ ozf	1.00 gpm	1.6 gpm
Class 2, >5.0 ozf to ≤ 8.0 ozf	1.20 gpm	1.6 gpm
Class 3, >8.0 ozf	1.28 gpm	1.6 gpm

FLOeff

= Efficient case flow in gallons per minute (gal/min). Use actual flow rate if known, otherwise use values in table below.

Product Class (spray force, ozf)	Maximum Flow Rate
Class $1, \le 5.0$ ozf	1.00 gpm
Class 2, >5.0 ozf to ≤ 8.0 ozf	1.20 gpm

 $^{^{82}}$ Ameren Missouri TRM Volume 1 - Appendix G: "Table 2 - Commercial and Industrial End Use Category Monthly Shapes and Coincident Peak Factors."

⁸³ IECC 2012/2015, Table C404.2, Minimum Performance of Water-Heating Equipment.

⁸⁴ EPA, https://www.epa.gov/watersense/pre-rinse-spray-valves.

60 HOURS_{day} = Minutes per hour

= Hours per day that the pre-rinse spray valve is used at the site, custom, otherwise use values in the table below.⁸⁵

Application	HOURS _{day}
Small, quick- service restaurants	1
Medium-sized casual dining restaurants	1.5
Large institutional establishments with cafeteria	3

 $DAYS_{year} \\$

= Days per year pre-rinse spray valve is used at the site, custom, otherwise 312 days/yr based on assumed 6 days/wk x 52 wk/yr = 312 day/yr.

⁸⁵ Hours primarily based on PG& E savings estimates, algorithms, sources (2005), Food Service Pre-Rinse Spray Valves.

2.4 Hot Water

2.4.1 Low Flow Faucet Aerator

DESCRIPTION

This measure relates to the direct installation of a low flow faucet aerator or low flow faucet in a commercial building. Expected applications include small business, office, restaurant, or motel. For multifamily or senior housing, the residential low flow faucet aerator should be used.

This measure was developed to be applicable to the following program type: DI, RF,TOS If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

Low flow faucets or aerators for bathrooms meeting the EPA WaterSense flow rate of \leq 1.5 gpm. ⁸⁶

Faucets or aerators for kitchen sinks exceeding the values in the Code of Federal Regulations listed for maximum allowable water flow at ≤ 2.2 gpm.⁸⁷

Faucets or aerators for public lavatories exceeding the IPC Plumbing Code of ≤ 0.5 gpm.⁸⁸

Fixture	Maximum Flow Rate gpm
Bathroom faucet, private	≤1.5
Kitchen faucet	<2.2
Lavatory faucet, public	<0.5

DEFINITION OF BASELINE EQUIPMENT

The baseline condition flow rate faucet or aerator is the maximum flow requirement by the DOE Federal Regulations⁸⁹

Fixture	Flow Rate gpm
Lavatory faucet or aerator	2.2
Kitchen faucet or aerator	2.2
Lavatory faucet, public	0.5

2025 MEEIA 4 Plan

⁸⁶ US EPA, "High Efficiency Lavatory Faucet Specification", (October 2007), https://www.epa.gov/watersense/bathroom-faucets. ⁸⁷ CFR:: 10 Part 430, Kitchen faucet maximum flow rate, "Energy Conservation Program For Consumer Products", https://www.ecfr.gov/current/title-10/chapter-II/subchapter-D/part-430.

⁸⁸ ICC Plumbing Code, Maximum flow rate table, "Chapter 6 – Water Supply and Distribution", https://codes.iccsafe.org/content/IPC2021P3/chapter-6-water-supply-and-distribution.
⁸⁹ IBID 87.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life is assumed to be 10 years. 90

DEEMED MEASURE COST

The incremental cost for this measure is \$9.40⁹¹ for faucet low flow aerator and \$44.40⁹² for kitchen swivel low flow or program actual cost.

LOADSHAPE

Water Heating BUS

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

Savings are per faucet retrofitted.93

$$\Delta kWh = \%ElectricDHW \ x \ (\ (GPM_{base} - GPM_{low}) \ / \ GPM_{base}) \ x \ Usage \ x \ EPG_{electric} \ x \ ISR$$

Where:

%ElectricDHW = Actual

=If unknown, reference the water heat proportion by fuel type in the table below⁹⁴

DHW fuel	%Electric_DHW
Electric	37.5%
Fossil Fuel	62.0%
Other	0.5%

GPM_{base} = Flow rate in gallons per minute, actual, or sourced from baseline

equipment table.

GPM_{low} = Flow rate in gallons per minute, actual or certified equipment rate.

Usage = Estimated usage of mixed water (mixture of hot water from water

heater line and cold-water line) per faucet (gallons per year)

Navigant Consulting, "ComEd Effective Useful Life Research Report", page 20 (May 14, 2018), https://www.icc.illinois.gov/docket/P2017-0312/documents/287811/files/501915.pdf.

⁹¹ Ameren MFLI direct install costs, Program years 2022 to 2023. Local file: "2.4.1 Low flow faucet aerator costs MFLI 2022 to 2023.xlsx."

⁹² IBID.

⁹³ This algorithm calculates the amount of energy saved per aerator by determining the fraction of water consumption savings for the upgraded fixture.

⁹⁴ TRC program tracking data, Ameren MO C&I program participants (2014 to 2024), self-reported water heating fuel source, Local file: "2.4.1. C&I water heat source 2014 to 202.4"

= If data is available to provide a reasonable custom estimate it should be used, if not use the defaults in the table below (or substitute custom information into the calculation):

Building Type	Gallons HW per unit per day ⁹⁵ (A)	Unit	Estimated % HW from Faucets ⁹⁶ (B)	Multiplier 97 (C)	Unit	Days per year (D)	Annual gallons mixed water per faucet (AxBxCxD)
Small Office	1	person	100%	10	employees per faucet	250	2,500
Large Office	1	person	100%	45	employees per faucet	250	11,250
Fast Food Restaurant	0.7	meal/day	50%	75	meals per faucet	365	9,581
Sit-Down Restaurant	2.4	meal/day	50%	36	meals per faucet	365	15,768
Retail	2	employee	100%	5	employees per faucet	365	3,650
Grocery	2	employee	100%	5	employees per faucet	365	3,650
Warehouse	2	employee	100%	5	employees per faucet	250	2,500
Elementary School	0.6	person	50%	50	students per faucet	200	3,000
JrHigh High School	1.8	person	50%	50	students per faucet	200	9,000
Health	90	patient	25%	2	patients per faucet	365	16,425
Motel	20	room	25%	1	faucet per room	365	1,825
Hotel	14	room	25%	1	faucet per room	365	1,278
Other	1	employee	100%	20	employees per faucet	250	5,000

EPG_{electric} = Energy per gallon of mixed water used by faucet (electric water heater)

= $(8.33 \times 1.0 \times (WaterTemp - SupplyTemp)) / (RE_{electric} \times 3412)$

 $= (8.33 \times 1.0 \times (90 - 57.9)) / (0.98 \times 3412) = 0.0800 \text{ kWh/gal}$

8.33 = Specific weight of water (lbs/gallon)

2025 MEEIA 4 Plan Revision 7.0 Page 64

⁹⁵ ASHRAE, "Chapter 51: Service Water Heating", Table 6: Hot Water Demands and Use for Various Types of Buildings, *2023 ASHRAE HVAC Applications Handbook* (2023).

⁹⁶ Pacific Institute, estimated based on data provided in, "Appendix E: Details of Commercial Water Use and Potential Savings, by Sector," (2003), https://pacinst.org/wp-content/uploads/2013/02/appendix e3.pdf.

 $^{^{97}}$ Based on review of the Illinois plumbing code (Employees and students per faucet). Retail, grocery, warehouse and health are estimates. Meals per faucet estimated as 4 bathroom and 3 kitchen faucets and average meals per day of 250 (based on Waste Not, Want Not: The Potential for Urban Water Conservation in California - Pacific Institute (pacinst.org)) -250/7 = 36. Fast food assumption estimated.

1.0 = Heat Capacity of water (btu/lb-F)

WaterTemp = Assumed temperature of mixed water

 $= 91 F^{98}$

SupplyTemp = Assumed temperature of water entering building

 $= 59.3 F^{99}$

RE_{electric} = Recovery efficiency of electric water heater

=98% 100

3412 = Converts Btu to kWh (Btu/kWh)
ISR = In service rate of faucet aerators

= Assumed to be 1.0

SUMMER COINCIDENT PEAK DEMAND SAVINGS

 $\Delta kW = \Delta kWh \times CF$

Where:

 ΔkWh = calculated value above on a per faucet basis

CF = Summer peak coincidence demand (kW) to annual energy (kWh) factor

 $= 0.0001811545^{101}$

FOSSIL FUEL IMPACT DESCRIPTIONS AND CALCULATION

 Δ Therms = %FossilDHW x ((GPM_{base} - GPM_{low}) / GPM_{base}) x Usage x EPG_{gas} x ISR

Where:

%FossilDHW = proportion of water heating supplied by fossil fuel heating (see

table below)

EPG gas = Energy per gallon of mixed water used by faucet (gas water

heater)

 $= (8.33 \times 1.0 \times (WaterTemp - SupplyTemp)) / (RE gas \times 100,000)$

= 0.00772 Therm/gal

RE gas = Recovery efficiency of gas water heater

 $=67\%^{115}$

100,000 = Converts Btus to Therms (Btu/Therm)

⁹⁸ Cadmus and Opinion Dynamics Showerhead and Faucet Aerator Meter Study Memorandum dated June 2013, directed to Michigan Evaluation Working Group. If the aerator location is unknown an average of 91% should be used which is based on the assumption that 70% of household water runs through the kitchen faucet and 30% through the bathroom (0.7x93)+(0.3x86)=0.91, https://www.efis.psc.mo.gov/Document/Display/34102.

⁹⁹ National Weather Service. Average soil temperature at 40" depth during 2015 - 2023 data of six stations in Ameren Missouri service territory. https://www.weather.gov/ncrfc/LMI_SoilTemperatureDepthMaps.

¹⁰⁰ Electric water heater have recovery efficiency of 98%, as sourced from available products on the AHRI Certification Directory https://beta.ahridirectory.org/search/24.

¹⁰¹ Ameren Missouri TRM Volume 1 - Appendix G: "Table 2 - Commercial and Industrial End Use Category Monthly Shapes and Coincident Peak Factors."

Other variables as defined above.

DHW fuel	%Fossil_DHW
Electric	0%
Fossil Fuel	100%
Unknown	57%102

WATER IMPACT DESCRIPTIONS AND CALCULATION

 $\Delta gallons = ((GPM_{base} - GPM_{low}) / GPM_{base}) \times Usage \times ISR$

Variables as defined above

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

¹⁰² Default assumption for unknown fuel is based on EIA Commercial Building Energy Consumption Survey (CBECS) 2012 for Midwest North Central Region (see 'HC8.9 Water Heating in Midwest Region.xls'). If utilities have specific evaluation results providing a more appropriate assumption for buildings in a particular market or geographical area, then they should be used. ¹¹⁵ Review of AHRI Directory suggests range of recovery efficiency ratings for new Gas DHW units of 70-87%. Average of existing units is estimated at 75%. Commercial properties are more similar to MF homes than SF homes. MF hot water is often provided by a larger commercial boiler. This suggests that the average recovery efficiency is somewhere between a typical central boiler efficiency of .59 and the .75 for single family home. An average is used for this analysis by default.

2.4.2 Circulator Pump

DESCRIPTION

Demand control recirculation pumps seek to reduce inefficiency by combining control via temperature and demand inputs, whereby the controller will not activate the recirculation pump unless both (a) the recirculation loop return water has dropped below a prescribed temperature (e.g. 100°F) and (b) a CDHW demand is sensed as water flow through the CDHW system.

This measure was developed to be applicable to the following program types: TOS, RF, and NC.

If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

Re-circulating pump shall cycle on based on (a) the recirculation loop return water dropping below a prescribed temperature (e.g. 100°F) and (b) a CDHW demand is sensed as water flow through the CDHW system.

DEFINITION OF BASELINE EQUIPMENT

The base case for this measure category is an existing, un-controlled recirculation pump on a gasfired Central Domestic Hot Water System.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The effective useful life is 15 years. 103

DEEMED MEASURE COST

The assumed measure cost is \$1,200 per pump. 104

LOADSHAPE

Miscellaneous BUS

Algorithm

CALCULATION OF ENERGY SAVINGS

Savings shown are per pump.

¹⁰³ Benningfield Group. (2009). PY 2009 Monitoring Report: Demand Control for Multifamily Central Domestic Hot Water. Folsom, CA: Prepared for Southern California Gas Company, October 30, 2009 (see page 11).

¹⁰⁴ Gas Technology Institute. (2014). 1003: Demand-based domestic hot water recirculation public project report. Des Plaines, IL:

Prepared for Nicor Gas, January 7, 2014. (https://www.ilsag.info/wp-content/uploads/SAG files/Portfolio Planning Process/Small Group Followup Calls/Grundfos/1003 Demand CDHW Public Project Report REVISED FINAL 08-06-2014.pdf).

ELECTRIC ENERGY SAVINGS

Deemed at 651 kWh per pump.¹⁰⁵

SUMMER COINCIDENT PEAK DEMAND SAVINGS

 $\Delta kW = \Delta kWh x CF$

Where:

 ΔkWh = calculated value above on a per faucet basis

CF = Summer peak coincidence demand (kW) to annual energy (kWh) factor

 $=0.0001379439^{106}$

NATURAL GAS SAVINGS

 Δ Therms = 55.9 x number of dwelling units¹⁰⁷

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

¹⁰⁵ Gas Technology Institute. (2014). 1003: Demand-based domestic hot water recirculation public project report. Des Plaines, IL: Prepared for Nicor Gas, January 7, 2014. Average of 725 kWh and 578 kWh reported savings per pump, page 9. Value is pump only savings and not water heater savings. (https://www.ilsag.info/wpcontent/uploads/SAG_files/Portfolio_Planning_Process/Small_Group_Follow-

up_Calls/Grundfos/1003_Demand_CDHW_Public_Project_Report_REVISED_FINAL_08-06-2014.pdf).

¹⁰⁶ Ameren Missouri TRM Volume 1 - Appendix G: "Table 2 – Commercial and Industrial End Use Category Monthly Shapes and Coincident Peak Factors."

¹⁰⁷ IBID 105, Average therms saved per dwelling unit for water heating.

2.4.3 Heat Pump Water Heater

DESCRIPTION

This measure applies to the installation of a heat pump water heater (HPWH) in place of a standard electric storage water heater in a commercial building. Savings are presented dependent on the heating system installed in the building due to the impact of the heat pump water heater on the heating and cooling loads.

This measure was developed to be applicable to the following program types: TOS, NC.

If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

To qualify for this measure, the installed equipment must be a heat pump water heater meeting program efficiency requirements.

DEFINITION OF BASELINE EQUIPMENT

The baseline equipment is assumed to be a new, electric storage water heater meeting federal minimum efficiency standards. Residential storage water heaters greater than 55 gallons may not be eligible as the baseline is near that of a heat pump water heater.

Equipment	Size	Draw	Efficiency, UEF
Residential storage, ≤75 kBTUh	≤55 gal	Very small	$.8808 - (0.0008 \times V_{rated})$
Residential storage, ≤75 kBTUh	≤55 gal	Low	.9254 - (0.0003 x V _{rated})
Residential storage, ≤75 kBTUh	≤55 gal	Medium	.9307 - (0.0002 x V _{rated})
Residential storage, ≤75 kBTUh	≤55 gal	High	.9349 - (0.0001 x V _{rated})
Residential storage, ≤75 kBTUh	>55 gal and ≤120 gal	Very small	1.9236 - (0.0011 x V _{rated})
Residential storage, ≤75 kBTUh	>55 gal and ≤120 gal	Low	2.0440 - (0.0011 x V _{rated})
Residential storage, ≤75 kBTUh	>55 gal and ≤120 gal	Medium	2.1171 - (0.0011 x V _{rated})
Residential storage, ≤75 kBTUh	>55 gal and ≤120 gal	High	2.2418 - (0.0001x V _{rated})
Commercial storage, all	All	Medium	0.98

2025 MEEIA 4 Plan Revision 7.0 Page 69

¹⁰⁸ CFR:: 10 Part 430, Electric storage water heater efficiency, "Energy Conservation Program For Consumer Products", https://www.ecfr.gov/current/title-10/chapter-II/subchapter-D/part-430/subpart-C#p-430.32(d)(1) for residential water heaters and CFR:: 10 Part 430, Electric storage water heater efficiency, "Energy Conservation Program For Industrial Products", for commercial water heaters.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life is assumed to be 15 years.¹⁰⁹

DEEMED MEASURE COST

Actual costs should be used where available. Incremental capital costs are presented in the table below for heat pump water heaters from 40 gallons to 80 gallons of storage volume.¹¹⁰

Type	Rated Volume (gal)	Incremental Cost
Heat Pump	40 to 50	\$1,154
Heat Pump	55 to 65	\$1,269
Heat Pump	66 to 80	\$1,646

For larger HPWHs, incremental capital costs are presented below based on heating capacity.¹¹¹

Heating Capacity (MBtu/hr)	Incremental Cost
10-50	\$4,000
>50-100	\$7,000
>100-300	\$10,000
>300-500	\$14,000
>500	\$18,000

LOADSHAPE

Water Heating BUS

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

 $\Delta kWh = ((1/UEF_{BASE} - 1/UEF_{EE}) \times HWU_{GAL} \times \gamma Water \times (T_{out} - T_{in}) \times 1.0 \times 3,412) + kWh_{COOL} - kWh_{HEAT}$

 $kWh_{COOL} = ((1-1/UEF_{EE}) \times HWU_{GAL} \times \gamma Water \times (T_{out} - T_{in}) \times 1.0 \times LF \times 53\% \times LM) / (COP_{COOL} \times 3,412) \times \% Cool$

 $kWh_{HEAT} = ((1-1/UEF_{EE}) \times HWU_{GAL} \times \gamma Water \times (T_{out} - T_{in}) \times 1.0) \times LF \times 43\%) / (COP_{HEAT} \times 3,412) \times \% Electric Heat$

¹⁰⁹DOE, Table I.2, lifetime of storage water heaters, "Energy Conservation Program: Energy Conservation Standards for Consumer Water Heaters", https://www.federalregister.gov/documents/2024/05/06/2024-09209/energy-conservation-program-energy-conservation-standards-for-consumer-water-heaters.

¹¹⁰ Big box retail online pricing (August 2024), Comparison of electric resistance to heat pump water heater for three manufacturer's with the same model series, Local file: "2.4.3 Electric water heater retail cost August 2024 data.xlsx"

¹¹¹ MEMD, Commercial heat pump water heater incremental costs, "Commercial" worksheet, Cell range Q332:Q336, 2024 MEMD Master Database, https://www.michigan.gov/mpsc/regulatory/ewr/michigan-energy-measures-database.

Where:

kWh_cool	= Cooling savings from conversion of heat in building to water heat ¹¹²
kWh heat	= Heating cost from conversion of heat in building to water heat
_	(dependent on heating fuel)
UEFBASE	= Efficiency of baseline water heater according to federal standards,
	expressed as Uniform Energy Factor (EF)
	= See table below
UEFEE	= UEF of heat pump water heater
	= Actual
HWUgal	= Estimated annual hot water consumption (gallons)
	= Actual if possible to provide reasonable custom estimate. If not, two
	methodologies are provided below to develop an estimate.
γWater	= Specific weight of water
	= 8.33 pounds per gallon
Тоит	= Tank temperature
	= Actual, if unknown assume 125 °F 113
T_{IN}	= Incoming water temperature from well or municipal system
	$= 59.3 {}^{\circ}\text{F}^{ 114}$
1.0	= Heat capacity of water (1 Btu/lbx°F)
3,412	= Conversion factor from Btu to kWh
LF	= Location Factor
	= 1.0 for HPWH installation in a conditioned space
	= 0.5 for HPWH installation in an unknown location ¹¹⁵
	= 0.0 for installation in an unconditioned space
53%	= Portion of reduced waste heat that results in cooling savings ¹¹⁶
43%	= Portion of reduced waste heat that results in increased heating load ¹¹⁷
LM	= Latent multiplier to account for latent cooling demand ¹¹⁸
	= 3.0 for St. Louis, MO
COP_{COOL}	= COP of central air conditioner
	= Actual

¹¹² This algorithm calculates the heat removed from the air by subtracting the heat pump water heater electric consumption from the total water heating energy delivered. This is then adjusted to account for location of the heat pump unit and the coincidence of the waste heat with cooling requirements, the efficiency of the central cooling, and latent cooling demands.

¹¹³ Ideally, the actual set point of the water heater should be used. If not available, 125 degrees is provided as an estimate of unmixed output temperature. While plumbing code generally limits temperatures at the end use, it typically does not limit the water heater system, which can be anywhere in the range 120 -201 degrees. For applications such as laundry and dishwashing, health and safety regulations may require water to be initially heated to higher temperatures. Since temperature set points can vary widely, market, program, or site-specific data should be used whenever possible.

¹¹⁴ National Weather Service. Average soil temperature at 40" depth during 2015 - 2023 data of six stations in Ameren Missouri service territory. https://www.weather.gov/ncrfc/LMI_SoilTemperatureDepthMaps

¹¹⁵ Professional judgment.

¹¹⁶ Based on 193 days where CDD 65>0, divided by 365.25. CDD days determined from TMY data with a base temp of 65°F.

¹¹⁷ Based on 157 days where HDD 60>0, divided by 365.25. HDD days determined from TMY data with a base temp of 60°F.

¹¹⁸ The Latent Multiplier is used to convert the sensible cooling savings calculated to a value representing sensible and latent cooling loads. The values are derived from the methodology outlined in Infiltration Factor Calculation Methodology by Bruce Harley, Senior Manager, Applied Building Science, CLEAResult 11/18/2015 and is based upon an 8760 analysis of sensible and total heat loads using hourly climate data.

COP_{HEAT} = Actual. *Note: electric resistance heating and heat pumps will have an*

efficiency greater than or equal to 100%

%Cool = Percentage of buildings with central cooling

= 100% for cooling in the home and 0% for no cooling in the home

%ElectricHeat = Percentage of buildings with electric heat

= 100% for electric heating fuel and 0% for gas heating fuel

Equipment Type	Size Category	Federal Standard Minimum Efficiency
HPWH ≤12 kW	≤55 gallon	EF: 0.96 – (0.0003 x rated volume in gallons)
HPWH >12 kW	>120 gallon	Et: 98% ¹¹⁹

Method 1 to estimate HWU_{GAL} – Consumption per water heater capacity

HWU = Consumption/cap x Capacity

Where:

Consumption/cap = Estimate of consumption per gallon of tank capacity, dependent

on Building Type (see table below)¹²⁰

Capacity = Capacity of hot water heater in gallons

= Actual

Building Type	Consumption/cap
Grocery, Convenience Store, and Restaurant	803
Lodging, Hospital, and Multifamily	630
Health Clinic, Church, Warehouse	433
Education, Office, and Retail	594
Industrial	558
Agriculture	558
Average Non Residential	558

Method 2 to estimate HWUGAL – Consumption by facility size¹²¹

2025 MEEIA 4 Plan Revision 7.0 Page 72

¹¹⁹ Efficiency of baseline water heaters >120 gallons based on search of electric storage water heaters >120 gallons available on AHRI directory.

¹²⁰ Based on Cadmus analysis. Annual hot water usage in gallons based on CBECS (2003) consumption data for West North Central (removed outliers of 1,000 kBtu/hr or less) to calculate hot water usage. Annual hot water gallons per tank size gallons based on the tank sizing methodology found in ASHRAE 2011 HVAC Applications. Chapter 50 Service Water Heating. Demand assumptions (gallons per day) for each Building Type based on ASHRAE Chapter 50 and "Technology Data Characterizing Water Heating in Commercial Buildings: Application to End Use Forecasting," Lawrence Berkeley National Library, December 1995. VEIC considers these values to be relatively conservative estimates that may benefit from future evaluation.

¹²¹ Technology Data Characterizing Water Heating in Commercial Buildings: Application to End Use Forecasting," Lawrence Berkeley National Library, December 1995 (See Table 2, page 6).

Building Type	Gallons HW per unit per day	Unit	Units/1000 ft ²	Days per year	Gallons / 1000 ft² floor area	
Small Office	1	person	2.3	250	575	
Large Office	1	person	2.3	250	575	
Fast Food Restaurant	0.7	meal/day	784.6	365	200,465	
Sit-Down Restaurant	2.4	meal/day	340	365	297,840	
Retail	2	employee	1	365	730	
Grocery	2	employee	1.1	365	803	
Warehouse	2	employee	0.5	250	250	
Elementary School	0.6	person	9.5	200	1,140	
Jr High/High School	1.8	person	9.5	200	3,420	
Health	90	patient	3.8	365	124,830	
Motel	20	room	5	365	36,500	
Hotel	14	room	2.2	365	11,242	
Other	1	employee	0.7	250	175	

SUMMER COINCIDENT PEAK DEMAND SAVINGS

 $\Delta kW = \Delta kWh \times CF$

Where:

 ΔkWh = Electric energy savings, as calculated above

CF = Summer peak coincidence demand (kW) to annual energy (kWh) factor

 $= 0.0001811545^{122}$

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

¹²² Ameren Missouri TRM Volume 1 - Appendix G: "Table 2 - Commercial and Industrial End Use Category Monthly Shapes and Coincident Peak Factors."

2.4.4 Low Flow Showerheads

DESCRIPTION

This measure relates to the direct installation of a low flow showerhead in a commercial building or common areas in other building types. Expected applications include small business, office, restaurant, or motel. For living units, the residential low flow showerhead should be used.

This measure was developed to be applicable to the following program type: DI, RF, TOS

If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

Low flow showerheads meeting the EPA WaterSense flow rate of ≤ 2.0 gpm. ¹²³

Fixture	Maximum Flow Rate, gpm				
Showerhead	≤2.0				

DEFINITION OF BASELINE EQUIPMENT

The baseline condition flow rate showerhead is 2.5 gpm.

Fixture	Flow Rate, gpm
Showerhead	2.5

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life is assumed to be 10 years. 124

DEEMED MEASURE COST

The incremental cost for this measure is \$12.00 or program actual. 125

LOADSHAPE

Water Heating BUS, or Water Heating RES if installed in the common area of multi-family housing.

¹²³ DOE, Showerhead regulations,

 $[\]frac{\text{https://www.epa.gov/watersense/showerheads\#:}\sim: text=Did\%20you\%20know\%20that\%20standard, no\%20more\%20than\%202.0\%20gpm.}{20gpm.}$

¹²⁴ GDS Associates, Page C-14, Table C-6, "Measure Life Report, Residential and Commercial/Industrial Lighting and HVAC Measures", (June 2007) .Evaluations indicate that consumer dissatisfaction may lead to reductions in persistence, particularly in Multi-Family.

¹²⁵ Direct-install price per showerhead assumes cost of showerhead (Market research average of \$7 and assess and install time of \$5 (20min @ \$15/hr).

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

Note these savings are per showerhead retrofitted.

 $\Delta kWh = \% Electric DHW x (GPM_{base} x L_{base} - GPM_{low} x L_{low}) x NSPDx 365.25 x EPG_{electric} x ISR$

Where:

%ElectricDHW = proportion of water heating supplied by electric resistance heating

(see values in table below)

DHW fuel	%Electric_DHW
Electric	100%
Fossil Fuel	0%
Unknown	43%126

GPM_{base} = Flow rate in gallons per minute, actual, or 2.67 gpm if unknown.

Lbase = Shower length in minutes with baseline showerhead

=8.20 minutes

GPM_{low} = Flow rate in gallons per minute, actual or certified equipment rate.

L_{low} = Shower length in minutes with low flow showerhead

=8.20 minutes

NSPD =Estimated showers per day per showerhead

=Actual. If unknown, apply 1.0 conservative assumption.

EPG_{electric} = Energy per gallon of hot water supplied by electric

=(8.33 x1.0 x(ShowerTemp-SupplyTemp)/(RE_{electric}x3412)

=0.125 kWh/gallon

8.33 =Specific weight of water (lbs/gallon)

=Heat capacity of water (BTU/lb-°F)

ShowerTemp = Assumed mixed water temperature

 $=105.0 F^{127}$

SupplyTemp = Assumed water temperature entering water heater

 $=59.3 F^{128}$

¹²⁶ Default assumption for unknown fuel is based on EIA Commercial Building Energy Consumption Survey (CBECS) 2012 for Midwest North Central Region (see 'HC8.9 Water Heating in Midwest Region.xls'). If utilities have specific evaluation results providing a more appropriate assumption for buildings in a particular market or geographical area, then they should be used.
¹²⁷ Ameren Missouri Efficient Kits Evaluation: PY2018, https://www.efis.psc.mo.gov/Document/Display/15870, page 32.

¹²⁸ National Weather Service. Average soil temperature at 40" depth during 2015 - 2023 data of six stations in Ameren Missouri service territory. https://www.weather.gov/ncrfc/LMI SoilTemperatureDepthMaps.

EPG_{electric} = Energy per gallon of mixed water used by faucet (electric water

heater)

= $(8.33 \times 1.0 \times (WaterTemp - SupplyTemp)) / (RE_{electric} \times 3412)$ = $(8.33 \times 1.0 \times (90 - 57.9)) / (0.98 \times 3412) = 0.0800 \text{ kWh/gal}$

RE_{electric} = Recovery efficiency of electric water heater

=98% 129

3412 = Converts Btu to kWh (Btu/kWh)
ISR = In service rate of faucet aerators

= Assumed to be 1.0

SUMMER COINCIDENT PEAK DEMAND SAVINGS

 $\Delta kW = \Delta kWh \times CF$

Where:

 Δ kWh = calculated value above on a per showerhead basis

CF = Summer peak coincidence demand (kW) to annual energy (kWh) factor

 $= 0.0001811545^{130}$, installed in the common area of multi-family housing.

 $= 0.0000887318^{131}$ if installed in the living area of multi-family housing.

FOSSIL FUEL IMPACT DESCRIPTIONS AND CALCULATION

$$\Delta Therms = \%FossilDHW \ x \ (GPM_{base} \ x \ L_{base} - GPM_{low} x \ L_{low}) \ x \ NSPDx \ 365.25 x \ EPG_{aas} \ x \ ISR$$

Where:

%FossilDHW = proportion of water heating supplied by fossil fuel heating (see table below)

DHW fuel	%Fossil_DHW
Electric	0%
Fossil Fuel	100%
Unknown	57%

EPG gas = Energy per gallon of mixed water used by showerhead(gas

water heater)

 $= (8.33 \times 1.0 \times (WaterTemp - SupplyTemp)) / (RE gas x 100,000)$

= 0.00772 Therm/gal

RE gas = Recovery efficiency of gas water heater

=67%

¹²⁹ Electric water heater have recovery efficiency of 98%: http://www.ahrinet.org/ARI/util/showdoc.aspx?doc=576.

¹³⁰ Ameren Missouri TRM Volume 1 - Appendix G: "Table 2 - Commercial and Industrial End Use Category Monthly Shapes and Coincident Peak Factors."

¹³¹ Ameren Missouri TRM Volume 1 - Appendix G: "Table 2 - Commercial and Industrial End Use Category Monthly Shapes and Coincident Peak Factors."

100,000 = Converts Btus to Therms (Btu/Therm)

WATER IMPACT DESCRIPTIONS AND CALCULATION

 $\Delta gallons = x (GPM_{base}x L_{base} - GPM_{low}xL_{low}) x NSPDx 365.25xISR$

Variables as defined above

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

2.5 HVAC

Table 1 Effective Full Load Heating and Cooling Hours, by Building Type

		nan AFB vg)		ln, NE W)		dison, IA (E)	Kai (S ^v	iser W)	Cape Gi (S	irardeau E)	St Loui	s Metro	Kansa	s City
Building Type	Heating EFLH	Cooling EFLH	Heating EFLH	Cooling EFLH	Heating EFLH	Cooling EFLH	Heating EFLH	Cooling EFLH	Heating EFLH	Cooling EFLH	Heating EFLH	Cooling EFLH	Heating EFLH	Cooling EFLH
Large Office	1039	1846	1141	1756	1088	1539	997	1918	861	1784	988	1869	1056	1792
Medium Office	649	1350	740	1245	728	1146	567	1412	528	1323	645	1386	708	1325
Small Office	946	1114	1030	1041	1029	975	926	1165	769	1082	893	1159	989	1097
Warehouse	991	415	1201	380	1227	357	1189	457	851	391	1059	433	1207	400
Stand-alone Retail	1012	1000	1125	903	1139	808	968	1076	891	965	994	986	1036	946
Strip Mall	1030	970	1124	884	1148	794	984	1044	905	944	1001	956	1039	916
Primary School	806	1019	892	958	898	852	798	1155	666	1016	785	1195	840	971
Secondary School	719	812	803	724	867	677	754	911	603	800	712	873	779	779
Supermarket	1279	875	1367	800	1405	672	1330	902	1120	837	1248	846	1344	820
Quick Service Restaurant	1233	1013	1414	916	1513	819	1316	1127	1025	973	1262	1035	1387	970
Full Service Restaurant	1367	1119	1499	1014	1655	952	1442	1234	1156	1114	1380	1124	1473	1059
Hospital	3388	3318	3205	3055	3467	2733	3891	3448	2913	3312	3170	3413	3372	3215
Outpatient Health Care	3203	3113	3261	2834	3150	2627	3128	3217	3001	3109	3013	3265	3164	2994
Small Hotel - Building	602	2247	697	2097	760	1914	620	2386	436	2304	575	2277	669	2207
Large Hotel - Building	1656	2148	1472	2016	1980	1916	1943	2369	1202	2186	1551	2363	1692	2155
Midrise Apartment - Building	1462	1132	1599	1028	1710	901	1590	1214	1208	1085	1433	1171	1580	1090
C&I Average ¹³²	1067	1018	1196	937	1217	865	1118	1085	910	996	1060	1053	1164	986

¹³² See Volume 1 for details on modeling calculations and assumptions.

2.5.1 Small Commercial Smart Thermostats

DESCRIPTION

This measure characterizes the energy savings from the installation of a new smart thermostat for reduced cooling and heating energy consumption through temperature set-back during unoccupied or reduced demand times as well as automatic adjustments based on occupancy patterns and various independent variables such as weather. This measure is limited to small businesses as defined by programs, ¹³³ as they have smaller HVAC systems that are similar to residential HVAC systems and may be controlled by a simple manual adjustment thermostat. Mid- to large-sized businesses will typically have a building automation system or some other form of automated HVAC controls. This measure is only appropriate for single zone heating systems. Custom calculations are required for savings for smart thermostats installed in multi-zone systems.

This measure was developed to be applicable to the following program types: RF, DI, and TOS.

If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

The criteria for this measure are established by replacement of a manual-only temperature control with one that has the capability to adjust temperature set-points according to various independent variables without manual intervention.

DEFINITION OF BASELINE EQUIPMENT

For new thermostats the baseline is a non-programmable thermostat requiring manual intervention to change the temperature set-point.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life of a smart thermostat is assumed to be 9 years¹³⁴ based upon a residential EUL analysis.

DEEMED MEASURE COST

Actual material and labor costs should be used if the implementation method allows. If unknown, the capital cost for this measure is assumed to be \$264. 135

LOADSHAPE

Cooling BUS Heating BUS

¹³³ The square footage of the small office prototype building modeled in is 7,500 sf.

¹³⁴ CADMUS, "EUL analysis of residential smart communicating thermostat – Vendor A and B", Memorandum for Southern California Edison, (February 2019), for the California eTRM, Residential Smart Thermostat Measure, https://www.caetrm.com/measure/SWHC039/08/.

¹³⁵ Ameren Missouri DSM Business Program participants, 1/2019 through 7/2024, includes equipmentLocal file: "2.5.1 Measure Cost.xlsx."

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

 $\Delta kWh = \Delta \Delta kWh_{cooling} + \Delta \Delta kWh_{heating}$ $\Delta kWh_{cooling} = EFLH_{COOL} x kBtuh_{COOL} x (1/SEER2) x ESF_{COOL}$ $\Delta kWh_{heating} = EFLH_{HEAT} x kBTUh_{HEAT} x (1/HSPF2) x ESF_{HEAT}$

Where:

SEER2 = Seasonal Energy Efficiency Ratio for cooling

= Actual; or if unknown, assume 13.4 SEER2.

HSPF2 = Heating Seasonal Performance Factor

= Actual; or if unknown, assume 8.2 HSPF2.

EFLH_{COOL} = Effective Full Load Cooling Hours

= Actual; or if unknown, refer to *Table 1* Table 1 building

type.

EFLH_{HEAT} = Effective Full Load H Hours

= Actual; or if unknown, refer to *Table 1* Table 1 building

tvpe.

kBTUhcool = Cooling system capacity; 1,000 Btu/h

= Actual

kBTUh_{HEAT} =Heating system capacity: 1,000 Btuh/h

=Actual

ESF_{COOL} = Cooling energy savings factor

= Assume 0.139^{136}

ESF_{HEAT} =Heating energy savings factor

=Assume 0.125^{137}

SUMMER COINCIDENT PEAK DEMAND SAVINGS

 $\Delta kW = \Delta kW h_{cool} x CF$

Where:

content/uploads/2015/06/Cadmus_Vectren_Nest_Report_Jan2015.pdf?submissionGuid=7cbc76e9-41bf-459a-94f5-2b13f74c4e52%20%20.

¹³⁷ IBID.

¹³⁶ Cadmus (Aarish, C., M. Perussi, A. Rietz, and D. Korn). *Evaluation of the 2013–2014 Programmable and Smart Thermostat Program*, page 41. Prepared for Northern Indiana Public Service Company and Vectren Corporation. (January 2015) http://www.cadmusgroup.com/wp-

ΔkWh = Cooling electric energy savings, as calculated above

CF = Summer peak coincidence demand (kW) to annual energy (kWh) factor
= 0.0009106840¹³⁸

NATURAL GAS ENERGY SAVINGS

 $\Delta Therms_{heating} = EFLH_{HEAT} \times kBTUh_{GAS} \times (1/AFUE) \times ESF_{HEAT}$

Where:

EFLH_{HEAT} = Effective Full Load Heating Hours

= Actual; or if unknown, refer to *Table 1* Table 1 building type

kBTUh_{Gas} = Heating system capacity: 1,000 Btuh/h

=Actual

AFUE = Annual Fuel Utilization Efficiency

=Actual, or if unknown, assume 0.80.

ESF_{HEAT} =Heating energy savings factor

=Assume 0.125^{139}

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

¹³⁸ Ameren Missouri TRM Volume 1 - Appendix G: "Table 2 - Commercial and Industrial End Use Category Monthly Shapes and Coincident Peak Factors."

¹³⁹ Cadmus (Aarish, C., M. Perussi, A. Rietz, and D. Korn). Evaluation of the 2013–2014 Programmable and Smart Thermostat Program, page 41. Prepared for Northern Indiana Public Service Company and Vectren Corporation. (January 2015) http://www.cadmusgroup.com/wp-

 $[\]frac{content/uploads/2015/06/Cadmus_Vectren_Nest_Report_Jan 2015.pdf?submissionGuid=7cbc76e9-41bf-459a-94f5-2b13f74c4e52\%20\%20.$

2.5.2 Demand Controlled Ventilation

DESCRIPTION

Demand control ventilation (DCV) automatically adjusts building ventilation rates based on occupancy. DCV is part of a building's ventilation system control strategy. It may include hardware, software, and controls as an integral part of a building's ventilation design. Active control of the ventilation system provides the opportunity to reduce heating & cooling energy use.

The primary component is a control sensor to communicate either directly with the economizer or with a central computer. The component is most typically a carbon dioxide (CO₂) sensor, occupancy sensor, or turnstile counter. This measure is modeled to assume night time set backs are in operation and minimum outside air is being used when the building is unoccupied.

This measure was developed to be applicable to the following program type: RF. If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

The efficient equipment condition is defined by new CO₂ sensors installed on return air systems where no other sensors were previously installed. Additionally, commissioned control logic and installed hardware must be capable of reducing ventilation rates based on sensor input. For heating savings, this measure does not apply to any system with terminal reheat (constant volume or variable air volume). For a terminal reheat system, a custom savings calculation should be used to determine the heating savings; cooling savings are still applicable to the measure.

DEFINITION OF BASELINE EQUIPMENT

The base case for this measure is a space with no demand control capability, and is not required by the local building code. The current code minimum for outdoor air (OA) is 5 CFM per occupant (ASHRAE 62.1-2022) for office buildings, which is the value assumed in this measure.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The deemed measure life is 10 years. 140

DEEMED MEASURE COST

As a retrofit measure, the actual cost of installation should be used for screening. Costs should include the hardware and labor costs to install the sensors. Additional purchase and installation costs for any other component of the DCV system that was not previously existing should also be included.

LOADSHAPE

Cooling BUS

 $^{^{140}}$ Based on CO_2 sensor estimated life, determined through conversations with contractors to have a minimum lifetime of 10 years. It is recommended that they are part of a normal preventive maintenance program, as calibration is an important part of extending useful life. Although they are not subject to mechanical failure, they can fall out of tolerance over time.

Algorithm

CALCULATION OF ENERGY SAVINGS

ELECTRIC ENERGY SAVINGS

For facilities heated by natural gas, cooling savings are:

$$\Delta kWh = SQFT_{cond} / 1000 \times SF_{cooling}$$

For facilities heated by heat pumps, heating and cooling savings are:

$$\Delta kWh = SQFT_{cond} / 1000 \times SF_{cooling} + SQFT_{cond} / 1000 \times SF_{Heat\ HP}$$

For facilities heated by electric resistance heating and cooling savings are:

$$\Delta kWh = SQFT_{cond} / 1000 \times SF_{cooling} + SQFT_{cond} / 1000 \times SF_{Heat ER}$$

Where:

SQFT_{cond} = Square footage of conditioned space commissioned with DCV
SF_{cooling} = Cooling Savings Factor, including cooling and fan energy savings
SF_{Heat HP} = Heating Savings factor for facilities heated by Heat Pump (HP)
= Heating Savings factor for facilities heated by Electric Resistance (ER)

Savings factors are based on Building Type and weather zone – see tables below. 141

	SF _{cooling} (kWh/1000 SqFt)									
	North East	North	South East	South	St	Kansa	Average/			
Building Type	(Fort	West	(Cape	West	Louis	S	Unknown			
	Madison,	(Lincol	Girardeau,	(Kaiser,	Metro,	City,	(Knob			
	IA)	n, NE)	MO)	MO)	MO	MO	Noster, MO)			
Office - Low-rise	475	533	535	634	649	555	579			
Office - Mid-rise	448	502	504	597	611	523	545			
Office - High-rise	468	525	527	624	639	547	570			
Religious Building	567	635	639	756	774	662	690			
Restaurant	561	629	632	748	765	655	683			
Retail - Department Store	654	734	737	873	893	764	797			
Retail - Strip Mall	399	447	449	532	544	466	486			
Convenience Store	631	708	711	842	862	737	769			
Elementary School	353	395	397	470	481	412	430			
High School	340	382	384	454	465	398	415			
College/University	442	495	498	589	603	516	538			
Healthcare Clinic	384	431	433	513	525	449	468			
Lodging	605	679	682	808	827	707	738			

¹⁴¹ Energy savings factors were calculated using weather data and methodology consistent with ASHRAE standards. Savings are calculated on an annual basis for each given weather zone in Missouri. Original energy savings for DCV were developed for Illinois utilizing standards, inputs and approaches as set forth by ASHRAE 62.1and 90.1. These savings factors were then translated into Missouri-specific values using adjustment factors based on differences in heating and cooling degree hours. See DCV savings factors v1.xlsx for derivation.

2025 MEEIA 4 Plan Revision 7.0 Page 83

Manufacturing	500	560	563	666	682	584	609
Special Assembly Auditorium	476	534	536	635	650	556	580

	SF Heat HP (kWh/1000 SqFt)							
Building Type	North East (Fort Madison, IA)	North West (Lincoln, NE)	South East (Cape Girardeau, MO)	South West (Kaiser, MO)	St Louis Metro, MO	Kansas City, MO	Average/ Unknown (Knob Noster, MO)	
Office - Low-rise	171	191	145	151	156	176	159	
Office - Mid-rise	114	128	97	100	104	117	106	
Office - High-rise	154	172	130	135	140	158	143	
Religious Building	1,118	1,248	945	983	1,018	1,149	1,036	
Restaurant	799	892	675	702	727	821	740	
Retail - Department Store	277	310	234	244	252	285	257	
Retail - Strip Mall	184	205	155	161	167	189	170	
Convenience Store	134	150	114	118	122	138	125	
Elementary School	475	531	402	418	433	488	440	
High School	465	519	393	409	423	478	431	
College/University	923	1,031	780	812	840	949	856	
Healthcare Clinic	331	370	280	291	301	340	307	
Lodging	157	175	132	138	143	161	145	
Manufacturing	122	136	103	107	111	125	113	
Special Assembly Auditorium	1,335	1,490	1,128	1,173	1,215	1,371	1,236	

	SF Heat ER (kWh/1000 SqFt)								
Building Type	North East (Fort Madison, IA)	North West (Lincoln, NE)	South East (Cape Girardeau, MO)	South West (Kaiser, MO)	St Louis Metro, MO	Kansas City, MO	Average/ Unknown (Knob Noster, MO)		
Office - Low-rise	514	574	434	452	468	528	476		
Office - Mid-rise	343	383	290	301	312	352	318		
Office - High-rise	461	515	390	406	420	474	428		
Religious Building	3,354	3,744	2,835	2,948	3,053	3,446	3,108		
Restaurant	2,396	2,675	2,025	2,106	2,181	2,462	2,220		
Retail - Department Store	832	929	703	731	757	855	771		
Retail - Strip Mall	551	615	465	484	501	566	510		
Convenience Store	403	450	341	354	367	414	374		
Elementary School	1,426	1,592	1,205	1,253	1,298	1,465	1,321		
High School	1,395	1,557	1,179	1,226	1,270	1,433	1,292		
College/University	2,770	3,093	2,341	2,435	2,521	2,846	2,567		
Healthcare Clinic	993	1,109	839	873	904	1,020	920		
lodging	470	525	397	413	428	483	436		
Manufacturing	365	408	309	321	332	375	338		
Special Assembly Auditorium	4,004	4,470	3,384	3,519	3,644	4,114	3,709		

SUMMER COINCIDENT PEAK DEMAND SAVINGS

 $\Delta kW = \Delta kWhcooling \times CF$

Where:

 Δ kWh_{cooling} = Electric energy savings, as calculated above

CF = Summer peak coincidence demand (kW) to annual energy (kWh) factor

 $= 0.0009106840^{142}$

NATURAL GAS SAVINGS

 $\Delta Therms = SQFT_{cond} / 1000 \times SF_{Heat Gas}$

Where:

SF Heat Gas Savings factor for facilities heated by natural gas – see table below

	SF _{Heat Gas} (Therm/1000 sq ft)							
Building Type	North East (Fort Madison, IA)	North West (Lincoln, NE)	South East (Cape Girardeau, MO)	South West (Kaiser, MO)	St Louis Metro, MO	Kansas City, MO	Average/ Unknown (Knob Noster, MO)	
Office - Low-rise	22	24	19	19	20	23	20	
Office - Mid-rise	15	16	12	13	13	15	14	
Office - High-rise	20	22	17	17	18	20	18	
Religious Building	143	160	121	126	130	147	133	
Restaurant	102	114	86	90	93	105	95	
Retail - Department Store	35	40	30	31	32	36	33	
Retail - Strip Mall	23	26	20	21	21	24	22	
Convenience Store	17	19	15	15	16	18	16	
Elementary School	61	68	51	53	55	62	56	
High School	60	66	50	52	54	61	55	
College/University	118	132	100	104	108	121	109	
Healthcare Clinic	42	47	36	37	39	44	39	
lodging	20	22	17	18	18	21	19	
Manufacturing	16	17	13	14	14	16	14	
Special Assembly Auditorium	171	191	144	150	155	175	158	

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

¹⁴² Ameren Missouri TRM Volume 1 - Appendix G: "Table 2 - Commercial and Industrial End Use Category Monthly Shapes and Coincident Peak Factors."

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE:

2.5.3 Advanced Roof Top Unit (RTU) Controls

DESCRIPTION

A traditional packaged HVAC rooftop unit uses a zone thermostat to control the operation of the compressor or the gas furnace, depending on whether the zone thermostat is calling for cooling or heating. Under a conventional control scheme, the compressor or furnace is cycled on or off to maintain the zone thermostat set point with the supply fan operating continuously (when the building is occupied) to provide sufficient ventilation air and provide comfort heating and cooling for the space. The supply-fan speed is typically not capable of modulation, so it supplies constant air volume under all modes of operations.

Modulating the supply fan in conjunction with demand-controlled ventilation (DCV) can reduce both heating/cooling energy and fan energy requirements. This measure describes the energy savings realized by retrofitting traditional RTUs with advanced controllers that enable integrated air-side economization, supply-fan speed control (by installing a variable speed drive), and demand-controlled ventilation.

This measure is applicable to the following program type: RF.

If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

A traditional RTU retrofitted and commissioned with advanced controls that allow for modulation of supply fan speed in conjunction with demand-controlled ventilation (DCV).

DEFINITION OF BASELINE EQUIPMENT

Packaged heating and cooling equipment with constant speed supply fans providing ventilation at the design rate at all times when the fan is operating and when the building is occupied.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life for HVAC application is 15 years. 143

DEEMED MEASURE COST

As a retrofit measure, actual costs should be specified when available. Default measure costs are listed below based on RTU supply fan horsepower rating:¹⁴⁴

Supply Fan Size (hp)	Controller	Installation Labor	Total Retrofit Cost
1	\$2,200	\$750	\$2,950
2	\$2,600	\$750	\$3,350
3	\$3,500	\$750	\$4,250
5	\$4,000	\$750	\$4,750
7.5	\$4,142	\$750	\$4,892

¹⁴³ ASHRAE, Chapter 38: Owning and Operating Costs, Table 4, "Heating, Ventilating and Air Conditioning Applications", (2023 edition) for electronic building controls.

¹⁴⁴ Advanced Rooftop Control (ARC) Retrofit: Field-Test Results, PNNL-22656. U.S. Department of Energy, (July 2013).

LOADSHAPE HVAC BUS

Algorithm

CALCULATION OF SAVINGS

Although advanced RTUs controls can enable operating strategies that result in heating and cooling savings, field testing has shown variable results (in some instances increased heating/cooling energy consumption has been observed). Field testing has suggested that upwards of 90% of total energy savings can be attributed to reduced fan energy requirements, and therefore the following savings estimates are limited to those relating to fan energy consumption.

ELECTRIC ENERGY SAVINGS

$$\Delta kWh = P_{sf} x SF x Hours_{fan}$$

Where:

 P_{sf} = Nominal horsepower of supply fan motor

SF = Fan energy savings factor (kWh/hour/horsepower)

 $=0.558^{145}$

Hours_{fan} = Annual operating hours for fan motor based on Building Type. Default hours

are provided for HVAC applications by Building Type. 146 When available, actual hours should be used, especially in instances where RTU operation is seasonal.

¹⁴⁵ US Department of Energy, "Advanced Rooftop Control (ARC) Retrofit: Field-Test Results, PNNL-22656.", page 86, (July 2013). https://www.pnnl.gov/main/publications/external/technical reports/PNNL-

^{22656.}pdf? hstc=249664665.3c4d37ff926a6dcbd64478550ad8ba16.1723665944789.1723665944789.1723665944789.1.& hss c=249664665.1.1723665944789. hsfp=2087961721. Savings factors were consistent across the capacity range. See "RTU Control Savings.xlsx" for additional details.

¹⁴⁶ Hours per year are estimated using the modeling results and represent the total number of hours the fans are operating for heating, cooling and ventilation for each Building Type.

Building Type	Fan Run Hours
Large Office	6753
Medium Office	6968
Small Office	6626
Warehouse	6263
Stand-alone Retail	6679
Strip Mall	6687
Primary School	5906
Secondary School	6702
Supermarket	6900
Quick Service Restaurant	7679
Full Service Restaurant	7664
Hospital	8760
Outpatient Health Care	8760
Small Hotel - Building	8760
Large Hotel - Building	8760
Midrise Apartment Building	8728
Nonresidential Average	6773

SUMMER COINCIDENT PEAK DEMAND SAVINGS

 $\Delta kW = \Delta kWh x CF$

Where:

 $\Delta kWh = As$ calculated above.

CF = Summer peak coincidence demand (kW) to annual energy (kWh) factor

 $= 0.0004439830^{147}$

NATURAL GAS ENERGY SAVINGS

If fossil fuel impacts are expected, a custom analysis should be used to support them.

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE:

¹⁴⁷ Ameren Missouri TRM Volume 1 - Appendix G: "Table 2 - Commercial and Industrial End Use Category Monthly Shapes and Coincident Peak Factors."

2.5.4 Electric Chiller

DESCRIPTION

This measure involves the installation of a new electric chiller meeting the efficiency standards presented below. This measure could relate to the replacement of an existing unit at the end of its useful life or the installation of a new system in an existing building (i.e., time of sale). Only single-chiller applications should be assessed with this methodology. For multiple chiller projects, a custom analysis should be used to establish savings.

This measure was developed to be applicable to the following program types: TOS and NC. If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

In order for this characterization to apply, the efficient equipment is assumed to exceed the efficiency requirements defined by the program.

DEFINITION OF BASELINE EQUIPMENT

In order for this characterization to apply, the baseline equipment is assumed to meet the 2015 IECC energy efficiency requirements. Chillers are rated for both the full load efficiency and the integrated part load efficiency. Chiller efficiency can be sourced by either Path A when the system is designed for full load efficiency, or Path B when designed for part load efficiency.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life is assumed to be 23 years.¹⁴⁸

DEEMED MEASURE COST

The incremental capital cost for this measure is based on the IPLV efficiency improvement over a code based minimum efficient chiller. The cost is per 0.01 IPLV improvement over code, per ton. A 150 ton screw chiller with an IPLV of 0.374, has an incremental cost of \$27,834, when the minimum code based efficiency is 0.44.

Equipment	Incremental Cost ¹⁴⁹ \$/0.01 IPLV above code/ton	Base IPLV
Water cooled screw chiller	\$28	2015 IECC or better
Water cooled centrifugal chiller	\$35	2015 IECC or better

LOADSHAPE

Cooling BUS

¹⁴⁸ ASHRAE, Chapter 38: Owning and Operating Costs, Table 4, "Heating, Ventilating and Air Conditioning Applications", (2023 edition) for centrifugal chillers (page 38.3).

¹⁴⁹ Incremental cost aggregated from Southern California Edison data in the California eTRM,"Water Cooled Chiller" measure incremental cost data (November 2020), https://www.caetrm.com/measure/SWHC005/03/. Aggregated data in file "SWHC005_Water-Cooled_Chiller_Cost_Data_2020Q3_aggregated by 0.01 IPLV per ton.xlsx."

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

For a chiller operating primarily at full load, (Path A compliance).

$$\Delta kWh = TONS x (IPLV_{BASE} - IPLV_{EE}) x EFLH$$

For a chiller operating primarily at part load, (Path B compliance).

$$\Delta kWh = TONS x (FL_{BASE} - FL_{EE}) x EFLH$$

Where:

TONS = Chiller nominal cooling capacity in tons (note: 1 ton = 12,000 Btu/hr)

= Actual installed

IPLV_{BASE} =Efficiency of baseline equipment expressed as Integrated Part Load Value

(kW/ton). Chiller units are dependent on chiller type. See 'Chiller Units, Conversion Values' and 'Baseline Efficiency Values by Chiller Type' and

Capacity in the Reference Tables section.

=Code based minimum part load efficiency for same type, capacity installed

FL_{BASE} = Efficiency of baseline equipment expressed as Full Load (kW/ton).

=Code based minimum part load efficiency for same type, capacity installed

IPLV_{EE} = Efficiency of high efficiency equipment expressed as Integrated Part Load

Value (kW/ton)

= Actual installed

FLEE = Efficiency of high efficiency equipment expressed as Full Load (kW/ton)

=Actual installed

EFLH = Equivalent Full Load Hours for cooling are provided in Table 1.

SUMMER COINCIDENT PEAK DEMAND SAVINGS

$$\Delta kW = \Delta kWH x CF$$

Where:

 ΔkWh = Annual electricity savings, as calculated above

CF = Summer peak coincidence demand (kW) to annual energy (kWh) factor

 $= 0.0009106840^{150}$

¹⁵⁰ Ameren Missouri TRM Volume 1 - Appendix G: "Table 2 - Commercial and Industrial End Use Category Monthly Shapes and Coincident Peak Factors."

NATURAL GAS ENERGY SAVINGS

N/A

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

REFERENCE TABLES

Chillers Ratings - Chillers are rated with different units based on equipment type as shown below

Equipment Type	Unit
Air cooled, electrically operated	EER
Water cooled, electrically operated, positive displacement (reciprocating)	kW/ton
Water cooled, electrically operated, positive displacement (rotary screw and scroll)	kW/ton

In order to convert chiller equipment ratings to IPLV the following relationships are provided

kW/ton = 12 / EER

 $kW/ton = 12 / (COP \times 3.412)$

COP = EER / 3.412

COP = 12 / (kW/ton) / 3.412

EER = 12 / kW/tonEER = COP x 3.412

2015 IECC Baseline Efficiency Values by Chiller Type and Capacity

TABLE C403.2.3(7)
WATER CHILLING PACKAGES - EFFICIENCY REQUIREMENTS^{A, b, d}

EQUIPMENT TYPE	SIZE CATEGORY	UNITS	BEFORE	1/1/2015	AS OF	1/1/2015	TEST
EQUIPMENT TYPE	SIZE CATEGORY	UNITS	Path A	Path B	Path A	Path B	PROCEDURE
Air-cooled chillers	< 150 Tons		≥ 9.562 FL	NA°	≥ 10.100 FL	≥ 9.700 FL	
	< 150 Tons	EER	≥ 12.500 IPLV	NA.	≥ 13.700 IPLV	≥ 15,800 IPLV	İ
Air-cooled Chillers	≥ 150 Tons	(Btu/W)	≥ 9.562 FL	NA°	≥ 10.100 FL	≥9.700 FL	İ
	2 150 10ms		≥ 12.500 IPLV	NA.	≥ 14.000 IPLV	≥ 16.100 IPLV	İ
Air cooled without condenser, electrically operated	All capacities	EER (Btu/W)	Air-cooled c matching con	densers and con	condenser shall b aplying with air- equirements.	e rated with cooled chiller	
	< 75 Tons		≤ 0.780 FL	≤0.800 FL	≤ 0.750 FL	≤ 0.780 FL	Ī
	< /3 Tons		≤ 0.630 IPLV	≤ 0.600 IPLV	≤ 0.600 IPLV	≤ 0.500 IPLV	İ
	≥ 75 tons and < 150 tons		≤ 0.775 FL	≤ 0.790 FL	≤ 0.720 FL	≤ 0.750 FL	İ
	2 /3 tons and < 150 tons		≤0.615 IPLV	≤ 0.586 IPLV	≤ 0.560 IPLV	≤ 0.490 IPLV	†
Water cooled, electrically	\$ 150 mm 2 < 200 mm	kW/ton	≤ 0.680 FL	≤0.718 FL	≤ 0.660 FL	≤0.680 FL	İ
operated positive displacement	≥ 150 tons and < 300 tons	KW/ton	≤ 0.580 IPLV	≤ 0.540 IPLV	≤ 0.540 IPLV	≤ 0.440 IPLV	İ
•	> 200		≤ 0.620 FL	≤0.639 FL	≤0.610 FL	≤ 0.625 FL	AHRI 550 590
	≥ 300 tons and < 600 tons		≤ 0.540 IPLV	≤ 0.490 IPLV	≤ 0.520 IPLV	≤ 0.410 IPLV	
	> 000		≤ 0.620 FL	≤0.639 FL	≤ 0.560 FL	≤ 0.585 FL	
	≥ 600 tons		≤ 0.540 IPLV	≤ 0.490 IPLV	≤ 0.500 IPLV	≤ 0.380 IPLV	İ
	12.2		≤ 0.634 FL	≤0.639 FL	≤ 0.610 FL	≤ 0.695 FL	
	< 150 Tons		≤ 0.596 IPLV	≤ 0.450 IPLV	≤ 0.550 IPLV	≤ 0.440 IPLV	
	> 100 . 1 - 200 .		≤ 0.634 FL	≤ 0.639 FL	≤0.610 FL	≤ 0.635 FL	
	≥ 150 tons and < 300 tons		≤ 0.596 IPLV	≤ 0.450 IPLV	≤ 0.550 IPLV	≤0.400 IPLV	
Water cooled electrically	> 200		≤ 0.576 FL	≤0.600 FL	≤ 0.560 FL	≤ 0.595 FL	
operated centrifugal	≥ 300 tons and < 400 tons	kW/ton	≤ 0.549 IPLV	≤ 0.400 IPLV	≤ 0.520 IPLV	≤ 0.390 IPLV	
	S 400		≤ 0.576 FL	≤0.600 FL	≤ 0.560 FL	≤ 0.585 FL	t
	≥ 400 tons and < 600 tons		≤ 0.549 IPLV	≤ 0.400 IPLV	≤ 0.500 IPLV	≤ 0.380 IPLV	t
	200.00		≤ 0.570 FL	≤0.590 FL	≤ 0.560 FL	≤0.585 FL	t
	≥ 600 Tons		≤ 0.539 IPLV	≤ 0.400 IPLV	≤ 0.500 IPLV	≤ 0.380 IPLV	t
Air cooled, absorption, single effect	All capacities	COP	≥ 0.600 FL	NA°	≥ 0.600 FL	NA°	
Water cooled absorption, single effect	All capacities	COP	≥ 0.700 FL	NA°	≥ 0.700 FL	NA°	
Absorption, double effect, indirect fired	All capacities	COP	≥ 1.000 FL ≥ 1.050 IPLV	NA°	≥ 1.000 FL ≥ 1.050 IPLV	NA°	AHRI 560
Absorption double effect direct fired	All capacities	COP	≥ 1.000 FL ≥ 1.000 IPLV	NA ^c	≥ 1.000 FL ≥ 1.050 IPLV	NA°	1

a. The requirements for centrifugal chiller shall be adjusted for nonstandard rating conditions in accordance with Section C403.2.3.1 and are only applicable for
the range of conditions listed in Section C403.2.3.1. The requirements for air-cooled, water-cooled positive displacement and absorption chillers are at
standard rating conditions defined in the reference test procedure.
 b. Both the full-load and IPLV requirements shall be met or exceeded to comply with this standard. Where there is a Path B, compliance can be with either Path

A or Path B for any application.

NA means the requirements are not applicable for Path B and only Path A can be used for compliance.
 FL represents the full-load performance requirements and IPLV the part-load performance requirements.

2018 IECC Baseline Efficiency Values by Chiller Type and Capacity

TABLE C403.3.2(7) WATER CHILLING PACKAGES — EFFICIENCY REQUIREMENT Sa, b, d

EQUIPMENT TYPE	SIZE CATEGORY	UNITS	BEFORE	1/1/2015		1/1/2015	TEST
E GOIT MENT TITE	SIZE ON EGOIN	Oitillo	Path A	Path B	Path A	Path B	PROCEDURE
	< 150 Tons		≥ 9.562 FL	NAC	≥ 10.100 FL	≥ 9.700 FL	
Air-cooled chillers	V 100 10115	EER	≥ 12.500 IPLV	INO.	≥ 13.700 IPLV	≥ 15,800 IPLV	
All-cooled chillers	≥ 150 Tons	(Btu/W)	≥ 9.562 FL	NAc	≥ 10.100 FL	≥ 9.700 FL '≥ 15,800 IPLV ≥ 9.700 FL '≥ 16.100 IPLV be rated with	
	2 100 10hs		≥ 12.500 IPLV	INA"	≥ 14.000 IPLV	≥ 16.100 IPLV	
Air cooled		EER			condenser shall b		
without condenser, electrically operated	All capacities	(Btu/W)	matching condensers and complying with air-cooled chiller				
	< 75 Tons		≤ 0.780 FL	≤ 0.800 FL	≤ 0.750 FL	≤ 0.780 FL	
	< 75 IONS		≤ 0.630 IPLV	≤ 0.600 IPLV	≤ 0.600 IPLV	≤ 0.500 IPLV	
	≥ 75 tons and < 150 tons	1	≤ 0.775 FL	≤ 0.790 FL	≤ 0.720 FL	≤ 0.750 FL	
	2 /5 tons and < 150 tons		≤ 0.615 IPLV	≤ 0.586 IPLV	≤ 0.560 IPLV	≤ 0.490 IPLV	
Water cooled, electrically	≥ 150 tons and < 300 tons	kW/ton	≥ 0.680 FL	≥ 0.718 FL	≥ 0.660 FL	≥ 0.680 FL	
operated positive displacement	2 150 tons and < 300 tons	KVV/ton	≥ 0.580 IPLV	≥ 0.540 IPLV	≥ 0.540 IPLV	≥ 0.440 IPLV	
aispiaoement	≥ 300 tons and < 600 tons		≤ 0.620 FL	≤ 0.639 FL	≤ 0.610 FL	≤ 0.625 FL	AHRI 550/590
	2 300 tons and < 000 tons		≤ 0.540 IPLV	≤ 0.490 IPLV	≤ 0.520 IPLV	≤ 0.410 IPLV	
	≥ 600 tons	1	≤ 0.620 FL	≤ 0.639 FL	≤ 0.580 FL	≤ 0.585 FL	
			≤ 0.540 IPLV	≤ 0.490 IPLV	≤ 0.500 IPLV	≤ 0.380 IPLV	
	4 450 Tone		≤ 0.634 FL	≤ 0.639 FL	≤ 0.610 FL	≤ 0.695 FL	
	< 150 Tons		≤ 0.596 IPLV	≤ 0.450 IPLV	≤ 0.550 IPLV	≤ 0.440 IPLV	
	≥ 150 tons and < 300 tons	1	≤ 0.634 FL	≤ 0.639 FL	≤ 0.610 FL	≤ 0.635 FL	
	2 100 tons and < 300 tons		≤ 0.596 IPLV	≤ 0.450 IPLV	≤ 0.550 IPLV	≤ 0.400 IPLV	
Water cooled, electrically	≥ 300 tons and < 400 tons	kW/ton	≤ 0.576 FL	≤ 0.600 FL	≤ 0.560 FL	≤ 0.595 FL	
operated centrifugal	2 300 tons and < 400 tons	KVV/ton	≤ 0.549 IPLV	≤ 0.400 IPLV	≤ 0.520 IPLV	≤ 0.390 IPLV	
	≥ 400 tons and < 600 tons	1	≤ 0.578 FL	≤ 0.600 FL	≤ 0.580 FL	≤ 0.585 FL	
	≥ 400 tons and < 000 tons		≤ 0.549 IPLV	≤ 0.400 IPLV	≤ 0.500 IPLV	≤ 0.380 IPLV	
	≥ 600 Tons	1	≤ 0.570 FL	≤ 0.590 FL	≤ 0.580 FL	≤ 0.585 FL	
	2 000 Ions		≤ 0.539 IPLV	≤ 0.400 IPLV	≤ 0.500 IPLV	≤ 0.380 IPLV	
Air cooled, absorption, single effect	All capacities	COP	≥ 0.600 FL	NAc	≥ 0.600 FL	NAc	
Water cooled absorption, single effect	All capacities	COP	≥ 0.700 FL	NAc	≥ 0.700 FL	NAª	
Absorption, double effect, indirect fired	All capacities	COP	≥ 1.000 FL ≥ 1.050 IPLV	NA°	≥ 1.000 FL ≥ 1.050 IPLV	NAc	AHRI 560
Absorption double effect direct fired	All capacities	COP	≥ 1.000 FL ≥ 1.000 IPLV	NA°	≥ 1.000 FL ≥ 1.050 IPLV	NA°	

a. The requirements for centrifugal chiller shall be adjusted for nonstandard rating conditions in accordance with Section C403.3.2.1 and are only applicable for the range of conditions listed in Section C403.3.2.1. The requirements for air-cooled, water-cooled positive displacement and absorption chillers are at standard rating conditions defined in the reference test procedure.

MEASURE CODE:

b. Both the full-load and IPLV requirements shall be met or exceeded to comply with this standard. Where there is a Path B, compliance can be with either Path A or Path B for any application.

c. NA means the requirements are not applicable for Path B and only Path A can be used for compliance.

d. FL represents the full-load performance requirements and IPLV the part-load performance requirements.

2.5.5 Heat Pump Systems

DESCRIPTION

This measure applies to the installation of high efficiency air-cooled, water source, ground water source, and ground source heat pump systems. This measure could apply to replacing an existing unit at the end of its useful life, or installation of a new unit in a new or existing building.

This measure was developed to be applicable to the following program types: TOS, EREP and NC. If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

For this characterization to apply, the efficient equipment is assumed to be a high-efficiency air-cooled, water source, ground water source, or ground source heat pump system that exceeds the heating and cooling efficiency listed in Federal Energy Efficiency Standards.

Federal Energy Efficiency Standards (effective January 2023)¹⁵¹

Heat	Capacity	Tymo	Supplemental	Heat Source	
Rejection	kBTUh	туре	ER heat or No heat	All other heat	
	< 65	Packaged	13.4 SEER2	13.4 SEER2	
	< 03	1 or 3 phase	6.7 HSPF2	6.7 HSPF2	
	<65	Split	14.3 SEER2	14.3 SEER2	
	\03	1 or 3 phase	7.5 HSPF2	7.5 HSPF2	
Air Source	>65 and <135	Packaged 1 or 3 phase Split 1 or 3 phase Packaged Packaged	14.1 IEER	13.9 IEER	
All Source	≥03 and <133	rackageu	3.4 COP	3.4 COP	
	>135 and <240	Packaged 1 or 3 phase Split 1 or 3 phase Packaged Packaged Packaged Packaged Packaged Packaged	13.5 IEER	13.3 IEER	
	≥133 and \240	rackageu	3.3 COP	3.3 COP	
	>240 and <760	Dookogod	12.5 IEER	12.3 IEER	
	≥240 and 00</td <td>1 or 3 phase Split 1 or 3 phase Packaged Packaged Packaged Packaged</td> <td>3.2 COP</td> <td>3.2 COP</td>	1 or 3 phase Split 1 or 3 phase Packaged Packaged Packaged Packaged	3.2 COP	3.2 COP	
	<17	Dookogod	12.2 E	EER	
	~17	rackageu	4.3 C	OP	
Water Source	>17 and <65	Dookogod	13.0 E	EER	
water source	≥1 / allu <03	1 ackageu	4.3 C	OP	
	>65 and <135	Packaged 1 or 3 phase Split 1 or 3 phase Packaged Packaged Packaged Packaged Packaged Packaged	13.0 EER		
	≥03 anu >133	rackageu	4.3 C	OP	

For VRF heat pumps, vertical heat pumps, and other heat pumps, refer to the tables within the Federal Energy Efficiency Standards.

DEFINITION OF BASELINE EQUIPMENT

Time of Sale, New Construction: For this characterization to apply, the baseline equipment is assumed to be a standard-efficiency air- cooled, water source, ground water source, or ground source heat pump system that meets the Federal Energy Efficiency Standards.

2025 MEEIA 4 Plan Revision 7.0 Page 95

¹⁵¹ DOE|Title10,Part 431|https://www.ecfr.gov/current/title-10/chapter-II/subchapter-D/part-431.

Retrofit, Early Replacement: For this characterization to apply, the existing equipment is working with a remaining useful life. After, remaining useful life period, the baseline is the Time of Sale baseline meeting the Federal Energy Efficiency Standards.

For unit with a capacity less than 65 kBTUh, the baseline efficiency may be converted to the newer ratings expressed by SEER2 and HSPF2.

The rating conditions for the baseline and efficient equipment efficiencies must be equivalent. Equipment capacities less than 65 kBtu/hr may be rated with the SEER2 efficiency (single phase, residential units), while larger units rated with EER or IEER.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life is assumed to be 15 years. 152

DEEMED MEASURE COST

For analysis purposes, the incremental capital cost for this measure is assumed as \$104 per ton per SEER or IEER unit increase over the base case efficiency for air-cooled units.¹⁵³ The incremental cost for all other equipment types should be determined on a site-specific basis.

For a 120,000 BTUh, 16.1 IEER air cooled heat pump without auxiliary heat, the incremental cost is:

10 tons x (16.1 IEER – 14.1 IEER) x \$104 = \$2,080

LOADSHAPE

Cooling BUS Heating BUS

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

For units with cooling capacities less than 65 kBtu/hr:

```
\Delta kWh = Annual \ kWh \ Savings_{cool} + Annual \ kWh \ Savings_{heat}
Annual \ kWh \ Savings_{cool} = kBtu/hr_{cool} \ x \ [(1/SEER2_{base}) - (1/SEER2_{EE})] \ x \ EFLH_{cool}
Annual \ kWh \ Savings_{heat} =
```

¹⁵² ASHRAE, Chapter 38: Owning and Operating Costs, Table 4, "Heating, Ventilating and Air Conditioning Applications", (2023 edition) for commercial air to air heat pumps (pg 651 or 38.3).

¹⁵³ AESC Inc, ASK Energy Inc, SDGE, "Industry Standard Practice Study of Commercial Unitary Air Conditioning and Heat Pumps Systems", page 36 (September 2021) https://www.caetrm.com/media/reference-documents/Unitary HVAC ISP Report Final.pdf.

$$kBtu/hr_{heat}x [(1/HSPF2_{base}) - (1/HSPF2_{EE})] x EFLH_{heat}$$

For units with cooling capacities equal to or greater than 65 kBtu/hr:

$$\Delta kWh = Annual \, kWh \, Savings_{cool} + Annual \, kWh \, Savings_{heat}$$

$$Annual \, kWh \, Savings_{cool} =$$

$$kBtu/hr_{cool} x [(1/IEER_{base}) - (1/IEER_{EE})] x EFLH_{cool}$$

$$Annual \ kWh \ Savings_{heat} = \frac{1}{kBtu/hr_{heat}} \ x \left[\frac{1}{(COP_{base}x \ 3.412)} - \frac{1}{(COP_{EE} \ x \ 3.412)} \right] \ x \ EFLH_{heat}$$

Where:

kBtu/hr_{cool} = Capacity of the cooling equipment in kBtu per hour (1 ton of cooling

capacity equals 12 kBtu/hr).

= Actual installed

SEERbase = Seasonal Energy Efficiency Ratio of the baseline equipment

= SEER based on current DOE energy efficiency standards for TOS,NC

=SEER based on existing efficiency for Retrofit

= For units with cooling capacity <65kbtu/hr and efficient unit is measured

in terms of SEER2, convert SEER_{base} to SEER2_{base}. 154

SEER_{ee} = Seasonal Energy Efficiency Ratio of the energy efficient equipment.

= Actual installed

EFLH_{cool} = Equivalent Full Load Hours for cooling are provided in Table 1 Effective

Full Load Heating and Cooling Hours, by Building Type

HSPF_{base} = Heating Seasonal Performance Factor of the baseline equipment

= HSPF from tables below, based on the applicable IECC. For units with cooling capacity <65kbtu/hr and efficient unit is measured in terms of

HSPF2, convert HSPF_{base} to HSPF2_{base}. ¹⁵⁵

HSPF_{ee} = Heating Seasonal Performance Factor of the energy efficient equipment.

= Actual installed. If rating is COP, HSPF = COP x 3.413

EFLH_{heat} = Heating mode equivalent full load hours are provided in Table 1 Effective

Full Load Heating and Cooling Hours, by Building Type

¹⁵⁴ SEER to SEER2 conversion factor: SEER2 = SEER x 96%. Conversion factor for SEER to SEER2 is used when converting an existing system that is rated in SEER to SEER2. This is to meet the DOE M1 CFR Standard beginning January 1, 2023. The efficiency levels of the existing, baseline, and efficient case must be expressed in the same metrics (e.g., both SEER or SEER2) before applying formulas.

¹⁵⁵ HSPF to HSPF2 conversion factor: HSPF2 = HSPF x 87%. Conversion factor for HSPF to HSPF2 is used when converting an existing system that is rated in HSPF to HSPF2. This is to meet the DOE M1 CFR Standard beginning January 1, 2023. The efficiency levels of the existing, baseline, and efficient case must be expressed in the same metrics (e.g., both HSPF or HSPF2) before applying formulas.

IEER_{base} = Integrated Energy Efficiency Ratio of the baseline equipment

= IEER from tables below, based on the applicable IECC.

IEER_{ee} = Integrated Energy Efficiency Ratio of the energy efficient equipment.

= Actual installed

kBtu/hr_{heat} = Capacity of the heating equipment in kBtu per hour.

= Actual installed

3.412 = Btu per Wh.

COP_{base} = Coefficient of performance of the baseline equipment

= COP from tables below, based on the applicable IECC. If rating is HSPF, COP = HSPF / 3.412. If rating is HSPF2, $COP2 = HSPF \times 87\% / 3.412$

COPee = Coefficient of performance of the energy efficient equipment.

= Actual installed

Minimum Efficiency Requirements: 2015 IECC

TABLE C403.2.3(2) MINIMUM EFFICIENCY REQUIREMENTS: ELECTRICALLY OPERATED UNITARY AND APPLIED HEAT PUMPS

			AND AFFLIED HEAT			
EQUIPMENT TYPE	SIZE CATEGORY	HEATING SECTION TYPE	SUBCATEGORY OR RATING CONDITION			TEST PROCEDURE*
		SECTION TIPE	RATING CONDITION	Before 1/1/2016	As of 1/1/2016 14.0 SEER* 14.0 SEER* 12.0 SEER 11.1 SEER 11.1 SEER 11.1 SEER 11.1 SEER 11.1 SEER 11.1 SEER 11.1 SEER 11.1 SEER 11.1 SEER 11.1 SEER 11.1 SEER 11.1 SEER 11.1 SEER 11.1 SEER 11.1 SEER 11.1 SEER	PROCEDURE
Air cooled	65 000 P. 43		Split System	13.0 SEER°	14.0 SEER°	
(cooling mode)	< 65,000 Btu/h ^b	A11	Single Package	13.0 SEER°	14.0 SEER°	
Through-the-wall,	≤ 30.000 Btu/h ^b	A11	Split System	12.0 SEER	12.0 SEER	AHRI 210/240
air cooled	≥ 30,000 Btt/n	All	Single Package	12.0 SEER	12.0 SEER	
Single-duct high-velocity air cooled	< 65,000 Btu/h ^b	All	Split System	11.0 SEER	11.0 SEER	
1901	≥ 65,000 Btu/h and	Electric Resistance (or None)	Split System and Single Package	11.0 EER 11.2 IEER		
	< 135,000 Btu/h	All other	Split System and Single Package	10.8 EER 11.0 IEER		
Air cooled	≥ 135,000 Btu/h and < 240,000 Btu/h	Electric Resistance (or None)	Split System and Single Package	10.6 EER 10.7 IEER		AHRI
(cooling mode)		All other	Split System and Single Package	10.4 EER 10.5 IEER		340/360
	≥ 240,000 Btu/h	Electric Resistance (or None)	Split System and Single Package	9.5 EER 9.6 IEER		
		All other	Split System and Single Package	9.3 EER 9.4 IEER		
	< 17,000 Btu/h	A11	86°F entering water	12.2 EER	12.2 EER	
Water to Air: Water Loop (cooling mode)	≥ 17,000 Btu/h and < 65,000 Btu/h	A11	86°F entering water	13.0 EER	13.0 EER	ISO 13256-1
	≥ 65,000 Btu/h and < 135,000 Btu/h	All	86°F entering water	13.0 EER	13.0 EER	
Water to Air: Ground Water (cooling mode)	< 135,000 Btu/h	A11	59°F entering water	18.0 EER	18.0 EER	ISO 13256-1
Brine to Air: Ground Loop (cooling mode)	< 135,000 Btu/h	All	77°F entering water	14.1 EER	14.1 EER	ISO 13256-1
Water to Water: WaterLoop (cooling mode)	< 135,000 Btu/h	A11	86°F entering water	10.6 EER	10.6 EER	
Water to Water: Ground Water (cooling mode)	< 135,000 Btu/h	A11	59°F entering water	16.3 EER	16.3 EER	ISO 13256-2
Brine to Water: Ground Loop (cooling mode)	< 135,000 Btu/h	A11	77°F entering fluid	12.1 EER	12.1 EER	

(continued)

TABLE C403.2.3(2)—continued MINIMUM EFFICIENCY REQUIREMENTS: ELECTRICALLY OPERATED UNITARY AND APPLIED HEAT PUMPS

EQUIPMENT TYPE	SIZE CATEGORY	HEATING	SUBCATEGORY OR			TEST	
	SIZE CATEGORY	SECTION TYPE	RATING CONDITION	Before 1/1/2016	As of 1/1/2016	PROCEDURE*	
Air cooled	< 65.000 Btu/h ^b		Split System	7.7 HSPF°	8.2 HSPF°		
(heating mode)	05,000 Diam	<u> </u>	Single Package	7.7 HSPF°	8.0 HSPF°		
Through-the-wall,	≤ 30,000 Btu/h ^b		Split System	7.4 HSPF	7.4 HSPF	AHRI 210/240	
(air cooled, heating mode)	(cooling capacity)	_	Single Package	7.4 HSPF	7.4 HSPF		
Small-duct high velocity (air cooled, heating mode)	< 65,000 Btu/h ^b	1 1	Split System	6.8 HSPF	6.8 HSPF		
	≥ 65,000 Btu/h and	0.00	47°F db/43°F wb outdoor air	3.3 COP	3.3 COP	AHRI	
Air cooled	<135,000 Btu/h (cooling capacity)		17°F db/15°F wb outdoor air	2.25 COP	2.25 COP		
(heating mode)	≥ 135,000 Btu/h		47°F db/43°F wb outdoor air	3.2 COP	3.2 COP	340/360	
	(cooling capacity)		17°F db/15°F wb outdoor air	2.05 COP	2.05 COP 2.05 COP		
Water to Air: Water Loop (heating mode)	< 135,000 Btu/h (cooling capacity)	-	68°F entering water	4.3 COP	4.3 COP		
Water to Air: Ground Water (heating mode)	< 135,000 Btu/h (cooling capacity)	_	50°F entering water	3.7 COP	3.7 COP	ISO 13256-1	
Brine to Air: Ground Loop (heating mode)	< 135,000 Btu/h (cooling capacity)	_	32°F entering fluid	3.2 COP	3.2 COP		
Water to Water: Water Loop (heating mode)	< 135,000 Btu/h (cooling capacity)	9_3	68°F entering water	3.7 COP	3.7 COP		
Water to Water: Ground Water (heating mode)	< 135,000 Btu/h (cooling capacity)	-	50°F entering water	3.1 COP	3.1 COP	ISO 13256-2	
Brine to Water: Ground Loop (heating mode)	< 135,000 Btu/h (cooling capacity)	-	32°F entering fluid	2.5 COP	2.5 COP		

For SI: 1 British thermal unit per hour = 0.2931 W, °C = $[(^\circ\text{F}) - 32]/1.8$.

a. Chapter 6 contains a complete specification of the referenced test procedure, including the reference year version of the test procedure.

b. Single-phase, air-cooled air conditioners less than 65,000 Btu/h are regulated by NAECA. SEER values are those set by NAECA.
 c. Minimum efficiency as of January 1, 2015.

SUMMER COINCIDENT PEAK DEMAND SAVINGS

 $\Delta kW = \Delta kWH_{Cool} * CF$

Where:

 Δ kWH = Annual cooling electricity savings, as calculated above

CF = Summer peak coincidence demand (kW) to annual energy (kWh) factor

 $= 0.0009106840^{156}$

NATURAL GAS ENERGY SAVINGS

N/A

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE:

2025 MEEIA 4 Plan Revision 7.0 Page 101

¹⁵⁶ Ameren Missouri TRM Volume 1 - Appendix G: "Table 2 – Commercial and Industrial End Use Category Monthly Shapes and Coincident Peak Factors."

2.5.6 Packaged Terminal Air Conditioner (PTAC) - Packaged Terminal Heat Pump (PTHP)

DESCRIPTION

A PTAC is a packaged terminal air conditioner that cools and provides heat through an electric resistance heater (heat strip). A PTHP is a packaged terminal heat pump. A PTHP uses its compressor year-round to heat or cool. In warm weather, it efficiently captures heat from inside a space and pumps it outside for cooling. In cool weather, it captures heat from outdoor air and pumps it into a space, adding heat from electric heat strips as necessary to provide heat.

This measure characterizes:

- 1) Time of Sale: the purchase and installation of a new efficient PTAC or PTHP.
- 2) Early Replacement: the early removal of an existing PTAC or PTHP from service, prior to its natural end of life, and replacement with a new efficient PTAC or PTHP unit. Savings are calculated between existing unit and efficient unit consumption during the remaining life of the existing unit, and between new baseline unit and efficient unit consumption for the remainder of the measure life. The measure is only valid for non-fuel switching installations for example replacing a cooling only PTAC with a PTHP can currently not use the TRM.

This measure was developed to be applicable to the following program types: TOS, NC, and EREP.

If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

In order for this characterization to apply, the efficient equipment is assumed to be PTACs or PTHPs that exceed the Federal Energy Efficiency Standards.¹⁵⁷ The non-standard size equipment type applies to installations with wall openings less than 16" high or less than 42" wide, and only for retrofit applications.

Equipment Type	Capacity	Minimum Efficiency (Cap= Btuh)
PTAC Standard Size	<7 kBtuh	11.9 EER
PTAC Standard Size	7kBtuh≥Cap≤15 kBtuh	14.0-(0.3 x Cap) EER
PTAC Standard Size	>15 kBtuh	9.5 EER
PTAC Non-Standard Size	<7 kBtuh	9.4 EER
PTAC Non-Standard Size	7kBtuh≥Cap≤15 kBtuh	10.9-(0.213xCap) EER
PTAC Non-Standard Size	>15 kBtuh	7.7 EER
PTHP Standard Size	<7 kBtuh	11.9 EER 3.3 COP
PTHP Standard Size	7kBtuh≥Cap≤15 kBtuh	14.0-(0.3 x Cap) EER 3.7-(0.052 x Cap) COP
PTHP Standard Size	>15 kBtuh	9.5 EER 2.7 COP

¹⁵⁷ DOE, Commercial Air Conditioners and Heat Pumps|https://www.ecfr.gov/current/title-10/chapter-II/subchapter-D/part-431#431.97.

PTHP Non-Standard Size	<7 kBtuh	9.3 EER
PTHP Non-Standard Size		2.7 COP
PTHP Non-Standard Size	7kBtuh≥Cap≤15 kBtuh	10.8-(0.213 x Cap) EER
		2.9-(0.026 x Cap) COP
PTHP Non-Standard Size	>15 kBtuh	7.6 EER
		2.5 COP

DEFINITION OF BASELINE EQUIPMENT

TOS: the baseline conditions is the efficiency that meets the Federal Energy Efficiency Standards by size and type.

EREP: the baseline is the existing PTAC or PTHP for the assumed remaining useful life of the unit and the new baseline as defined above for the remainder of the measure life. When the existing model data is not available, the baseline efficiency is the federal standard in effect when installed.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life is assumed to be 15 years. 158

Remaining life of existing equipment is assumed to be 5 years.¹⁵⁹

DEEMED MEASURE COST

TOS: The incremental capital cost for this equipment is estimated to be \$84/ton. 160

EREP: The measure cost is the full cost of removing the existing unit and installing a new one. The actual program cost should be used. If unknown assume \$1,047 per ton. 161

The assumed deferred cost (after 5 years) of replacing existing equipment with new baseline unit is assumed to be \$1,039 per ton. 162 This cost should be discounted to present value using the utilities' discount rate.

LOADSHAPE

Cooling BUS

¹⁵⁸ ASHRAE, Chapter 38: Owning and Operating Costs, Table 4, "Heating, Ventilating and Air Conditioning Applications", (2023 edition) for commercial through-the-wall air conditioners.

¹⁵⁹ Standard assumption of one third of effective useful life.

¹⁶⁰ DEER 2008. This assumes that baseline shifts between IECC versions carries the same incremental costs. Values should be verified during evaluation

¹⁶¹ Based on DCEO – IL PHA Efficient Living Program data.

¹⁶² Based on subtracting TOS incremental cost from the DCEO data and incorporating inflation rate of 1.91%.

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

Electric savings for PTACs and PTHPs should be calculated using the following algorithms

ENERGY SAVINGS

TOS:

 $PTAC \Delta kWh^{163} = \Delta kWh_{cool}$

 $PTHP \Delta kWh = \Delta kWh_{cool} + \Delta kWh_{heat}$

 ΔkWh_{cool} = $kBtu/hr_{cool} \times (1/EER_{base} - 1/EER_{ee}) \times EFLH_{cool}$

 $\Delta kWh_{heat} = kBtu/hr_{heat}/3.412 \times (1/COP_{base} - 1/COP_{ee}) \times EFLH_{heat}$

EREP:

 Δ kWh for remaining life of existing unit (1st 5years)

 ΔkWh = $\Delta kWh_{cool} + \Delta kWh_{heat}$

 ΔkWh_{cool} = $kBtu/hr_{cool} \times (1/EER_{exist} - 1/EER_{ee}) \times EFLH_{cool}$

 $\Delta kWh_{heat} = kBtu/hr_{heat}/3.412 \times (1/COP_{exist} - 1/COP_{ee}) \times EFLH_{heat}$

ΔkWh for remaining measure life (next 10 years)

 $\Delta kWh = \Delta kWh_{cool} + \Delta kWh_{heat}$

 ΔkWh_{cool} = $kBtu/hr_{cool} \times (1/EER_{base} - 1/EER_{ee}) \times EFLH_{cool}$

 $\Delta kWh_{heat} = kBtu/hr_{heat}/3.412 \times (1/COP_{base} - 1/COP_{ee}) \times EFLH_{heat}$

Where:

kBtu/hr_{cool} = Capacity of the cooling equipment in kBtu per hour (1 ton of cooling

capacity equals 12 kBtu/hr).

= Actual installed

EFLH_{cool} = Equivalent Full Load Hours for cooling are provided in Table 1

HVAC End Use

EFLH_{heat} = Equivalent Full Load Hours for heating are provided in Table 1

HVAC End Use

EER_{exist} = Energy Efficiency Ratio of the existing equipment, actual.

= If unknown, determine by federal efficiency standard in effect when manufactured. The baseline efficiency for a standard size, 1 ton unit is

listed in the following table.

¹⁶³ There are no heating efficiency improvements for PTACs since although some do provide heating, it is always through electric resistance and therefore the COPbase and COPee would be 1.0.

Manufactured Date	1/1/2017 - Current	1/8/2012- 12/31/2016	Prior to 1/8/2012
PTAC	10.4 EER	10.2 EER	8.1 EER
PTHP	10.4 EER	10.4 EER	8.1 EER

EER_{base}

= Energy Efficiency Ratio of the baseline equipment.

= Equal to Federal Energy Efficiency Standard.

EERee

= Energy Efficiency Ratio of the energy efficient equipment. For air-cooled units < 65 kBtu/hr, if the actual EERee is unknown, assume the following conversion from SEER to EER for calculation of peak

savings: 164 EER = $(-0.02 \text{ x SEER}^2) + (1.12 \text{ x SEER})$

= Actual installed

kBtu/hr_{heat} = Capacity of the heating equipment in kBtu per hour.

= Actual installed

3.412 = Btu per Wh.

 $COP_{exist} = C$

= Coefficient of performance of the existing equipment, actual.

= If unknown, determine by federal efficiency standard in effect when manufactured. The baseline efficiency for a standard size, 1 ton unit is

listed in the following table.

Manufactured Date	1/1/2017 - Current	1/8/2012- 12/31/2016	Prior to 1/8/2012
PTAC	1.0 COP	1.0 COP	1.0 COP
PTHP	3.1 COP	3.1 COP	2.6 COP

COPbase

= Coefficient of performance of the baseline equipment; equal to

Federal Energy Efficiency Standard.

 COP_{ee}

= Coefficient of performance of the energy efficient equipment.

= Actual installed

SUMMER COINCIDENT PEAK DEMAND SAVINGS

TOS:

 $\Delta kW = \Delta kWH_{cool} x CF$

EREP:

 ΔkW for remaining life of existing unit (1st 5years)

 $\Delta kW = \Delta kW$ (1st 5 years) $x \ CF$

ΔkW for remaining measure life (next 10 years)

 $\Delta kW = \Delta kW$ (next 10 years) x CF

¹⁶⁴ Based on Wassmer, M. (2003). A Component-Based Model for Residential Air Conditioner and Heat Pump Energy Calculations. Masters Thesis, University of Colorado at Boulder. Note this is appropriate for single speed units only.

Where:

 ΔkWH_{cool} = Annual cooling electricity savings, as calculated above

CF = Summer peak coincidence demand (kW) to annual energy (kWh)

factor for cooling = 0.0009106840

NATURAL GAS ENERGY SAVINGS

N/A

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE:

2.5.7 Single-Package and Split System Unitary Air Conditioner

DESCRIPTION

This measure promotes the installation of high-efficiency unitary air-, water-, and evaporatively cooled air conditioning equipment, both single-package and split systems. Air conditioning (AC) systems are a major consumer of electricity and systems that exceed baseline efficiencies can save considerable amounts of energy. This measure could apply to the replacement of an existing unit at the end of its useful life or the installation of a new unit in a new or existing building.

This measure was developed to be applicable to the following program types: TOS and NC. If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

In order for this characterization to apply, the efficient equipment is assumed to be a high-efficiency air-, water-, or evaporatively cooled air conditioner that exceeds Federal Energy Efficiency Standards.

Federal Energy Efficiency Standards (effective January 2023)¹⁶⁵ for cooling capacity up to 760 kBTUh, and the IECC Commercial Energy Efficiency 2018 standard for capacity of 760 kBTUh and above.

Heat Rejection	Capacity, kBTUh	Туре	Electric resistance or No heat	All other heat
	< 65	Packaged,Split	13.4 SI	EER2
	≥65 and <135	Packaged	14.8 IEER	14.6 IEER
Air Source	≥135 and <240	Packaged	14.2 IEER	14.0 IEER
	≥240 and <760	Packaged	13.2 IEER	13.0 IEER
	>=760	Packaged	11.2 IEER	11.0 IEER
	< 65	Packaged,Split	12.1 1	EER
	≥65 and <135	Packaged	12.1 EER	11.9 EER
Water Source	≥135 and <240	Packaged	12.5 EER	12.3 EER
	≥240 and <760	Packaged	12.4 EER	12.2 EER
	>=760	Packaged	12.2 EER	12.0 EER

2025 MEEIA 4 Plan Revision 7.0 Page 107

¹⁶⁵ DOE|Title10,Part 431|https://www.ecfr.gov/current/title-10/chapter-II/subchapter-D/part-431.

DEFINITION OF BASELINE EQUIPMENT

TOS, New Construction: In order for this characterization to apply, the baseline equipment is assumed to be a standard-efficiency air-, water, or evaporatively cooled air conditioner that meets the Federal Energy Efficiency Standards.

Retrofit, Early Replacement: For this characterization to apply, the existing equipment is working with a remaining useful life. The efficiency is the actual if known, else the standard efficiency when manufactured. After, remaining useful life period, the baseline is the Time of Sale baseline meeting the Federal Energy Efficiency Standards.

The rating conditions for the baseline and efficient equipment efficiencies must be equivalent.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life is assumed to be 15 years. 166

DEEMED MEASURE COST

For analysis purposes, the incremental capital cost for this measure is assumed to be \$104 per ton per SEER or IEER unit increase over the base case efficiency for air-cooled units.¹⁶⁷

The incremental cost for all other equipment types should be determined on a site-specific basis.

For a 144,000 BTUh, 16.2 IEER air source packaged air conditoner without heat, the incremental cost is:

12 tons x (16.2 IEER – 14.2 IEER) x \$104 = \$2,496

LOADSHAPE

Cooling BUS

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

For units with cooling capacities less than 65 kBtu/hr:

 $\Delta kWH = kBtu/hr \times (1/SEER2_{base} - 1/SEER2_{ee}) \times EFLH$

For units with cooling capacities equal to or greater than 65 kBtu/hr:

 $\Delta kWH = kBtu/hr \times (1/IEER_{base} - 1/IEER_{ee}) \times EFLH$

2025 MEEIA 4 Plan

¹⁶⁶ ASHRAE, Chapter 38: Owning and Operating Costs, Table 4, "Heating, Ventilating and Air Conditioning Applications", (2023 edition) for commercial roof top air conditioners, single zone or multi zone.

¹⁶⁷ AESC Inc, ASK Energy Inc, SDGE, "Industry Standard Practice Study of Commercial Unitary Air Conditioning and Heat Pumps Systems", page 36 (September 2021) https://www.caetrm.com/media/reference-documents/Unitary HVAC ISP Report Final.pdf.

Where:

kBtu/hr = Capacity of the cooling equipment actually installed in kBtu per hour (1 ton of cooling capacity equals 12 kBtu/hr)

 $SEER2_{base}$ = Seasonal Energy Efficiency Ratio of the baseline equipment

= SEER values from tables below, based on the applicable IECC.

= For units with cooling capacity <65kbtu/hr and efficient unit is measured in terms of SEER2, convert SEER_{base} to SEER2_{base}. ¹⁶⁸.

SEER2_{ee} = Seasonal Energy Efficiency Ratio of the energy efficient equipment (actually installed)

IEER_{base} = Integrated Energy Efficiency Ratio of the baseline equipment = IEER values from tables below, based on the applicable IECC.

IEER_{ee} = Integrated Energy Efficiency Ratio of the energy efficient equipment (actually installed.)

EFLH = Equivalent Full Load Hours for cooling are provided in Table 1 HVAC End Use

2025 MEEIA 4 Plan Revision 7.0 Page 109

¹⁶⁸ SEER to SEER2 conversion factor: SEER2 = SEER x 96%. Conversion factor for SEER to SEER2 is used when converting an existing system that is rated in SEER to SEER2. This is to meet the DOE M1 CFR Standard beginning January 1, 2023. The efficiency levels of the existing, baseline, and efficient case must be expressed in the same metrics (e.g., both SEER or SEER2) before applying formulas.

2015 IECC Minimum Efficiency Requirements

TABLE C403.2.3(1)
MINIMUM EFFICIENCY REQUIREMENTS:
ELECTRICALLY OPERATED UNITARY AIR CONDITIONERS AND CONDENSING UNITS

EQUIPMENT TYPE	SIZE CATEGORY HEATING SECTION TYPE		SUBCATEGORY OR			
EQUIPMENT THE		SECTION TYPE	RATING CONDITION	Before 1/1/2016	As of 1/1/2016	PROCEDURE
Air conditioners.	< 65,000 Btu/h ^b	All	Split System	13.0 SEER.	13.0 SEER	
air cooled	< 65,000 BRIVE All	All	Single Package	13.0 SEER	14.0 SEER®	AHRI
Through-the-wall	≤ 30,000 Btu/h ^b	4.0	Split system	12.0 SEER	12.0 SEER	
(air cooled)	≥ 30,000 Btt/h	All	Single Package	12.0 SEER	12.0 SEER	210/240
Small-duct high-velocity (air cooled)	< 65,000 Btu/h ^b	All	Split System	11.0 SEER	11.0 SEER	1
	≥ 65,000 Btu/h	Electric Resistance (or None)	Split System and Single Package	11.2 EER 11.4 IEER	11.2 EER 12.8 IEER	
	< 135,000 Btu/h	All other	Split System and Single Package	11.0 EER 11.2 IEER	11.0 EER 12.6 IEER	1
	≥ 135,000 Btu/h	Electric Resistance (or None)	Split System and Single Package	11.0 EER 11.2 IEER	11.0 EER 12.4 IEER	1
Air conditioners,	< 240,000 Btu/h	All other	Split System and Single Package	10.8 EER 11.0 IEER	10.8 EER 12.2 IEER	AHRI
air cooled	≥ 240,000 Btu/h and	Electric Resistance (or None)	Split System and Single Package	10.0 EER 10.1 IEER	10.0 EER 11.6 EER	340/360
	< 760,000 Btu/h	All other	Split System and Single Package	9.8 EER 9.9 IEER	9.8 EER 11.4 IEER	<u> </u>
	≥ 760,000 Btu/h	Electric Resistance (or None)	Split System and Single Package	9.7 EER 9.8 IEER	9.7 EER 11.2 IEER	
		All other	Split System and Single Package	9.5 EER 9.6 IEER	9.5 EER 11.0 IEER	1
	< 65,000 Btu/h ^b	All	Split System and Single Package	12.1 EER 12.3 IEER	12.1 EER 12.3 IEER	AHRI 210/240
	≥ 65,000 Btu/h	Electric Resistance (or None)	Split System and Single Package	12.1 EER 12.3 IEER	12.1 EER 13.9 IEER	
	< 135,000 Btu/h	All other	Split System and Single Package	11.9 EER 12.1 IEER	11.9 EER 13.7 IEER	1
	≥ 135,000 Btu/h	Electric Resistance (or None)	Split System and Single Package	12.5 EER 12.5 IEER	12.5 EER 13.9 IEER	1
Air conditioners, water cooled	< 240,000 Btu/h	All other	Split System and Single Package	12.3 EER 12.5 IEER	12.3 EER 13.7 IEER	AHRI
	≥ 240,000 Btu/h	Electric Resistance (or None)	Split System and Single Package	12.4 EER 12.6 IEER	12.4 EER 13.6 IEER	340/360
	< 760,000 Btu/h	All other	Split System and Single Package	12.2 EER 12.4 IEER	12.2 EER 13.4 IEER	
	740 000 P. 1	Electric Resistance (or None)	Split System and Single Package	12.2 EER 12.4 IEER	12.2 EER 13.5 IEER	†
	≥ 760,000 Btu/h	All other	Split System and Single Package	12.0 EER 12.2 IEER	12.0 EER 13.3 IEER	1

(continued)

TABLE C403.2.3(1)—continued MINIMUM EFFICIENCY REQUIREMENTS: ELECTRICALLY OPERATED UNITARY AIR CONDITIONERS AND CONDENSING UNITS

EQUIPMENT TYPE	SIZE CATEGORY	TEGORY HEATING SECTION TYPE	SUB-CATEGORY OR	MINIMUM E	FFICIENCY	TEST PROCEDURE*
EGUIPMENT TIPE SIZE CATE	SIZE CATEGORY		RATING CONDITION	Before 1/1/2016	As of 1/1/2016	
< 65,00	< 65,000 Btu/h ^b	All	Split System and Single Package	12.1 EER 12.3 IEER	12.1 EER 12.3 IEER	AHRI 210/240
	≥ 65,000 Btu/h	Electric Resistance (or None)	Split System and Single Package	12.1 EER 12.3 IEER	12.1 EER 12.3 IEER	
	< 135,000 Btu/h	All other	Split System and Single Package	11.9 EER 12.1 IEER	11.9 EER 12.1 IEER	1
	≥ 135,000 Btu/h	Electric Resistance (or None)	Split System and Single Package	12.0 EER 12.2 IEER	12.0 EER 12.2 IEER	1
Air conditioners, evaporatively cooled ≥ 240,000 Btu/h ≥ 240,000 Btu/h ≥ 760,000 Btu/h		All other	Split System and Single Package	11.8 EER 12.0 IEER	11.8 EER 12.0 IEER	AHRI
		Electric Resistance (or None)	Split System and Single Package	11.9 EER 12.1 IEER	11.9 EER 12.1 IEER	340/360
		All other	Split System and Single Package	11.7 EER 11.9 IEER	11.7 EER 11.9 IEER	1
	> 760 000 Pm A	Electric Resistance (or None)	Split System and Single Package	11.7 EER 11.9 IEER	11.7 EER 11.9 IEER	1
	All other	Split System and Single Package	11.5 EER 11.7 IEER	11.5 EER 11.7 IEER		
Condensing units, air cooled	≥ 135,000 Btu/h			10.5 EER 11.8 IEER	10.5 EER 11.8 IEER	
Condensing units, water cooled	≥ 135,000 Btu/h			13.5 EER 14.0 IEER		AHRI 365
Condensing units, evaporatively cooled	≥ 135,000 Btu/h			13.5 EER 14.0 IEER	13.5 EER 14.0 IEER	

SUMMER COINCIDENT PEAK DEMAND SAVINGS

 $\Delta kW = \Delta kWH x CF$

Where:

 Δ kWH = Annual electricity savings, as calculated above

CF = Summer peak coincidence demand (kW) to annual energy (kWh) factor

for Cooling

 $= 0.0009106840^{169}$

NATURAL GAS ENERGY SAVINGS

N/A

WATER IMPACT DESCRIPTIONS AND CALCULATION

DEEMED O&M COST ADJUSTMENT CALCULATION

For SI: 1 British thermal unit per hour = 0.2931 W.

a. Chapter 6 contains a complete specification of the referenced test procedure, including the reference year version of the test procedure.

b. Single-phase, air-cooled air conditioners less than 65,000 Btu/h are regulated by NAECA. SEER values are those set by NAECA.

c. Minimum efficiency as of January 1, 2015.

¹⁶⁹ Ameren Missouri TRM Volume 1 - Appendix G: "Table 2 - Commercial and Industrial End Use Category Monthly Shapes and Coincident Peak Factors."

N/A

MEASURE CODE:

2.5.8 High Volume Low Speed Fans

DESCRIPTION

The measure applies to 16-24 foot diameter horizontally mounted ceiling high volume low speed (HVLS) fans that are replacing multiple non HVLS fans that have reached the end of useful life.

This measure was developed to be applicable to the following program types: TOS and RF/ If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

In order for this characterization to apply, the efficient equipment is assumed to be classified as HVLS and have a VFD.¹⁷⁰

DEFINITION OF BASELINE EQUIPMENT

In order for this characterization to apply, the baseline condition is assumed to be multiple non HVLS existing fans that have reached the end of useful life.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life is assumed to be 10 years. ¹⁷¹

DEEMED MEASURE COST

The incremental capital cost for the fans are as follows:

Fan Diameter Size (feet)	Incremental Cost ¹⁷²
16	\$4,072
18	\$4,110
20	\$4150
22	\$4180
24	\$4225

LOADSHAPE HVAC BUS

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

The annual electric savings from this measure are deemed values depending on fan size and apply to all building types:

¹⁷⁰ "Illinois Statewide Technical Reference Manual for Energy Efficiency Version 8.0, Volume 2: Commercial and Industrial Measures," Section 4.1.2, High Volume Low Speed Fans.

¹⁷¹ Michigan Energy Measures DatabaseMichigan Energy Measures Database | 2024 MEMD Master Database | High Volume Low Speed Fans | https://www.michigan.gov/mpsc/regulatory/ewr/michigan-energy-measures-database (See "Commercial" tab rows 426:431).

Michigan Energy Measures Database | 2024 MEMD Master Database | High Volume Low Speed Fans | https://www.michigan.gov/mpsc/regulatory/ewr/michigan-energy-measures-database (See "Commercial" tab rows 426:431).

Fan Diameter Size (feet)	Energy Savings (kWh) ¹⁷³
16	3,218
18	4,938
20	6,577
22	8,543
24	10,018

SUMMER COINCIDENT PEAK DEMAND SAVINGS

 $\Delta kW = \Delta kWh x CF$

Where:

 ΔkWh = Electric energy savings, as calculated above

CF = Summer peak coincidence demand (kW) to annual energy (kWh) factor

 $= 0.000443983^{174}$

NATURAL GAS ENERGY SAVINGS

N/A

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE:

Michigan Energy Measures Database | 2024 MEMD Master Database | High Volume Low Speed Fans.
 https://www.michigan.gov/mpsc/regulatory/ewr/michigan-energy-measures-database (See "Commercial" tab cells M861:M865)
 Ameren Missouri TRM Volume 1 - Appendix G: "Table 2 - Commercial and Industrial End Use Category Monthly Shapes and Coincident Peak Factors."

2.5.9 Chiller Tune Up

DESCRIPTION

This measure is the tune-up of an existing air-cooled or water-cooled electric chiller. The tune-up consists of tube cleaning, chilled and condenser water temperature adjustments, and reciprocating compressor unloading switch adjustments.

DEFINITION OF EFFICIENT EQUIPMENT

The efficient condition is an existing chiller post tune-up.

DEFINITION OF BASELINE EQUIPMENT

The baseline condition is an existing chiller prior to receiving the tune-up.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected lifetime of the measure is 5 years.

DEEMED MEASURE COST

The incremental cost for this measure varies. Use actual cost.

DEEMED O&M COST ADJUSTMENTS

There are no expected O&M cost adjustments for this measure.

BASELINE EFFICIENCY VALUES BY CHILLER TYPE AND CAPACITY

Refer to 2012 IECC Minimum Efficiency Requirements in Reference Tables section of this measure.

LOADSHAPE

Cooling BUS

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS¹⁷⁵

 $\Delta kWh = TONS * IPLV_{Base} x EFLH x ESF$

Where:

TONS = Chiller nominal cooling capacity in tons (= actual; 1 ton = 12,000 Btu/hr)

IPLV_{BASE} = Efficiency of baseline equipment expressed as Integrated Part Load Value (kW/ton). Chiller units are dependent on chiller type. See 'Chiller Units,

Conversion Values' and 'Baseline Efficiency Values by Chiller Type' and Capacity in the Reference Tables section within this measure section.

EFLH = Equivalent full load hours (= dependent on location and building type,

see table 2.5 in Appendix H)

¹⁷⁵ New York TRM, Savings factor 5%, page 838 "Tune Up Chiller System." https://dps.ny.gov/system/files/documents/2023/12/nys-trm-v11 filing.pdf

ESF = Energy savings factor
$$(= 0.05)$$

For example, energy savings for the tune-up of a 350-ton chiller with an IPLV of .540 kW/Ton serving a Medium Office in St Louis is calculated as:

$$\Delta kWh = TONS * IPLVBASE * EFLH * ESF = 350 * .540 * 1386 * 0.05 = 13,098 kWh$$

SUMMER COINCIDENT PEAK DEMAND SAVINGS

$$\Delta kW = \Delta kWh x CF$$

Where:

 ΔkWh = Electric energy savings, as calculated above

CF = Summer peak coincidence demand (kW) to annual energy (kWh) factor

 $=0.0009106840^{176}$

For example, demand reduction for the tune-up of the above chiller resulting in 20,956 kWh of energy savings is calculated as:

$$\Delta kW = 20,956 \text{ kWh x } 0.0009106840 = 19.08 \text{ kW}$$

NATURAL GAS ENERGY SAVINGS

N/A

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

REFERENCE TABLES

Chillers Ratings - Chillers are rated with different units based on equipment type as shown below

Equipment Type	Unit
Air cooled, electrically operated	EER
Water cooled, electrically operated, positive displacement (reciprocating)	kW/ton
Water cooled, electrically operated, positive displacement (rotary screw and scroll)	kW/ton

In order to convert chiller equipment ratings to IPLV the following relationships are provided:

$$kW/ton$$
 = 12 / EER

2025 MEEIA 4 Plan Revision 7.0 Page 116

¹⁷⁶ Ameren Missouri TRM Volume 1 - Appendix G: "Table 2 - Commercial and Industrial End Use Category Monthly Shapes and Coincident Peak Factors."

kW/ton	$= 12 / (COP \times 3.412)$
COP	= EER / 3.412
COP	= 12 / (kW/ton) / 3.412

EER = 12 / kW/tonEER = COP x 3.412

2012 IECC Baseline Efficiency Values by Chiller Type and Capacity¹⁷⁷

2025 MEEIA 4 Plan Revision 7.0 Page 117

¹⁷⁷ Note: Efficiency requirements depend on the path (Path A or Path B) that the building owner has chosen to meet compliance requirements. For air cooled and absorption chillers, Path A should be assumed. For water cooled chillers, the building owner should be consulted, and the relevant path used for calculations. When unknown, Path A should be used.

TABLE C403.2.3(7) MINIMUM EFFICIENCY REQUIREMENTS: WATER CHILLING PACKAGES^a

EQUIPMENT TYPE	SIZE CATEGORY	UNITS	BEFORE 1/1/2010		AS OF 1/1/2010 ^b					
					PATH A		PATH B		1	
			FULL	IPLV	FULL	IPLV	FULL	IPLV	TEST PROCEDURE	
Air-cooled chillers	< 150 tons	EER	≥ 9.562	≥10.4 16	≥ 9.562	≥ 12.500	NA	NA		
	≥ 150 tons	EER			≥ 9.562	≥ 12.750	NA	NA		
Air cooled without condenser, electrical operated	All capacities	EER	≥ 10.586	≥ 11.782	Air-coole ers shall densers a chiller ef					
Water cooled, electrically operated, reciprocating	All capacities	kW/ton	≤ 0.837	≤ 0.696	Reciproci water coo efficiency					
Water cooled, electrically operated, post- tive displacement	< 75 tons	kW/ton			≤ 0.780	≤ 0.630	≤ 0.800	≤ 0.600	AHRI 550/590	
	≥ 75 tons and < 150 tons	kW/ton	≤ 0.790	≤ 0.676	≤ 0.775	≤ 0.615	≤ 0.790	≤ 0.586		
	≥ 150 tons and < 300 tons	kW/ton	≤ 0.717	≤ 0.627	≤ 0.680	≤ 0.580	≤ 0.718	≤ 0.540		
	≥ 300 tons	kW/ton	≤ 0.639	≤ 0.571	≤ 0.620	≤ 0.540	≤ 0.639	≤ 0.490		
Water cooled, electrically operated, centrifugal	< 150 tons	kW/ton	≤ 0.703	≤ 0.669	≤ 0.634 ≤ 0		0.596 ≤ 0.639	≤ 0.450		
	≥ 150 tons and < 300 tons	kW/ton	≤ 0.634	≤ 0.596		≤ 0.596				
	≥ 300 tons and < 600 tons	kW/ton	≤ 0.576	≤ 0.549	≤ 0.576	≤ 0.549	≤ 0.600	≤ 0.400		
	≥ 600 tons	kW/ton	≤ 0.576	≤ 0.549	≤ 0.570	≤ 0.539	≤ 0.590	≤ 0.400		
Air cooled, absorption single effect	All capacities	COP	≥ 0.600	NR	≥0.600	NR	NA	NA	AHRI 560	
Water cooled, absorption single effect	All capacities	COP	≥ 0.700	NR	≥0.700	NR	NA	NA		
Absorption double effect, indirect fired	All capacities	COP	≥ 1.000	≥ 1.050	≥ 1.000	≥ 1.050	NA	NA		
Absorption double effect, direct fired	All capacities	COP	≥ 1.000	≥ 1.000	≥ 1.000	≥ 1.000	NA	NA		

For SI: 1 ton = 3517 W, 1 British thermal unit per hour = 0.2931 W, °C = [(°F) - 32]/1.8.

NA = Not applicable, not to be used for compliance; NR = No requirement.

a. The centrifugal chiller equipment requirements, after adjustment in accordance with Section C403.2.3.1 or Section C403.2.3.2, do not apply to chillers used in low-temperature applications where the design leaving fluid temperature is less than 36°F. The requirements do not apply to positive displacement chillers with leaving fluid temperatures less than or equal to 32°F. The requirements do not apply to absorption chillers with design leaving fluid temperatures less than 40°F.

b. Compliance with this standard can be obtained by meeting the minimum requirements of Path A or B. However, both the full load and IPLV shall be met to fulfill the requirements of Path A or B.

c. Chapter 6 of the referenced standard contains a complete specification of the referenced test procedure, including the referenced year version of the test procedure.

2015 IECC Baseline Efficiency Values by Chiller Type and Capacity

TABLE C403.2.3(7)
WATER CHILLING PACKAGES - EFFICIENCY REQUIREMENTS^{A, b, d}

FOUNDATION TO THE	NITE OATEOORY	UNITS	BEFORE	1/1/2015	AS OF	TEST	
EQUIPMENT TYPE	SIZE CATEGORY	UNITS	Path A	Path B	Path A	Path B	PROCEDURE
Air-cooled chillers	< 150 Tons	EER (Btu/W)	≥ 9.562 FL	NA°	≥ 10.100 FL	≥ 9.700 FL	•
			≥ 12.500 IPLV		≥ 13.700 IPLV	≥ 15,800 IPLV	
	≥ 150 Tons		≥ 9.562 FL	NA°	≥ 10.100 FL	≥9.700 FL	
			≥ 12.500 IPLV		≥ 14.000 IPLV	≥ 16.100 IPLV	
Air cooled without condenser, electrically operated	All capacities	EER (Btu/W)	Air-cooled o matching con				
Water cooled, electrically	< 75 Tons	kW/ton	≤ 0.780 FL	≤0.800 FL	≤ 0.750 FL	≤ 0.780 FL	AHRI 550/ 590
			≤ 0.630 IPLV	≤ 0.600 IPLV	≤ 0.600 IPLV	≤ 0.500 IPLV	
	≥ 75 tons and < 150 tons		≤ 0.775 FL	≤ 0.790 FL	≤ 0.720 FL	≤ 0.750 FL	
	2 /3 tons and < 150 tons		≤0.615 IPLV	≤ 0.586 IPLV	≤ 0.560 IPLV	≤ 0.490 IPLV	
	≥ 150 tons and < 300 tons		≤ 0.680 FL	≤0.718 FL	≤ 0.660 FL	≤0.680 FL	
operated positive displacement			≤ 0.580 IPLV	≤ 0.540 IPLV	≤ 0.540 IPLV	≤ 0.440 IPLV	
	≥ 300 tons and < 600 tons		≤ 0.620 FL	≤0.639 FL	≤0.610 FL	≤ 0.625 FL	
			≤ 0.540 IPLV	≤ 0.490 IPLV	≤ 0.520 IPLV	≤ 0.410 IPLV	
	≥ 600 toms		≤ 0.620 FL	≤0.639 FL	≤ 0.560 FL	≤ 0.585 FL	
			≤ 0.540 IPLV	≤ 0.490 IPLV	≤ 0.500 IPLV	≤ 0.380 IPLV	
Water cooled, electrically operated centrifugal	< 150 Tons	kW/ton	≤ 0.634 FL	≤0.639 FL	≤ 0.610 FL	≤ 0.695 FL	
			≤ 0.596 IPLV	≤ 0.450 IPLV	≤ 0.550 IPLV	≤ 0.440 IPLV	
	≥ 150 tons and < 300 tons		≤ 0.634 FL	≤ 0.639 FL	≤0.610 FL	≤ 0.635 FL	
			≤ 0.596 IPLV	≤ 0.450 IPLV	≤ 0.550 IPLV	≤0.400 IPLV	
	≥ 300 tons and < 400 tons		≤ 0.576 FL	≤0.600 FL	≤ 0.560 FL	≤ 0.595 FL	
			≤0.549 IPLV	≤ 0.400 IPLV	≤ 0.520 IPLV	≤ 0.390 IPLV	
	` 1		≤ 0.576 FL	≤0.600 FL	≤ 0.560 FL	≤ 0.585 FL	
	≥ 400 tons and < 600 tons		≤ 0.549 IPLV	≤ 0.400 IPLV	≤ 0.500 IPLV	≤ 0.380 IPLV	
	≥ 600 Tons		≤ 0.570 FL	≤0.590 FL	≤ 0.560 FL	≤0.585 FL	
			≤ 0.539 IPLV	≤ 0.400 IPLV	≤ 0.500 IPLV	≤ 0.380 IPLV	
Air cooled, absorption, single effect	All capacities	COP	≥ 0.600 FL	NA°	≥ 0.600 FL	NA°	AHRI 560
Water cooled absorption, single effect	All capacities	COP	≥ 0.700 FL	NA°	≥ 0.700 FL	NA°	
Absorption, double effect, indirect fired	All capacities	COP	≥ 1.000 FL ≥ 1.050 IPLV	NA°	≥ 1.000 FL ≥ 1.050 IPLV	NA°	
Absorption double effect direct fired	All capacities	COP	≥ 1.000 FL ≥ 1.000 IPLV	NA ^c	≥ 1.000 FL ≥ 1.050 IPLV	NA°	

a. The requirements for centrifugal chiller shall be adjusted for nonstandard rating conditions in accordance with Section C403.2.3.1 and are only applicable for
the range of conditions listed in Section C403.2.3.1. The requirements for air-cooled, water-cooled positive displacement and absorption chillers are at
standard rating conditions defined in the reference test procedure.
 b. Both the full-load and IPLV requirements shall be met or exceeded to comply with this standard. Where there is a Path B, compliance can be with either Path

A or Path B for any application.

NA means the requirements are not applicable for Path B and only Path A can be used for compliance.
 FL represents the full-load performance requirements and IPLV the part-load performance requirements.

2018 IECC Baseline Efficiency Values by Chiller Type and Capacity

TABLE C403.3.2(7) WATER CHILLING PACKAGES — EFFICIENCY REQUIREMENT Sa, b, d

EQUIPMENT TYPE	SIZE CATEGORY	UNITS	BEFORE	BEFORE 1/1/2015 A S OF 1/1/2015		1/1/2015	TEST
EQUIPMENT TIPE	SIZE CATEGORY	UNITS	Path A	Path B	Path A	Path B	PROCEDURE®
	< 150 Tons		≥ 9.582 FL	NAG	≥ 10.100 FL	≥ 9.700 FL	
Air-cooled chillers	< 100 Ions	EER	≥ 12.500 IPLV	NA"	≥ 13.700 IPLV	≥ 15,800 IPLV	
	≥ 150 Tons	(Btu/W)	≥ 9.582 FL	NAc	≥ 10.100 FL	≥ 9.700 FL	
	2 100 Ions		≥ 12.500 IPLV	NA*	≥ 14.000 IPLV	≥ 16.100 IPLV	
Air cooled		EER	Air-cooled	chillers without	condenser shall b	e rated with	
without condenser, electrically operated	All capacities	(Btu/W)	matching cor		omplying with air- equirements.	cooled chiller	
			≤ 0.780 FL	≤ 0.800 FL	≤ 0.750 FL	≤ 0.780 FL	
	< 75 Tons		≤ 0.630 IPLV	≤ 0.600 IPLV	≤ 0.600 IPLV	≤ 0.500 IPLV	
			≤ 0.775 FL	≤ 0.790 FL	≤ 0.720 FL	≤ 0.750 FL	
	≥ 75 tons and < 150 tons		≤ 0.615 IPLV	≤ 0.586 IPLV	≤ 0.580 IPLV	≤ 0.490 IPLV	
Water cooled, electrically			≥ 0.680 FL	≥ 0.718 FL	≥ 0.660 FL	≥ 0.680 FL	
operated positive displacement	≥ 150 tons and < 300 tons	kW/ton	≥ 0.580 IPLV	≥ 0.540 IPLV	≥ 0.540 IPLV	≥ 0.440 IPLV	
aspacement	≥ 300 tons and < 600 tons		≤ 0.620 FL	≤ 0.639 FL	≤ 0.610 FL	≤ 0.625 FL	AHRI 550/590
	2 300 tons and < 000 tons		≤ 0.540 IPLV	≤ 0.490 IPLV	≤ 0.520 IPLV	≤ 0.410 IPLV	74111 000.000
	≥ 600 tons		≤ 0.620 FL	≤ 0.639 FL	≤ 0.580 FL	≤ 0.585 FL	
			≤ 0.540 IPLV	≤ 0.490 IPLV	≤ 0.500 IPLV	≤ 0.380 IPLV	
	< 150 Tons		≤ 0.634 FL	≤ 0.639 FL	≤ 0.610 FL	≤ 0.695 FL	
			≤ 0.596 IPLV	≤ 0.450 IPLV	≤ 0.550 IPLV	≤ 0.440 IPLV	
	> 450 4 < 200 4	1	≤ 0.634 FL	≤ 0.639 FL	≤ 0.610 FL	≤ 0.635 FL	
	≥ 150 tons and < 300 tons		≤ 0.596 IPLV	≤ 0.450 IPLV	≤ 0.550 IPLV	≤ 0.400 IPLV	
Water cooled, electrically	≥ 300 tons and < 400 tons	kW/ton	≤ 0.576 FL	≤ 0.600 FL	≤ 0.560 FL	≤ 0.595 FL	
operated centrifugal	2 300 tons and < 400 tons	KVV/ton	≤ 0.549 IPLV	≤ 0.400 IPLV	≤ 0.520 IPLV	≤ 0.390 IPLV	
	≥ 400 tons and < 600 tons	1	≤ 0.578 FL	≤ 0.600 FL	≤ 0.580 FL	≤ 0.585 FL	
	2 400 tons and < 000 tons		≤ 0.549 IPLV	≤ 0.400 IPLV	≤ 0.500 IPLV	≤ 0.380 IPLV	
	≥ 600 Tons	1	≤ 0.570 FL	≤ 0.590 FL	≤ 0.580 FL	≤ 0.585 FL	
	2 000 Tons		≤ 0.539 IPLV	≤ 0.400 IPLV	≤ 0.500 IPLV	≤ 0.380 IPLV	
Air cooled, absorption, single effect	All capacities	COP	≥ 0.600 FL	NAc	≥ 0.600 FL	NAª	
Water cooled absorption, single effect	All capacities	COP	≥ 0.700 FL	NAª	≥ 0.700 FL	NAª	
Absorption, double	All	COR	≥ 1.000 FL	NAc	≥ 1.000 FL	NAc	AHRI 560
effect, indirect fired	All capacities	COP	≥ 1.050 IPLV	NA"	≥ 1.050 IPLV	NA ^c	
Absorption double effect	All capacities	COP	≥ 1.000 FL	NAc	≥ 1.000 FL	NAc	
direct fired							

a. The requirements for centrifugal chiller shall be adjusted for nonstandard rating conditions in accordance with Section C403.3.2.1 and are only applicable for the range of conditions listed in Section C403.3.2.1. The requirements for air-cooled, water-cooled positive displacement and absorption chillers are at standard rating conditions defined in the reference test procedure.

MEASURE CODE:

b. Both the full-load and IPLV requirements shall be met or exceeded to comply with this standard. Where there is a Path B, compliance can be with either Path A or Path B for any application.

c. NA means the requirements are not applicable for Path B and only Path A can be used for compliance.

d. FL represents the full-load performance requirements and IPLV the part-load performance requirements.

2.5.10 Efficient Cooling Towers

DESCRIPTION

This measure characterizes the replacement of cooling towers used for heat rejection with an efficient cooling tower. The measure is applicable to open circuit, closed circuit cooling towers and fluid coolers.

DEFINITION OF EFFICIENT EQUIPMENT

The efficient condition is a replacement cooling tower exceeding the 2021 IECC efficiency for heat rejection equipment, listed in the following table.

Cooling Tower Type	Rating Condition	Minimum Efficiency
Propeller, or axial fan open	95°F entering water	.>40.2 gpm/hp
circuit	85°F leaving water	
	85°F entering WB	
Centrifugal fan open circuit	95°F entering water	.>20.0 gpm/hp
	85°F leaving water	
	85°F entering WB	
Propeller, or axial fan closed	102°F entering water	.>16.1 gpm/hp
circuit	90°F leaving water	
	75°F entering WB	
Centrifugal fan closed circuit	102°F entering water	.>7.0 gpm/hp
	90°F leaving water	
	75°F entering WB	
Propeller, or axial fan dry	115°F entering water .>4.5 gpm/hp	
cooler (fluid cooler)	105°F leaving water	
	95°F entering WB	

DEFINITION OF BASELINE EQUIPMENT

The baseline condition is a cooling tower meeting the 2021 IECC efficiency for heat rejection equipment.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected lifetime of the measure is 20 years¹⁷⁸

DEEMED MEASURE CO

¹⁷⁸ ASHRAE, Chapter 38: Owning and Operating Costs, Table 4, "Heating, Ventilating and Air Conditioning Applications", (2023 edition) for galvanized metal cooling towers.

The incremental cost for this measure varies. Use actual cost.

DEEMED O&M COST ADJUSTMENTS

There are no expected O&M cost adjustments for this measure.

LOADSHAPE

Cooling BUS

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS¹⁷⁹

$$\Delta kWh = Tons \ x \ 3 \ x \left(\frac{1}{(GPM/HP)_{base}} - \frac{1}{(GPM/HP)_{eff}}\right) x \ 0.7457x \ EFLH$$

Where:

TONS = Chiller tons required on design day for HVAC space cooling = Average chillers tons required for process heat rejection 3 = Assumed condenser water gpm/ton, use actual if known

GPM/HP_{base} = 2021 IECC heat rejection efficiency

GPM/HP_{eff} = Installed cooling tower heat rejection efficiency, use weighted values for

multiple cooling towers

0.7457 =kW/hp; convert horsepower to kilowatt

EFLH = Equivalent full load hours (= dependent on location and building type, see table

2.5 in Appendix H)

For example, energy savings for a three chiller plant, 200 Tons, with two required on design day for a medium office building in St Louis, when efficient axial fan open circuit cooling towers (80 gpm/hp) replace the existing towers is calculated as:

$$\Delta kWh = (200x2)Tons\ x\ 3\ x\ \left(\frac{1}{40.2} - \frac{1}{80}\right)\ x\ 0.7457\ x1386\ hours$$

 $\Delta kWh = 15.348 \, kWh$

SUMMER COINCIDENT PEAK DEMAND SAVINGS

$$\Delta kW = \Delta kWh x CF$$

¹⁷⁹ Standard condenser water flow sizing of 3 gpm/ton with flow efficiency of two pumps.

Where:

ΔkWh = Electric energy savings, as calculated above
CF = Summer peak coincidence demand (kW) to annual energy (kWh) factor

 $=0.0009106840^{180}$

For example, demand reduction for the above cooling tower replacement with 15,348 kWh of energy savings is calculated as:

 $\Delta kW = 15,348 \text{ kWh x } 0.0009106840 = 13.98 \text{ kW}$

NATURAL GAS ENERGY SAVINGS

N/A

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

REFERENCE TABLES

¹⁸⁰ Ameren Missouri TRM Volume 1 - Appendix G: "Table 2 - Commercial and Industrial End Use Category Monthly Shapes and Coincident Peak Factors."

2.5.11 Dedicated Outdoor Systems (DOAS)

DESCRIPTION

This measure promotes the installation of high-efficiency dedicated outdoor systems (DOAS) utilizing direct expansion (DX) cooling (DOAS) to precondition the outside air brought into a building for ventilation.

This measure was developed to be applicable to the following program types: TOS, EREP, RF and NC. If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

In order for this characterization to apply, the efficient equipment is assumed to be a high-efficiency dedicated outdoor air system that exceeds Federal Energy Efficiency Standards. The efficiency ratings are assumed to be based on the AHRI920-2020 testing method for ISMRE2 and ISCOP2.

ISMRE2 is the integrated seasonal moisture removal efficiency, pounds of moisture per kilowatthour. ISCOP2 is the integrated seasonal coefficient of performance for heating efficiency. The measure is applicable to DOAS equipment with and without ventilation recovery systems (VERS) with a capacity less than 324 lb of moisture/hour.

Federal Energy Efficiency Standards (effective May 2024) for direct expansion dedicated outdoor air systems. ¹⁸¹

Category	Ventilation Recovery System	Efficiency
Air Conditioning	No	3.8 ISMRE2
Air Conditioning	VERS	5.0 ISMRE2
Air source heat pump	No	3.8 ISMRE2 2.05 ISCOP2
Air source heat pump	VERS	5.0 ISMRE2 3.2 ISCOP2
Water cooled	No	4.7 ISMRE2
Water cooled	VERS	5.1 ISMRE2
Water source heat pump	No	3.8 ISMRE2 2.13 ISCOP2
Water source heat pump	VERS	4.6 ISMRE2 4.04 ISCOP2

DEFINITION OF BASELINE EQUIPMENT

The baseline equipment for all program types is assumed to be a standard-efficiency DOAS, without a ventilation.

The rating conditions for the baseline and efficient equipment efficiencies must be equivalent.

DOE CFR::429,431, Effective May 2024, https://www.federalregister.gov/documents/2022/11/01/2022-23185/energy-conservation-program-energy-conservation-standards-for-direct-expansion-dedicated-outdoor-air.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life is assumed to be 20 years ¹⁸²

DEEMED MEASURE COST

For analysis purposes, the incremental equipment cost¹⁸³ for this measure is assumed to \$2.00 per CFM for DOAS without VERS, and \$4.6 per CFM for DOAS with VERS.

LOADSHAPE

Cooling BUS

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

$$\Delta kWh = \Delta kWh_{dehumidification,cooling} + \Delta kWh_{heating}$$

For dehumidification energy savings or dehumidification with cooling:

$$\Delta kWh = MRC x (1/ISMRE2_{base} - 1/ISMRE2_{EE}) x EFLH_{DOAS}$$

For units with heat pump heating:

 $\Delta kWh = KBTU/hr \times (1/(ISCOP_{base} \times 3.412) - 1/(ISCOP_{EE} \times 3.412) \times EFLH_{DOAS}$

Where:

MRC = Moisture removal capacity, lb/hour

=AHRI rating or manufacturer specification if installed system

ISMRE2_{base} = Integrated seasonal moisture removal efficiency of the baseline equipment

=Federal code compliant system of same category, capacity without VERS

ISMRE2_{EE} = Integrated seasonal moisture removal efficiency of the efficient equipment

=Actual

EFLH_{DOAS} = Effective full load hours for dehumidification or dehumidify with cooling

= Actual, or from table below by city, and operating schedule

kBTU/hr =Heat pump heating capacity at 47F

=Actual installed

ISCOP2_{base} = Integrated seasonal coefficient of performance of the baseline equipment

REDCAR Analytics, Page 32 DOAS lifetime, "Economic Analysis of Heat Recovery Equipment in Commercial Dedicated Outside Air Systems" (2019), https://betterbricks.com/uploads/resources/NEEA-DOAS-Analysis-Report Red-Car Final.pdf.
 REDCAR Analytics, Page 19 cost per CFM for mid tier and high tier DOAS compared to low tier, "Economic Analysis of Heat Recovery Equipment in Commercial Dedicated Outside Air Systems." (2019), https://betterbricks.com/uploads/resources/NEEA-DOAS-Analysis-Report Red-Car Final.pdf.

=Federal code compliant system of same category, capacity without VERS

ISCOP2_{ee} = integrated seasonal coefficient of performance of the efficient equipment

=Actual

3.412 =Convert COP to BTU/watt

EFLH_{DOAS} = Effective full load hours at 32F or cold climate heat pump at 17F

= Actual, or from table below by city and operating schedule

Area	Building or Schedule	EFLH Dehumidify	EFLH Latent,Sensible Cooling	EFLH Heat pump 17F rated	EFLH Heat Pump 47F rated
St Louis	24/7	1,213	1,611	1,976	1,544
St Louis	Food service	1,026	1,423	1,585	1,260
St Louis	Big Box	668	1,035	957	785
St Louis	School/Office	512	787	764	633
Kirksville	24/7	1,051	1,270	2,059	1,406
Kirksville	Food service	912	1,132	1,656	1,129
Kirksville	Big Box	660	871	977	671
Kirksville	School/Office	526	679	769	520
Jefferson City	24/7	1,035	1,410	2,026	1,512
Jefferson City	Food service	881	1,255	1,611	1,203
Jefferson City	Big Box	572	926	948	713
Jefferson City	School/Office	441	694	754	562
Liberty,KC	24/7	1,035	1,410	1,912	1,427
Liberty,KC	Food service	881	1,255	1,521	1,136
Liberty,KC	Big Box	572	926	894	673
Liberty,KC	School/Office	441	694	711	531
Cape Girardeau	24/7	1,515	1,803	1,918	1,593
Cape Girardeau	Food service	1,279	1,567	1,543	1,287
Cape Girardeau	Big Box	837	1,117	922	781
Cape Girardeau	School/Office	632	839	735	628

SUMMER COINCIDENT PEAK DEMAND SAVINGS

$$\Delta kW = \Delta kW h_{cooling} x CF$$

Where:

 ΔkWh = Electric energy savings from dehumidification or dehumidify with cooling

CF = Summer peak coincidence demand (kW) to annual energy (kWh) factor =0.0009106840¹⁸⁴

¹⁸⁴ Ameren Missouri TRM Volume 1 - Appendix G: "Table 2 - Commercial and Industrial End Use Category Monthly Shapes and Coincident Peak Factors."

2.6 Lighting

C&I Lighting Deemed Hours and Waste Heat Factors by Building Type

Building Type - Space Type	Fixture Annual Operating Hours ¹⁸⁵ (Annual Hours)	WasteHeat Cooling Energy Factor ¹⁸⁶ (WHFe)	WasteHeat Electric Resistance Heating ¹⁸⁷ (IFkWh)	WasteHeat Heat Pump Heating (IFkWh)	WasteHeat Gas Heating ¹⁸⁸ (IFTherms)
Automotive Services	3,010	1.04	0.26	0.11	0.011
Education - Primary School	2772	1.08	0.28	0.12	0.012
Education - Secondary School	2772	1.14	0.30	0.13	0.013
Entertainment/Recreation	3858	1.07	0.26	0.11	0.011
Office - Large	3220	1.06	0.32	0.14	0.014
Office - Medium	3220	1.14	0.19	0.08	0.008
Office - Small	3220	1.11	0.21	0.09	0.009
Government - offices	3788	1.14	0.19	0.08	0.008
Grocery/Convenience Store	5646	1.07	0.26	0.11	0.011
Hotel/Motel – Guest rooms	2390	1.21	0.22	0.09	0.009
Hotel/Motel – Common area	6138	1.24	0.01	0.00	0.000
Hospital/Senior Living - Corridors	8608	1.11	0.34	0.15	0.015
Hospital/Senior Living – Guest rooms	995	1.11	0.34	0.15	0.015
Hospital/Outpatient – Treatment areas	3189	1.21	0.28	0.12	0.012
Industrial/Manufacturing	3831	1.04	0.26	0.22	0.011
Indoor Horticulture	4818	Custom	Custom	Custom	Custom

¹⁸⁵ TRC; applicant self reported lighting hours by measure, participants from 2014 through June 2024, Local file: "2024 C&I Lighting Hours Review.xlsx"

¹⁸⁶ The Waste Heat Factor for Energy is developed using computer models for the various Building Types. Similar building types aggregated. Indoor agriculture waste heat effects to be determined by building modeling by application.

¹⁸⁷ Electric heat penalty assumptions are based on converting the IFTherm multiplier value into kWh and then applying relative heating system efficiencies. The gas efficiency was assumed to be 80% AFUE, electric resistance is assumed to be 100%, Heat Pump is assumed to be 2.3 COP.

¹⁸⁸ IFTherms value is developed using computer models consistent with methodology for Waste Heat Factor for Energy.

Building Type - Space Type	Fixture Annual Operating Hours ¹⁸⁵ (Annual Hours)	WasteHeat Cooling Energy Factor ¹⁸⁶ (WHFe)	WasteHeat Electric Resistance Heating ¹⁸⁷ (IFkWh)	WasteHeat Heat Pump Heating (IFkWh)	WasteHeat Gas Heating ¹⁸⁸ (IFTherms)
Midrise Apartment Building - Common area	6138	1.14	0.44	0.19	0.019
Parking Garage	3465	1.00	0.00	0.00	0.00
Parking Garage – 24/7	8760	1.00	0.00	0.00	0.00
Public Order & Safety	6812	1.06	0.32	0.14	0.014
Restaurant – Fast Service	4235	1.12	0.27	0.12	0.012
Restaurant – Full Service	4235	1.11	0.22	0.10	0.009
Retail – Big box	5367	1.08	0.21	0.09	0.009
Retail - Small	3156	1.08	0.22	0.10	0.009
Warehouse	3127	1.04	0.26	0.11	0.011
C&I Weighted Average	3636	1.09	0.24	0.10	0.010

C&I Lighting Effective Useful Life (EUL) by Equipment Category

Measure Category	Lighting Type [1]	Effective Useful Life (EUL) [2]
	Fixture	15
	Type A & Hybrid	10
2.6.3 LED Bulbs and Fixtures	Type B	15
2.6.4 LED Screw Based Omnidirectional Bulb	Type C	11
2.6.7 LED Specialty Lamp	Retrofit Kit	15
	HID Replacement	15
	Lamp Replacement	10
2.6.6 LED Exit Sign	Exit Signs	7
2.6.8 Lighting Power Density	Lighting Power Density	15

Notes:

^[1] Ameren Missouri maintains a table that "maps" each lighting measure code to the appropriate Lighting Type.

^[2] These effective useful lives were researched by Opinion Dynamics as part of the PY19/PY20 Ameren Missouri Evaluation efforts. EUL values for each measure group were developed through a benchmarking review of TRMs and analysis of equipment specifications (e.g., lamp life) and annual operating hours from PY19/PY20 project tracking data. See Memorandum: Recommended EUL Values for Ameren Missouri Business Lighting Measures, January 6, 2021.

2.6.1 LED Bulbs and Fixtures (Available for Income Eligible and BSS programs)

DESCRIPTION

This measure provides savings assumptions for a variety of light emitting diode (LED) efficient lighting including lamps, bulbs, fixtures, and retrofit kits. The effective useful life varies dependent on the lighting category.

This measure was developed to be applicable to the following program types: TOS, EREP, RF. If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

In order for this characterization to apply, all LED bulbs, lamps, fixtures, retrofit kits are to be certified or registered with at least one recognized independent agency. The following tables lists the requirements for three of those agencies.

Agency	Requirement	Version	Lighting Types
Design Lights Consortium Designlights.org	DLC Listed	Technical requirement versions: 4.0 to current Premium or Standard classification	lamps, fixtures, retrofit kits, LLLC
Design Lights Consortium Designlights.org	DLC Hort	Technical requirement versions: 1.0 to current	horticultural
ENERGYSTAR Energystar.gov	Certified	Version 2.1 to current	lamps, fixtures
UL Solutions Ul.com	Certified	UL Mark	lamps, fixtures, retrofit kits, horticultural, LLLC

LED Fixtures and Retrofit Kits with Network Controls achieve additional savings similar to the savings described in the Occupancy Controls section.

DEFINITION OF BASELINE EQUIPMENT

For RF and EREP installations, the baseline is the lamp or fixture being replaced. A midlife baseline adjustment occurs at the end of the remaining useful life, approximated at 1/3 of the EUL. Deemed fixture wattages are provided in Table 2 LED New and Baseline Assumptions.

For TOS installations, the baseline is determined by the Federal Energy Efficiency Standards, expressed in minimum lumens per watt.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

See Lighting EUL Reference Table for EUL values by Lighting Measure Group.

DEEMED MEASURE COST

Actual incremental costs should be used if available. For default values, refer to the reference tables below.

LOADSHAPE

Lighting BUS Ext Lighting BUS Miscellaneous BUS

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

$$\Delta kWh = \frac{Watts_{Base} - Watts_{EE}}{1000} x Hours x WHF_e x ISR$$

Where:

Watts_{Base} = Actual wattage of the existing or baseline system. Reference the

"LED New and Baseline Assumptions" table for default values.

Wattsee = Actual wattage of LED fixture purchased / installed. If unknown,

use default provided in "LED New and Baseline Assumptions."

Hours = Average annual lighting hours of use as provided by the customer

or selected from the Lighting Reference Table in Section 2.6 by Building Type. If hours or Building Type are unknown, use the C&I

Average value.

WHFe = Waste heat factor for energy to account for cooling energy savings

from efficient lighting is selected from the Lighting Reference Table in Section 2.6 for each Building Type. If building is un-cooled, the

value is 1.0.

seNote that LED Fixtures and Retrofit Kits with Network Controls achieve additional savings similar to the savings described in the Occupancy Controls section.

Heating Penalty:

If electrically heated building:189

$$\Delta kWh_{heatpenalty} = \frac{Watts_{Base} - Watts_{EE}}{1000} x \; Hours \; x \; ISR * (-IF_{kWH})$$

Where:

IF_{kWh} = Lighting-HVAC Interaction Factor for electric heating impacts; this

factor represents the increased electric space heating requirements

¹⁸⁹ Negative value because this is an increase in heating consumption due to the efficient lighting.

due to the reduction of waste heat rejected by the efficient lighting. Values are provided in the Lighting Reference Table in Section 2.6. If unknown, use the C&I Average value.

SUMMER COINCIDENT PEAK DEMAND SAVINGS

$$\Delta kW = \Delta kWh * CF$$

Where:

CF = Summer peak coincidence demand (kW) to annual energy (kWh) factor

 $= 0.0001899635^{190}$ for indoor lighting

= 0.0000056160 for exterior lighting

= 0.0001379439 for exterior 24/7 lighting

NATURAL GAS ENERGY SAVINGS

Heating penalty if fossil fuel heated building (or if heating fuel is unknown):

$$\Delta Therms = \frac{Watts_{Base} - Watts_{EE}}{1000} * Hours * ISR * (-IF_{therms})$$

Where:

IF_{Therms} = Lighting-HVAC Interaction Factor for gas heating impacts.¹⁹¹ This factor represents the increased gas space heating requirements due to the reduction of waste heat rejected by the efficient lighting. Values are provided in the Lighting Reference Table in Section 2.6. If unknown, use the C&I Average value.

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

See Reference Tables below for default assumptions.

¹⁹⁰ Ameren Missouri TRM Volume 1 - Appendix G: "Table 2 - Commercial and Industrial End Use Category Monthly Shapes and Coincident Peak Factors."

¹⁹¹ Negative value because this is an increase in heating consumption due to the efficient lighting.

Table 2 LED New and Baseline Assumptions

LED Catagoni	EE Measure		Baseline		Incremental
LED Category	Description	Wattsee	Description	Wattsbase	Cost
LED Downlight Fixtures	LED Recessed, Surface, Pendant Downlights	17.6	40% CFL 26W Pin Based & 60% PAR30/38	54.3	\$27
LED Interior	LED Track Lighting	12.2	10% CMH PAR38 & 90% Halogen PAR38	60.4	\$59
Directional	LED Wall-Wash Fixtures	8.3	40% CFL 42W Pin Base & 60% Halogen PAR38	17.7	\$59
	LED Display Case Light Fixture	4.0 / ft	50% 2'T5 Linear & 50% 50W Halogen	36.2 / ft	\$11/ft
I ED Digmley Cogo	LED Undercabinet Shelf-Mounted Task Light Fixtures	4.0 / ft	50% 2'T5 Linear & 50% 50W Halogen	36.2 / ft	\$11/ft
LED Display Case	LED Refrigerated Case Light, Horizontal or Vertical	4.0 / ft	5'T8	15.2 / ft	\$11/ft
	LED Freezer Case Light, Horizontal or Vertical	4.0 / ft	6'T12HO	18.7 / ft	\$11/ft
LED Linear	LED 4' Linear Replacement Lamp,<2400 lumens	13.7	32w T8	28.0	\$15
Replacement	LED 2' Linear Replacement Lamp	8.6	17w T8	15.0	\$13
Lamps	LED 4' Linear Replacement Lamp, ≥2400 lumens	24.7	40WT8HO	41.8	\$13
	LED 2x2 Recessed Light Fixture, 2000-3500 lumens	22.4	2-Lamp 32w T8 (BF < 0.89)	57.0	\$53
	LED 2x2 Recessed Light Fixture, 3501-5000 lumens	34.2	3-Lamp 32w T8 (BF < 0.88)	84.5	\$69
	LED 2x4 Recessed Light Fixture, 3000-4500 lumens	29.9	2-Lamp 32w T8 (BF < 0.89)	57.0	\$55
LED Troffers	LED 2x4 Recessed Light Fixture, 4501-6000 lumens	42.1	3-Lamp 32w T8 (BF < 0.88)	84.5	\$76
LED Hollers	LED 2x4 Recessed Light Fixture, 6001-7500 lumens	51.5	4-Lamp 32w T8 (BF < 0.88)	112.6	\$104
	LED 1x4 Recessed Light Fixture, 1500-3000 lumens	19.2	1-Lamp 32w T8 (BF <0.91)	29.1	\$22
	LED 1x4 Recessed Light Fixture, 3001-4500 lumens	30.8	2-Lamp 32w T8 (BF < 0.89)	57.0	\$75
	LED 1x4 Recessed Light Fixture, 4501-6000 lumens	40.2	3-Lamp 32w T8 (BF < 0.88)	84.5	\$83
	LED Surface & Suspended Linear Fixture, ≤ 3000 lumens	17.6	1-Lamp 32w T8 (BF <0.91)	29.1	\$10
LED Lineau	LED Surface & Suspended Linear Fixture, 3001-4500 lumens	28.0	2-Lamp 32w T8 (BF < 0.89)	57.0	52
LED Linear Ambient Fixtures	LED Surface & Suspended Linear Fixture, 4501-6000 lumens	39.2	3-Lamp 32w T8 (BF < 0.88)	84.5	\$78
Ambient Fixtures	LED Surface & Suspended Linear Fixture, 6001-7500 lumens	49.9	T5HO 2L-F54T5HO - 4'	120.0	\$131
	LED Surface & Suspended Linear Fixture, > 7500 lumens	90.6	T5HO 3L-F54T5HO - 4'	180.0	\$173
LED High & Low	LED Low-Bay Fixtures, ≤ 10,000 lumens	51.8	3-Lamp T8HO Low-Bay	157.0	\$43
Bay Fixtures	LED High-Bay Fixtures, 10,001-15,000 lumens	89.2	4-Lamp T8HO High-Bay	196.0	\$32

¹⁹² IL TRM V13, Measure 4.5.4 LED Fixture Wattage, TOS Baseline and Incremental Cost Assumptions", which aggregated data from CLEAResults, DLC, VEIC and others.

Appendix H - TRM – Vol. 2: C&I Measures

LED Catagory	EE Measure		Baseline		Incremental
LED Category	Description	Wattsee	Description	Wattsbase	Cost
	LED High-Bay Fixtures, 15,001-20,000 lumens	118.5	6-Lamp T8HO High-Bay	294.0	\$62
	LED High-Bay Fixtures, > 20,000 lumens	171.4	8-Lamp T8HO High-Bay	392.0	\$51
	LED High-Bay Fixtures, 20,001-30,000 lumens	230.5	750 Watt Metal Halide	850	\$114
	LED High-Bay Fixtures, 40,001-50,000 lumens	306.2	1000 Watt Metal Halide	1080	\$166
	LED High-Bay Fixtures, >50,000 lumens	443.7	1500 Watt Metal Halide	1610	\$284
	LED Ag Interior Fixtures, ≤ 2,000 lumens	12.9	1L T8	29.1	\$18
	LED Ag Interior Fixtures, 2,001-4,000 lumens	29.7	2L T8	57.0	\$48
	LED Ag Interior Fixtures, 4,001-6,000 lumens	45.1	3L T8	121.0	\$57
LED Agricultural	LED Ag Interior Fixtures, 6,001-8,000 lumens	59.7	4L T8	159.0	\$88
Interior Fixtures	LED Ag Interior Fixtures, 8,001-12,000 lumens	84.9	200W Pulse Start Metal Halide	227.3	\$168
	LED Ag Interior Fixtures, 12,001-16,000 lumens	113.9	320W Pulse Start Metal Halide	363.6	\$151
	LED Ag Interior Fixtures, 16,001-20,000 lumens	143.7	350W Pulse Start Metal Halide	397.7	\$205
	LED Ag Interior Fixtures, > 20,000 lumens	193.8	(2) 320W Pulse Start Metal Halide	727.3	\$356
	LED Exterior Fixtures, ≤ 5,000 lumens	31.0	100W Metal Halide	113.6	\$68
LED Exterior	LED Exterior Fixtures, 5,001-10,000 lumens	64.0	175W Pulse Start Metal Halide	198.9	\$60
Fixtures	LED Exterior Fixtures, 10,001-15,000 lumens	101.0	250W Pulse Start Metal Halide	284.1	\$129
	LED Exterior Fixtures, 15,001-30,000 lumens	141.0	400W Pulse Start Metal Halide	454.5	\$156
	LED Exterior Fixtures, 30,001-40,000 lumens	236.0	750W Metal Halide	294.0 \$ 392.0 \$ 850 \$1 1080 \$1 1610 \$2 29.1 \$ 57.0 \$ 121.0 \$ 159.0 \$ 227.3 \$1 363.6 \$1 397.7 \$2 727.3 \$3 113.6 \$ 198.9 \$ 284.1 \$1 454.5 \$1 850 \$2	\$446
	LED Exterior Fixtures, >40,000 lumens	295.0	1000W Metal Halide	1080	\$629

		EE Measure				Baseline			
LED Category	EE Measure Description	Lamp Life (hrs)	Total Lamp Replace Cost	LED Driver Life (hrs)	Total LED Driver Replace Cost	Lamp Life (hrs)	Total Lamp Replace Cost	Ballast Life (hrs)	Total Ballast Replace Cost
LED Downlight	LED Recessed, Surface, Pendant	50,000	\$30.75	70,000	\$47.50	2,500	\$8.86	40,000	\$14.40
Fixtures	Downlights								
LED Interior	LED Track Lighting	50,000	\$39.00	70,000	\$47.50	2,500	\$12.71	40,000	\$11.00
Directional	LED Wall-Wash Fixtures	50,000	\$30.75	70,000	\$47.50	2,500	\$8.86	40,000	\$14.40
LED Display	LED Display Case Light Fixture	50,000	\$9.75/ft	70,000	\$11.88/ft	2,500	\$6.70	40,000	\$5.63
Case	LED Undercabinet Shelf- Mounted Task Light Fixtures	50,000	\$9.75/ft	70,000	\$11.88/ft	2,500	\$6.70	40,000	\$5.63
LED Display	LED Refrigerated Case Light, Horizontal or Vertical	50,000	\$8.63/ft	70,000	\$9.50/ft	15,000	\$1.13	40,000	\$8.00
Case	LED Freezer Case Light, Horizontal or Vertical	50,000	\$7.88/ft	70,000	\$7.92/ft	12,000	\$0.94	40,000	\$6.67
TED I	LED 2' Linear Replacement Lamp	50,000	\$5.76	70,000	\$13.67	30,000	\$6.17	40,000	\$11.96
LED Linear Replacement	LED 4' Linear Replacement Lamp,<2400 lumens	50,000	\$8.57	70,000	\$13.67	24,000	\$6.17	40,000	\$11.96
Lamps Replacement	LED 4' Linear Replacement Lamp, ≥2400 lumens	50,000	\$8.57	70,000	\$13.67	18,000	\$6.17	40,000	\$11.96
	LED 2x2 Recessed Light Fixture, 2000-3500 lumens	50,000	\$78.07	70,000	\$40.00	24,000	\$26.33	40,000	\$35.00
LED Troffers	LED 2x2 Recessed Light Fixture, 3501-5000 lumens	50,000	\$89.23	70,000	\$40.00	24,000	\$39.50	40,000	\$35.00
	LED 2x4 Recessed Light Fixture, 3000-4500 lumens	50,000	\$96.10	70,000	\$40.00	24,000	\$12.33	Ballast Life (hrs) 40,000 40,000 40,000 40,000 40,000 40,000 40,000 40,000 40,000 40,000 40,000	\$35.00

2025 MEEIA 4 Plan Revision 7.0

¹⁹³ Costs for baseline and LED lamps sourced from Illinois TRM V13, which aggregated data from the Design Light Consortium (DLC) Qualifying Product Lists, Efficiency Vermont projects, PGE refrigerated case study.

Appendix H - TRM – Vol. 2: C&I Measures

		EE Measure				Baseline			
LED Category	EE Measure Description	Lamp Life (hrs)	Total Lamp Replace Cost	LED Driver Life (hrs)	Total LED Driver Replace Cost	Lamp Life (hrs)	Total Lamp Replace Cost	Ballast Life (hrs)	Total Ballast Replace Cost
	LED 2x4 Recessed Light Fixture, 4501-6000 lumens	50,000	\$114.37	70,000	\$40.00	24,000	\$18.50	40,000	\$35.00
	LED 2x4 Recessed Light Fixture, 6001-7500 lumens	50,000	\$137.43	70,000	\$40.00	24,000	\$24.67	40,000	\$35.00
	LED 1x4 Recessed Light Fixture, 1500-3000 lumens	50,000	\$65.43	70,000	\$40.00	24,000	\$6.17	40,000	\$35.00
	LED 1x4 Recessed Light Fixture, 3001-4500 lumens	50,000	\$100.44	70,000	\$40.00	24,000	\$12.33	40,000	\$35.00
	LED 1x4 Recessed Light Fixture, 4501-6000 lumens	50,000	\$108.28	70,000	\$40.00	24,000	\$18.50	40,000	\$35.00
	LED Surface & Suspended Linear Fixture, ≤ 3000 lumens	50,000	\$62.21	70,000	\$40.00	24,000	\$6.17	40,000	\$35.00
1001.	LED Surface & Suspended Linear Fixture, 3001-4500 lumens	50,000	\$93.22	70,000	\$40.00	24,000	\$12.33	40,000	\$35.00
LED Linear Ambient	LED Surface & Suspended Linear Fixture, 4501-6000 lumens	50,000	\$114.06	70,000	\$40.00	24,000	\$18.50	40,000	\$35.00
Fixtures	LED Surface & Suspended Linear Fixture, 6001-7500 lumens	50,000	\$152.32	70,000	\$40.00	30,000	\$26.33	40,000	\$60.00
	LED Surface & Suspended Linear Fixture, > 7500 lumens	50,000	\$183.78	70,000	\$40.00	30,000	\$39.50	40,000	\$60.00
	LED Low-Bay Fixtures, ≤ 10,000 lumens	50,000	\$90.03	70,000	\$62.50	18,000	\$64.50	40,000	\$92.50
LED II'. 1 0	LED High-Bay Fixtures, 10,001- 15,000 lumens	50,000	\$122.59	70,000	\$62.50	18,000	\$86.00	40,000	\$92.50
LED High & Low Bay	LED High-Bay Fixtures, 15,001-20,000 lumens	50,000	\$157.22	70,000	\$62.50	18,000	\$129.00	40,000	\$117.50
Fixtures	LED High-Bay Fixtures, > 20,000 lumens	50,000	\$228.52	70,000	\$62.50	18,000	\$172.00	40,000	\$142.50
	LED High-Bay Fixtures, 20,001-30,000 lumens	50,000	\$294.00	70,000	\$62.50	15,000	\$82.00	40,000	\$143.00

Appendix H - TRM – Vol. 2: C&I Measures

		EE Measure				Baseline			
LED Category	EE Measure Description	Lamp Life (hrs)	Total Lamp Replace Cost	LED Driver Life (hrs)	Total LED Driver Replace Cost	Lamp Life (hrs)	Total Lamp Replace Cost	Ballast Life (hrs)	Total Ballast Replace Cost
	LED High-Bay Fixtures, 40,001-50,000 lumens	50,000	\$324.00	70,000	\$62.50	15,000	\$88.00	40,000	\$149.00
	LED High-Bay Fixtures, >50,000 lumens	50,000	\$382.00	70,000	\$62.50	15,000	\$96.00	40,000	\$200.00
	LED Ag Interior Fixtures, ≤ 2,000 lumens	50,000	\$41.20	70,000	\$40.00	1,000	\$1.23	40,000	\$26.25
	LED Ag Interior Fixtures, 2,001-4,000 lumens	50,000	\$65.97	70,000	\$40.00	1,000	\$1.43	40,000	\$26.25
	LED Ag Interior Fixtures, 4,001-6,000 lumens	50,000	\$80.08	70,000	\$40.00	1,000	\$1.62	40,000	\$26.25
LED Agricultural	LED Ag Interior Fixtures, 6,001-8,000 lumens	50,000	\$105.54	70,000	\$40.00	1,000	\$1.81	40,000	\$26.25
Interior Fixtures	LED Ag Interior Fixtures, 8,001- 12,000 lumens	50,000	\$179.81	70,000	\$62.50	15,000	\$63.00	40,000	\$112.50
	LED Ag Interior Fixtures, 12,001-16,000 lumens	50,000	\$190.86	70,000	\$62.50	15,000	\$68.00	40,000	\$122.50
	LED Ag Interior Fixtures, 16,001-20,000 lumens	50,000	\$237.71	70,000	\$62.50	15,000	\$73.00	40,000	\$132.50
	LED Ag Interior Fixtures, > 20,000 lumens	50,000	\$331.73	70,000	\$62.50	15,000	\$136.00	40,000	\$202.50
	LED Exterior Fixtures, ≤ 5,000 lumens	50,000	\$73.80	70,000	\$62.50	15,000	\$58.00	40,000	\$102.50
LED Exterior	LED Exterior Fixtures, 5,001- 10,000 lumens	50,000	\$124.89	70,000	\$62.50	15,000	\$63.00	40,000	\$112.50
Fixtures	LED Exterior Fixtures, 10,001- 15,000 lumens	50,000	\$214.95	70,000	\$62.50	15,000	\$68.00	40,000	\$122.50
	LED Exterior Fixtures, 15,001-30,000 lumens	50,000	\$321.06	70,000	\$62.50	15,000	\$73.00	40,000	\$132.50
	LED Exterior Fixtures, 30,001-40,000 lumens	50,000	\$546.00	70,000	\$62.50	15,000	\$82.00	40,000	\$143.00

Appendix H - TRM - Vol. 2: C&I Measures

		EE Measure				Baseline			
LED Category	EE Measure Description	Lamp Life (hrs)	Total Lamp Replace Cost	LED Driver Life (hrs)	Total LED Driver Replace Cost	Lamp Life (hrs)	Total Lamp Replace Cost	Ballast Life (hrs)	Total Ballast Replace Cost
	LED Exterior Fixtures, >40,000 lumens	50,000	\$722.00	70,000	\$62.50	15,000	\$88.00	40,000	\$149.00
	LED Exterior Fixtures, ≤ 5,000 lumens	50,000	\$870.00	70,000	\$62.50	15,000	\$96.00	40,000	\$200.00
	LED Exterior Fixtures, 5,001- 10,000 lumens	50,000	\$73.80	70,000	\$62.50	15,000	\$58.00	40,000	\$102.50

MEASURE CODE:

2.6.2 LED Screw Based Omnidirectional Bulb (Available for Income Eligible and BSS programs)

DESCRIPTION

LEDs lighting systems convert electricity to light and emit more lumens per watt when compared to baseline EISA incandescent, halogen, or compact fluorescent lamps.

This specific characterization provides savings assumptions for LED lamps that replace standard screw-in connections (e.g., A-Type lamp) such as interior/exterior omnidirectional bulb options.

This characterization assumes that the LED is installed in a commercial location. This is, therefore, appropriate for commercially targeted programs, or, if the implementation strategy does not allow for the installation location to be known (e.g., an upstream retail program), utilities should develop an assumption of the residential versus nonresidential split and apply the relevant assumptions to each portion.

Federal legislation stemming from the Energy Independence and Security Act of 2007 (EISA) requires all general-purpose light bulbs between 40W and 100W to be approximately 30% more energy efficient than standard incandescent bulbs. Production of 100W, standard efficacy incandescent lamps ended in 2012, followed by restrictions on 75W in 2013 and 60W and 40W in 2014. The baseline for this measure has therefore become bulbs (improved incandescent or halogen) that meet the new standard.

This measure was developed to be applicable to the following program types: TOS and RF. If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

In order for this characterization to apply, new LED screw-based lamps must be ENERGY STAR® qualified based upon the ENERGY STAR® specification v2.0 which will become effective on 1/2/2017 (https://www.energystar.gov/sites/default/files/Luminaires%20V2%200%20Final.pdf).

Qualification could also be based or on the Design Light Consortium's qualified product list. 194

DEFINITION OF BASELINE EQUIPMENT

The baseline condition for this measure is assumed to be an EISA-qualified halogen or incandescent. A midlife adjustment example is provided but not applied to measures installed prior to 2022.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

See Lighting EUL Reference Table for EUL values by Lighting Measure Group.

¹⁹⁴ https://www.designlights.org/QPL.

¹⁹⁵ A provision in the EISA regulations requires that by January 1, 2020, all lamps meet efficiency criteria of at least 45 lumens per watt, in essence making the baseline equivalent to a current day CFL. However, in 2019, the Department of Energy issued two final rules and clarified that a) the EISA backstop provision had not been triggered and therefore b) the efficiency standard would not change in 2020. As of 10/15/2020, the 45 lumen per watt EISA standard is not effective.

DEEMED MEASURE COST

Actual incremental costs should be used if available. If unavailable, assume \$3.26 (baseline cost of \$1.80 and efficient cost of \$5.06). 196

LOADSHAPE

Lighting BUS
Ext Lighting BUS
Miscellaneous BUS

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

$$\Delta kWh = \frac{Watts_{Base} - Watts_{EE}}{1000} * Hours * WHF_e * ISR$$

Where:

Watts_{Base} = Based on lumens of LED bulb installed

Wattsee = Actual wattage of LED purchased/installed. If unknown, use

default provided below.¹⁹⁷

Hours = Average hours of use per year as provided by the customer or

selected from the Lighting Reference Table in Section 2.6 and based

upon Building Type. If unknown, use the C&I Average value.

WHFe = Waste heat factors for energy to account for cooling energy savings

from efficient lighting are provided for each Building Type in the Lighting Reference Table in Section 2.6. If unknown, use the C&I

Average value.

ISR = In-Service Rate represents the percentage of reported lamps or

fixtures that is installed and operating and varies with the program delivery approach. Use 100% for programs with direct installation and/or installation varification procedures (e.g., varification)

and/or installation verification procedures (e.g., verification

inspections for a sample of projects); use 98.7% for program delivery without installation verification. ¹⁹⁸ The ISR may also be set to 100%

¹⁹⁶ Incandescent/halogen and LED cost assumptions based on Cadmus "LED Incremental Cost Study: Overall Final Report," February 2016

⁽http://ma-eeac.org/wordpress/wp-content/uploads/MA-Task-5b-LED-Incremental-Cost-Study_FINAL_01FEB2016.pdf), p.19.

¹⁹⁷ Watts_{EE} defaults are based upon the average available ENERGY STAR® product, accessed 06/18/2015. For any lumen range where there is no ENERGY STAR® product currently available, Watts_{EE} is based upon the ENERGY STAR® minimum luminous efficacy (55Lm/W for lamps with rated wattages less than 15W and 65 Lm/W for lamps with rated wattages ≥ 15 watts) for the mid-point of the lumen range. See calculation at "cerified-light-bulbs-2015-06-18.xlsx." These assumptions should be reviewed regularly to ensure they represent the available product.

¹⁹⁸ ISR is based on results presented in Ameren Missouri Lighting Impact and Process Evaluation: Program Year 2015. This value takes into account the time-delay of when bulbs are installed over subsequent program years. The reported ISR is based on the net

if the installation verification is embedded in other evaluation adjustments.

Lower Lumen Range	Upper Lumen Range	Watts _{Base}	Watts _{EE} LED	Delta Watts
250	309	25	4.0	21
310	749	29	6.7	22.3
750	1,049	43	10.1	32.9
1,050	1,489	53	12.8	40.2
1,490	2,600	72	17.4	54.6
2,601	3,000	150	43.1	106.9
3,001	3,999	200	53.8	146.2
4,000	6,000	300	76.9	223.1

Mid-Life Baseline Adjustment Example

During the lifetime of a standard omnidirectional LED, the baseline incandescent/halogen bulb would need to be replaced multiple times. Since the baseline bulb changes to a CFL equivalent in 2020 due to the EISA backstop provision (except for <310 and 2600+ lumen lamps), the annual savings claim must be reduced within the life of the measure to account for this baseline shift. This reduced annual savings will need to be incorporated in to cost effectiveness screening calculations. The baseline adjustment also impacts the O&M schedule. However, in 2019, the Department of Energy issued two final rules and clarified that a) the EISA backstop provision had not been triggered and therefore b) the efficiency standard would not change in 2020. As of 10/15/2020, the 45 lumen per watt EISA standard is not effective.

For example, for 43W equivalent LED lamp installed in 2016, the full savings (as calculated above in the Algorithm) should be claimed for the first four years, but a reduced annual savings (calculated energy savings above multiplied by the adjustment factor in the table below) should be claimed for the remainder of the measure life. 199&200

present value (NPV) of the savings over 4 year installation period from the PY15 bulbs, discounted back to Year 1 at 6.95% (utility discount rate). These evaluation results are from a retail-based lighting program with multiple delivery channels including point-of-sale markdown, online website, coupons, and social marketing distribution.

¹⁹⁹ These adjustments should be applied to kW and gas impacts as well.

²⁰⁰ Calculated with EISA requirement of 45lumens/watt.

Lower Lumen Range	Upper Lumen Range	Mid Lumen Range	Watts EE	WattsBase before EISA 2020	Delta Watts before EISA 2020	WattsBase after EISA 2020 ²⁰⁸	Delta Watts after EISA 2020	Mid Life adjustment (in 2020) to first year savings
250	309	280	4.0	25	21	25	21	100.0%
310	749	530	6.7	29	22.3	9.4	2.7	12.1%
750	1049	900	10.1	43	32.9	13.4	3.3	10.0%
1050	1489	1270	12.8	53	40.2	18.9	6.1	15.2%
1490	2600	2045	17.4	72	54.6	24.8	7.4	13.6%
2,550	3,000	2,775	43.1	150	106.9	150	106.9	100.0%
3,001	3,999	3,500	53.8	200	146.2	200	146.2	100.0%
4,000	6,000	5,000	76.9	300	223.1	300	223.1	100.0%

Heating Penalty:

If electrically heated building:201

$$\Delta kWh_{heatpenalty} = \frac{Watts_{Base} - Watts_{EE}}{1000} * Hours * ISR * (-IF_{kWH})$$

Where:

IF_kWh

= Lighting-HVAC Interaction Factor for electric heating impacts; this factor represents the increased electric space heating requirements due to the reduction of waste heat rejected by the efficient lighting. Values are provided in the Lighting Reference Table in Section 2.6 and based upon Building Type. If unknown, use the C&I Average value.

SUMMER COINCIDENT PEAK DEMAND SAVINGS

$$\Delta kW = \Delta kWh * CF$$

Where:

CF

- = Summer peak coincidence demand (kW) to annual energy (kWh) factor
- $= 0.0001899635^{202}$ for indoor lighting
- = 0.0000056160 for exterior lighting
- = 0.0001379439 for exterior 24/7 lighting

NATURAL GAS ENERGY SAVINGS

Heating penalty if fossil fuel heated building (or if heating fuel is unknown):²⁰¹

$$\Delta Therms = \frac{Watts_{Base} - Watts_{EE}}{1000} * Hours * ISR * (-IF_{therms})$$

²⁰¹ Results in a negative value because this is an increase in heating consumption due to the efficient lighting.

²⁰² Ameren Missouri TRM Volume 1 - Appendix G: "Table 2 – Commercial and Industrial End Use Category Monthly Shapes and Coincident Peak Factors."

Where:

IFTherms

= Lighting-HVAC Interaction Factor for gas heating impacts; this factor represents the increased gas space heating requirements due to the reduction of waste heat rejected by the efficient lighting. Values are provided in the Lighting Reference Table in Section 2.6 and based upon Building Type. If unknown, use the C&I Average value.

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

In order to account for the falling EISA-Qualified backdrop provision, an equivalent annual levelized baseline replacement cost over the lifetime of the LED bulb is calculated. The key assumptions used in this calculation are documented below:²⁰³

Incandescent / Halogen	CFL	LED ALamp
\$1.80	\$2.20	\$5.06

The present value of replacement lamps and annual levelized replacement costs using utilities' average real discount rate of 6.91% are presented below:

Location	PV of replacement costs for period			Levelized annual replacement cost savings			
Location	2016 - 2017	2017 - 2018	2018 - 2019	2016 - 2017	2017 - 2018	2018 - 2019	
C&I Average	\$18.66	\$14.70	\$10.46	\$2.04	\$1.60	\$1.14	

Note: incandescent lamps in lumen range <310 and >2600 are exempt from EISA. For these bulb types, an O&M cost should be applied as follows. If unknown Building Type, assume C&I Average:

²⁰³ All cost assumptions based on Cadmus "LED Incremental Cost Study: Overall Final Report," February 2016 page 19, https://ma-eeac.org/wordpress/wp-content/uploads/MA-Task-5b-LED-Incremental-Cost-Study FINAL 01FEB2016.pdf.

Building Type	Replacement Period (years) ²⁰⁴	Replacement Cost
Large Office	0.32	
Medium Office	0.32	
Small Office	0.35	
Warehouse	0.35	
Stand-alone Retail	0.29	
Strip Mall	0.27	
Primary School	0.29	
Secondary School	0.29	
Supermarket	0.27	$$1.80^{205}$
Quick Service Restaurant	0.16	
Full Service Restaurant	0.16	
Hospital	0.26	
Outpatient Health Care	0.26	
Small Hotel - Building	0.27	
Large Hotel - Building	0.27	
Midrise Apartment - Building	0.35	
C&I Average	0.30	

MEASURE CODE:

p.19.

2025 MEEIA 4 Plan

²⁰⁴ Calculated by dividing assumed rated life of baseline bulb by hours of use. Assumed lifetime of EISA-qualified halogen/incandescent is 1000 hours (manufacturers are simply using a regular incandescent lamp with halogen fill gas rather Halogen Infrared to meet the standard (as provided by G. Arnold, NEEP and confirmed by N. Horowitz at NRDC)).
²⁰⁵ Incandescent/halogen cost assumptions based on Cadmus "LED Incremental Cost Study: Overall Final Report," February
2016 (http://ma-eeac.org/wordpress/wp-content/uploads/MA-Task-5b-LED-Incremental-Cost-Study_FINAL_01FEB2016.pdf),

2.6.3 LED Exit Sign (Available for Income Eligible and BSS programs)

This measure characterizes the savings associated with installing a new LED exit sign (or retrofit kit) in place of a CFL or incandescent exit sign in a commercial building. LED exit signs use less power (≤ 5 watts), have a significantly longer lifetime, and have less maintenance costs compared to incandescent or CFL exit signs.²⁰⁶

This measure applies to the following program types: RF and DI.

DEFINITION OF EFFICIENT EQUIPMENT

The efficient equipment is an LED exit sign with an input power demand of 5 watts or less. 207

DEFINITION OF BASELINE EQUIPMENT

The baseline equipment is the existing exit sign (either a CFL or incandescent unit).

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

See Lighting EUL Reference Table for EUL values by Lighting Measure Group.

DEEMED MEASURE COST

Actual program delivery costs should be used if available. If not, use the full cost of \$39²⁰⁸ for a new LED exit sign and \$25 for a retrofit kit, plus \$6.25 in labor,²⁰⁹ for a total measure cost of \$45.25 and \$31.25, respectively.

LOADSHAPE

Lighting BUS

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS²¹⁰

$$\Delta kWh = rac{Watts_{Base} - Watts_{EE}}{1000} * Hours * WHF_e$$

Where:

²⁰⁶ ENERGY STAR® "Save Energy, Money and Prevent Pollution with LED Exit Signs."

²⁰⁷ ENERGY STAR® "Program Requirements for Exit Signs Version 3.0." While the EPA suspended the ENERGY STAR® Exit Sign specification effective May 1, 2008, Federal requirements specify minimum efficiency standards for electrically-powered, single-faced exit signs with integral lighting sources that are equivalent to ENERGY STAR® levels for input power demand of 5 watts or less per face.

²⁰⁸ Cost of new LED exit sign from ENERGY STAR® Exit Signs Calculator.xlsx.

²⁰⁹ Assumption based on 15 minutes (including portion of travel time) and \$25 per hour, which is in line with the typical prevailing wage of a General Laborer, as per the Annual Wage Order No. 23 published by the Missouri Department of Labor.

²¹⁰ There is no ISR calculation. Exit signs and emergency lighting are required by federal regulations to be installed and functional in all public buildings as outlined by the U.S. Occupational Safety and Health Standards (USOSHA 1993).

Watts_{Base} = Actual wattage if known, if unknown assume the following:

Baseline Type	Watts _{BASE}
Incandescent (dual sided)	50 W ²¹¹
Incandescent (single sided)	25 W
CFL (dual sided)	14 W ²¹²
CFL (single sided)	7 W

Watts_{EE} = Actual wattage if known; if unknown assume 2W for singled sided and 4W for

dual sided.213

Hours = Annual operating hours = 8,766

WHF_e = Waste heat factor for energy to account for cooling energy savings from efficient

lighting is selected from the Lighting Reference Table in Section 2.6 for each

Building Type. If building is un-cooled, the value is 1.0.

HEATING PENALTY

If electrically heated building:214

$$\Delta kWh_{heatpenalty} = \frac{Watts_{Base} - Watts_{EE}}{1000} * Hours * ISR * (-IF_{kWH})$$

Where:

IF_{kWh} = Lighting-HVAC Interaction Factor for electric heating impacts; this

factor represents the increased electric space heating requirements due to the reduction of waste heat rejected by the efficient lighting. Values are provided in the Reference Table in Section 2.8. If

unknown, use the C&I Average value.

SUMMER COINCIDENT PEAK DEMAND SAVINGS

ΔKW	$= \Delta kWh$	* C F	
Wher	e:		

²¹¹ Average incandescent single sided (5W, 10W, 15W, 20W, 25W, 34W, 40W, 50W) from Appendix B 2013-14 Table of Standard Fixture Wattages. Available at:

https://www.aesc-inc.com/download/spc/2013SPCDocs/PGE/App%20B%20Standard%20Fixture%20Watts.pdf (See rows 9-22 middle of page# B-26).

²¹² Average CFL single sided (5W, 7W, 9W) from Appendix B 2013-14 Table of Standard Fixture Wattages. Available at: https://www.aesc-inc.com/download/spc/2013SPCDocs/PGE/App%20B%20Standard%20Fixture%20Watts.pdf (See rows 1-4,7,8 top of page# B-26).

²¹³ Average Exit LED watts are assumed as a 2W as listed in Appendix B 2013-14 Table of Standard Fixture Wattages. Available at: https://www.aesc-inc.com/download/spc/2013SPCDocs/PGE/App%20B%20Standard%20Fixture%20Watts.pdf (See last two rows on page# B-26).

²¹⁴ Negative value because this is an increase in heating consumption due to the efficient lighting.

 ΔkWh = Electric energy savings, including cooling savings, as calculated above.

= Summer peak coincidence demand (kW) to annual energy (kWh) factor

CF = 0.0001899635

NATURAL GAS ENERGY SAVINGS

Heating penalty if fossil fuel heated building (or if heating is unknown):215

$$\Delta Therms = \frac{Watts_{Base} - Watts_{EE}}{1000} * Hours * ISR * (-IF_{therms})$$

Where:

IF_{Therms}

= Lighting-HVAC Integration Factor for gas heating impacts; this factor represents the increased gas space heating requirements due to the reduction of waste heat rejected by the efficient lighting. Please select from the Reference Table in Section 2.6 for each Building Type.

Other factors as defined above.

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

The annual O&M cost adjustment savings should be calculated using the following component costs and lifetimes.

Component	Baseline Measure			
Component	Cost ²¹⁶	Life (yrs) ²¹⁷		
CFL lamp	\$8.91	0.63 years		
Incandescent lamp	\$7.39	0.14 years		

MEASURE CODE:

²¹⁵ Negative value because this is an increase in heating consumption due to the efficient lighting.

²¹⁶ Includes cost of labor and new replacement bulb. Labor cost of \$6.25 based on 15 minutes (including portion of travel time) and \$25 per hour, which is in line with the typical prevailing wage of a General Laborer, as per the Annual Wage Order No. 23 published by the Missouri Department of Labor. Cost of new 7W CFL bulb is \$2.66, from Itron "2010-2012 WO017 Ex Ante Measure Cost Study Final Report." Prepared for California Public Utilities Commission, May 27, 2014.

²¹⁷ ENERGY STAR® "Save Energy, Money and Prevent Pollution with LED Exit Signs" states that CFL bulbs for exit signs typically have an average rated life of 5,000-6,000 hours. Given 24/7 run time, assume a CFL in an exit sign will require replacement every 0.63 years (5,500 hours/8,766 hours).

2.6.4 LED Specialty Lamp (Available for Income Eligible and BSS programs)

DESCRIPTION

This characterization provides savings assumptions for LED directional, decorative, and globe lamps. This characterization assumes that the LED is installed in a commercial location. This is therefore appropriate for commercially targeted programs, or, if the implementation strategy does not allow for the installation location to be known (e.g., an upstream retail program), utilities should develop an assumption of the Residential v Nonresidential split and apply the relevant assumptions to each portion.

Federal legislation stemming from the EISA requires all general-purpose light bulbs between 40W and 100W to be approximately 30% more energy efficient than standard incandescent bulbs. Production of 100W, standard efficacy incandescent lamps ended in 2012, followed by restrictions on 75W lamps in 2013 and 60W and 40W lamps in 2014. The baseline for this measure has therefore become bulbs (improved incandescent or halogen) that meet the new standard.

A provision in the EISA regulations requires that by January 1, 2020, all lamps meet efficiency criteria of at least 45 lumens per watt, in essence making the baseline equivalent to a current day CFL. However, in 2019, the Department of Energy issued two final rules and clarified that a) the EISA backstop provision had not been triggered and therefore b) the efficiency standard would not change in 2020. As of 10/15/2020, the 45 lumen per watt EISA standard is not effective.

This measure was developed to be applicable to the following program types: TOS and RF. If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

In order for this characterization to apply, new lamps must be ENERGY STAR® labeled based upon the ENERGY STAR® specification v2.0 which will become effective on 1/2/2017.(https://www.energystar.gov/ia/partners/prod_development/revisions/downloads/eps_spec_v2.pdf). Qualification could also be based on the Design Light Consortium's qualified product list.²¹⁸

DEFINITION OF BASELINE EQUIPMENT

The baseline condition for this measure is assumed to be an EISA-qualified halogen or incandescent.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

See Lighting EUL Reference Table for EUL values by Lighting Measure Group.

DEEMED MEASURE COST

Wherever possible, actual incremental costs should be used. If unavailable, assume the following incremental costs:²¹⁹

²¹⁸ https://www.designlights.org/QPL

²¹⁹ Incandescent based on "2010-2012 WA017 Ex Ante Measure Cost Study Draft Report," Itron, February 28, 2014. LED lamp costs are based on a 2014/2015 VEIC review of a year's worth of LED sales through VEIC implemented programs. The retail cost was averaged and then DOE price projection trends (from Department of Energy, 2012; "Energy Savings Potential of Solid-State Lighting in General Illumination Applications," Table A.1) used to decrease the cost for a 2017 TRM assumption (see 2015 LED Sales Review.xls). LED costs are falling rapidly and should be reviewed in each update cycle

Bulb Type	LED Wattage	LED	Incandescent	Incremental Cost
Dimantiamal	< 20W	\$14.52	\$6.31	\$8.21
Directional	≥20W	\$45.85	\$0.31	\$39.54
	<15W	\$8.09		\$4.17
Decorative	15 to <25W	\$15.86	\$3.92	\$11.94
	≥25W	\$15.86		\$11.94

LOADSHAPE

Lighting BUS
Ext Lighting BUS
Miscellaneous BUS

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

$$\Delta kWh = \frac{Watts_{Base} - Watts_{EE}}{1000} * Hours * WHF_e * ISR$$

Where:

WattsBase	= Based on bulb	type and lumens	of LED b	bulb installed.	See table
-----------	-----------------	-----------------	----------	-----------------	-----------

below.

Wattsee = Actual wattage of LED purchased / installed - If unknown, use default

provided below:²²⁰

Hours = Average hours of use per year as provided by the customer or selected

from the Lighting Reference Table in Section 2.6 and based upon

Building Type. If unknown, use the C&I Average value.

WHFe = Waste heat factors for energy to account for cooling energy savings

from efficient lighting are provided for each Building Type in the Lighting Reference Table in Section 2.6. If unknown, use the C&I

Average value.

ISR = In Service Rate represents the percentage of reported lamps or fixtures

that is installed and operating and varies with the program delivery approach. Use 100% for programs with direct installation and/or installation verification procedures (e.g., verification inspections for a sample of projects); use 98.7% for program delivery without installation

²²⁰ Watts_{EE} defaults are based upon the average available ENERGY STAR® product, accessed 06/18/2015. For any lumen range where there is no ENERGY STAR® product currently available, Watts_{EE} is based upon the ENERGY STAR® minimum luminous efficacy (55Lm/W for lamps with rated wattages less than 15W and 65 Lm/W for lamps with rated wattages ≥ 15 watts) for the mid-point of the lumen range. See calculation at "cerified-light-bulbs-2015-06-18.xlsx." These assumptions should be reviewed regularly to ensure they represent the available product.

verification. ²²¹ The ISR may also be set to 100% if the installation
verification is embedded in other evaluation adjustments.

Bulb Type	Lower Lumen Range	Upper Lumen Range	Watts _{Base}	Wattsee	Delta Watts
Directional	250	349	25	5.6	19.4
	350	399	35	6.3	28.7
	400	599	40	7.5	32.5
	600	749	60	9.7	50.3
	750	999	75	12.7	62.3
	1000	1250	100	16.2	83.8
Decorative	70	89	10	1.8	8.2
	90	149	15	2.7	12.3
	150	299	25	3.2	21.8
	300	499	40	4.7	35.3
	500	699	60	6.9	53.1
Globe	250	349	25	4.1	20.9
	350	499	40	5.9	34.1
	500	574	60	7.6	52.4
	575	649	75	13.6	61.4
	650	1099	100	17.5	82.5
	1100	1300	150	13.0	137.0

Heating Penalty:

If electrically heated building:222

$$\Delta kWh_{heatpenalty} = \frac{Watts_{Base} - Watts_{EE}}{1000} * Hours * ISR * (-IF_{kWH})$$

Where:

IF_{kWh} = Lighting-HVAC Interaction Factor for electric heating impacts; this factor represents the increased electric space heating requirements due to the reduction of waste heat rejected by the efficient lighting. Values are provided in the Lighting Reference Table in Section 2.6 and based upon

Building Type. If unknown, use the C&I Average value.

²²¹ Based on results presented in Ameren Missouri Lighting Impact and Process Evaluation: Program Year 2015. This value takes into account the time-delay of when bulbs are installed over subsequent program years. The reported ISR is based on the net present value (NPV) of the savings over 4 year installation period from the PY15 bulbs, discounted back to Year 1 at 6.95% (utility discount rate). These evaluation results are from a retail-based lighting program with multiple delivery channels including point-of-sale markdown, online website, coupons, and social marketing distribution.

²²² Results in a negative value because this is an increase in heating consumption due to the efficient lighting.

SUMMER COINCIDENT PEAK DEMAND SAVINGS

$$\Delta kW = \Delta kWh * CF$$

Where:

CF = Summer peak coincidence demand (kW) to annual energy (kWh) factor

 $= 0.0001899635^{223}$ for indoor lighting = 0.0000056160 for exterior lighting

= 0.0001379439 for exterior 24/7 lighting

Other factors as defined above.

NATURAL GAS SAVINGS

Heating penalty if fossil fuel heated building (or if heating fuel is unknown):²²⁴

$$\Delta Therms = \frac{Watts_{Base} - Watts_{EE}}{1000} * Hours * ISR * (-IF_{therms})$$

Where:

IF_{Therms} = Lighting-HVAC Interaction Factor for gas heating impacts; this factor represents the increased gas space heating requirements due to the reduction of waste heat rejected by the efficient lighting. Values are provided in the Lighting Reference Table in Section 2.6 and based upon Building Type. If unknown, use the C&I Average value.

DEEMED O&M COST ADJUSTMENT CALCULATION

O&M cost should be applied as follows:

²²³ Ameren Missouri TRM Volume 1 - Appendix G: "Table 2 – Commercial and Industrial End Use Category Monthly Shapes and Coincident Peak Factors."

²²⁴ Ibid.

Installation Location	Replacement Period (years) ²²⁵	Replacement Cost ²²⁶	
Large Office	0.32		
Medium Office	0.32		
Small Office	0.35		
Warehouse	0.35		
Stand-alone Retail	0.29		
Strip Mall	0.27		
Primary School	0.29	Decorative: \$6.31	
Secondary School	0.29		
Supermarket	0.27		
Quick Service Restaurant	0.16	Directional:	
Full Service Restaurant	0.16	\$3.92	
Hospital	0.26		
Outpatient Health Care	0.26		
Small Hotel - Building	0.27		
Large Hotel - Building	0.27		
Midrise Apartment - Building	0.35		
C&I Average	0.30		

MEASURE CODE:

²²⁵ Calculated by dividing assumed rated life of baseline bulb by hours of use. Assumed lifetime of EISA qualified Halogen/ Incandescent is 1000 hours. The manufacturers are simply using a regular incandescent lamp with halogen fill gas rather than Halogen Infrared to meet the standard (as provided by G. Arnold, NEEP and confirmed by N. Horowitz at NRDC).

²²⁶ Incandescent costs based on "2010-2012 WA017 Ex Ante Measure Cost Study Draft Report," Itron, February 28, 2014.

2.6.5 Lighting Power Density (Available for Income Eligible and BSS programs)

DESCRIPTION

This measure entails the installation of efficient lighting systems in either new construction or during substantial renovation of commercial buildings that triggers compliance with code. This methodology applies to situations where code specifies maximum lighting power density allowances (W/ft²). Either the Building Area Method or Space-by-Space (not recognized by IECC 2009) method as defined in IECC 2009, 2012, 2015, 2018, 2021, or 2024 can be used for calculating the Interior Lighting Power Density (LPD).²²⁷ The measure consists of a design that has a lower LPD than code requires.

This measure was developed to be applicable to the following program types: NC and TOS. The measure is application for any project for which the project requires compliance with building code. If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

In order for this characterization to apply, the lighting system must be more efficient than the baseline energy code maximum lighting power density in watts/square foot for either the interior space or exterior space.the interior space.

DEFINITION OF BASELINE EQUIPMENT

The baseline is assumed to be the maximum lighting power density that meets the building code recognized by the local jurisdiction. In the absence of local energy building codes, and for areas with an IECC code version prior to 2018, the IECC 2018 is the baseline. For illustrative purposes in this characterization, IECC 2009, 2012, 2015, and 20182018, 2021 and 2024, are highlighted to demonstrate the methodology.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

See Lighting EUL Reference Table for EUL values by Lighting Measure Group.

DEEMED MEASURE COST

The actual incremental cost over a baseline system should be collected from the customer if possible or quantified using an alternative suitable source.

LOADSHAPE

Lighting BUS
Ext Lighting BUS
Miscellaneous BUS

²³³ Measure Life Report, Residential and Commercial/Industrial Lighting and HVAC Measures, GDS Associates, June 2007 (See page 1-3).

Algorithm

CALCULATION OF SAVINGS

ENERGY SAVINGS

$$\Delta kWh = \frac{WSF_{Base} - WSF_{EE}}{1000} * SF * Hours * WHF_{e}$$

Where:

WSF_{base} = Baseline lighting watts per square foot or linear foot as determined by

building or space type. IECC example whole building analysis values are

presented in the Reference Tables below.²²⁸

WSFEE = The actual installed lighting watts per square foot or linear foot.

SF = Provided by customer based on square footage of the building area

applicable to the lighting design for new building.

Hours = Annual site-specific hours of operation of the lighting equipment

collected from the customer or selected from the Reference Table in

Section 2.8 if unavailable.

= Waste Heat Factor for Energy to account for cooling savings from WHF_{e}

efficient lighting is as provided in the Reference Table in Section 2.8 for

each Building Type. If building is not cooled, the value is 1.0.

Heating Penalty

If electrically heated building:²²⁹

$$\Delta kWh_{heatpenalty} = \frac{WSF_{Base} - WSF_{EE}}{1000} * SF * Hours * (-IF_{kWH})$$

Where:

= Lighting-HVAC Interaction Factor for electric heating impacts; this IF_{kWh}

factor represents the increased electric space heating requirements due to the reduction of waste heat rejected by the efficient lighting. Values are provided in the Reference Table in Section 2.8. If unknown, use the C&I

Average value.

SUMMER COINCIDENT PEAK DEMAND SAVINGS

²³³ Measure Life Report, Residential and Commercial/Industrial Lighting and HVAC Measures, GDS Associates, June 2007 (See page 1-3).

²³³ Measure Life Report, Residential and Commercial/Industrial Lighting and HVAC Measures, GDS Associates, June 2007 (See page 1-3).

$$\Delta kW = \Delta kWh *x CF$$

Where:

CF = Summer peak coincidence demand (kW) to annual energy (kWh) factor

 $= 0.0001899635^{230}$ for indoor lighting

= 0.0000056160 for exterior lighting

= 0.0001379439 for exterior 24/7 lighting

Other factors as defined above.

NATURAL GAS ENERGY SAVINGS

Heating interactive loss is calculated as:

$$\Delta Therms = \frac{WSF_{Base} - WSF_{EE}}{1000} * x SF * x Hours * x (-IF_{therms})$$

Where:

IF_{Therms} = Lighting-HVAC Integration Factor for gas heating impacts; this factor

represents the increased gas space heating requirements due to the reduction of waste heat rejected by the efficient lighting. Please select from

the Reference Table in Section 2.8 for each Building Type.

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

²³³ Measure Life Report, Residential and Commercial/Industrial Lighting and HVAC Measures, GDS Associates, June 2007 (See page 1-3).

REFERENCE TABLES

Lighting Power Density Values from IECC 2009, 2012 and 20152015, 2018, 2021 for Interior Commercial New Construction and Substantial Renovation Building Area Method. The IECC 2024 has not been published as of June 2024. The IECC 2015 values are provided for comparison, as the base models for developing the LPD standard did not include LED lighting.

Building Area Type ²³¹	IECC 2009 2015 Lighting Power Density (w/ft²)	IECC 2012 2018 Lighting Power Density (w/ft²)	IECC 2015 2021 Lighting Power Density (w/ft²)
Automotive	0.80.80.80.9	0.710.710.710.9	0.750.750.750.80
facilityAutomotive Facility			
Convention	1.011.011.011.2	0.760.760.761.2	0.640.640.641.01
centerConvention Center			
CourthouseCourt House	1.011.011.011.2	0.90.90.91.2	0.790.790.791.01
Dining: bar	1.011.011.011.3	0.90.90.91.3	0.80.80.81.01
lounge/leisureDining: Bar Lounge/Leisure			
Dining: cafeteria/fast	0.90.90.91.4	0.790.790.791.4	0.760.760.760.9
toodDining: Cafeteria/Fast Food			
Dining: familyDining: Family	0.950.950.951.6	0.780.780.781.6	0.710.710.710.95
Dormitory Dormitory	0.570.570.571.0	0.610.610.611.0	0.530.530.530.57
Exercise centerExercise Center	0.840.840.841.0	0.650.650.651.0	0.720.720.720.84
Fire station Fire station	0.670.670.671.0	0.530.530.530.8	0.560.560.560.67
GymnasiumGymnasium	0.940.940.941.1	0.680.680.681.1	0.760.760.760.94
Health care clinicHealthcare – clinic	0.90.90.91.0	0.820.820.821.0	0.810.810.810.90
Hospital Hospital	1.051.051.051.2	1.051.051.051.2	0.960.960.961.05
Hotel/MotelHotel	0.870.870.871.0	0.750.750.751.0	0.560.560.560.87
LibraryLibrary	1.191.191.191.3	0.780.780.781.3	0.830.830.831.19
Manufacturing	1.171.171.171.3	0.90.90.91.3	0.820.820.821.17
facilityManufacturing Facility			
Motion picture theaterMotel	0.760.760.761.0	0.830.830.831.0	0.440.440.440.87
Multiple FamilyMotion Picture Theater	0.510.510.511.2	0.680.680.681.2	0.450.450.450.76
MuseumMultifamily	1.021.021.020.7	1.061.061.060.7	0.550.550.550.51
OfficeMuseum	0.820.820.821.1	0.790.790.791.1	0.640.640.641.02
Parking garageOffice	0.210.210.211.0	0.150.150.150.9	0.180.180.180.82

²³³ Measure Life Report, Residential and Commercial/Industrial Lighting and HVAC Measures, GDS Associates, June 2007 (See page 1-3).

2025 MEEIA 4 Plan Revision 7.0 Page 156

PenitentiaryParking Garage	0.810.810.810.3	0.750.750.750.3	0.690.690.690.21
Performing arts	1.391.391.391.0	1.181.181.181.0	0.840.840.840.81
theaterPenitentiary			
Police stationPerforming Arts	0.870.870.871.6	0.80.80.81.6	0.660.660.661.39
Theater			
Post officePolice Station	0.870.870.871.0	0.670.670.671.0	0.650.650.650.87
Religious buildingPost	1111.1	0.940.940.941.1	0.670.670.670.87
Office			
RetailReligious Building	1.261.261.261.3	1.061.061.061.3	0.840.840.841.0
School/universityRetail ²³²	0.870.870.871.5	0.810.810.811.4	0.720.720.721.26
Sports	0.910.910.911.2	0.870.870.871.2	0.760.760.760.87
arenaSchool/University			
Town hallSports Arena	0.890.80.891.1	0.80.710.81.1	0.690.750.690.91
TransportationTown Hall	0.70.71.1	0.610.611.1	0.50.50.89
WarehouseTransportation	0.660.661.0	0.480.481.0	0.450.450.70
WorkshopWarehouse	1.191.190.8	0.90.90.6	0.910.910.66
	0.81.4	0.711.4	0.751.19

Lighting Power Density Values from IECC 2012 for Interior Commercial New Construction and Substantial Renovation Space by Space Method

2025 MEEIA 4 Plan Revision 7.0 Page 157

²³³ Measure Life Report, Residential and Commercial/Industrial Lighting and HVAC Measures, GDS Associates, June 2007 (See page 1-3).

TABLE C405.5.2(2) INTERIOR LIGHTING POWER ALLOWANCES: SPACE-BY-SPACE METHOD

COMMON SPACE-BY-SPACE TYPES	LPD (w/ft²)
Atrium – First 40 feet in height	0.03 per ft. ht
Atrium - Above 40 feet in height	0.02 per ft. ht
Audience/seating area – permanent For auditorium For performing arts theater For motion picture theater Classroom/lecture/training Conference/meeting/multipurpose Corridor/transition	0.9 2.6 1.2 1.30 1.2 0.7
Dining area Bar/lounge/leisure dining Family dining area	1.40 1.40
Dressing/fitting room performing arts theater	1.1
Electrical/mechanical	1.10
Food preparation	1.20
Laboratory for classrooms	1.3
Laboratory for medical/industrial/research	1.8
Lobby	1.10
Lobby for performing arts theater	3.3
Lobby for motion picture theater	1.0
Locker room	0.80
Lounge recreation	0.8
Office – enclosed	1.1
Office – open plan	1.0
Restroom	1.0
Sales area	1.6ª
Stairway	0.70
Storage	0.8
Workshop	1.60
Courthouse/police station/penetentiary Courtroom Confinement cells Judge chambers Penitentiary audience seating Penitentiary classroom Penitentiary dining	1.90 1.1 1.30 0.5 1.3 1.1
BUILDING SPECIFIC SPACE-BY-SPACE	TYPES
Automotive – service/repair	0.70
Bank/office – banking activity area	1.5
Dormitory living quarters	1.10
Gymnasium/fitness center Fitness area Gymnasium audience/seating Playing area	0.9 0.40 1.40

(continued)

TABLE C405.5.2(2)—continued INTERIOR LIGHTING POWER ALLOWANCES: SPACE-BY-SPACE METHOD

COMMON SPACE-BY-SPACE TYPES	LPD (w/ft²)
Healthcare clinic/hospital	
Corridors/transition	1.00
Exam/treatment	1.70
Emergency	2.70
Public and staff lounge	0.80
Medical supplies	1.40
Nursery	0.9
Nurse station	1.00
Physical therapy	0.90
Patient room	0.70
Pharmacy	1.20
Radiology/imaging	1.3
Operating room	2.20
Recovery	1.2
Lounge/recreation	0.8
Laundry – washing	0.60
, ,	
Hotel Dising area	1.20
Dining area	1.30
Guest rooms	1.10
Hotel lobby	2.10
Highway lodging dining	1.20
Highway lodging guest rooms	1.10
Library	
Stacks	1.70
Card file and cataloguing	1.10
Reading area	1.20
Manufacturing	
Corridors/transition	0.40
Detailed manufacturing	1.3
Equipment room	1.0
Extra high bay (> 50-foot floor-ceiling height)	1.1
High bay (25- – 50-foot floor-ceiling height)	1.20
Low bay (< 25-foot floor-ceiling height)	1.20
	1.2
Museum	
General exhibition	1.00
Restoration	1.70
Parking garage – garage areas	0.2
Convention center	
Exhibit space	1.50
Audience/seating area	0.90
	- 0.70
Fire stations	0.00
Engine room	0.80
Sleeping quarters	0.30
Post office	0.0
Sorting area	0.9
Religious building	
	0.60
Fellowship hall	
Audience seating	2.40
Worship pulpit/choir	2.40
Retail	
Dressing/fitting area	0.9
Mall concourse	1.6
Sales area	1.6a

(continued)

TABLE C405.5.2(2)—continued INTERIOR LIGHTING POWER ALLOWANCES: SPACE-BY-SPACE METHOD

BUILDING SPECIFIC SPACE-BY-SPACE TYPES	LPD (w/ft ²)	
Sports arena		
Audience seating	0.4	
Court sports area – Class 4	0.7	
Court sports area – Class 3	1.2	
Court sports area – Class 2	1.9	
Court sports area - Class 1	3.0	
Ring sports area	2.7	
Transportation	The Contraction	
Air/train/bus baggage area	1.00	
Airport concourse	0.60	
Terminal - ticket counter	1.50	
Warehouse		
Fine material storage	1.40	
Medium/bulky material	0.60	

Lighting Power Density Values from IECC 2015 for Interior Commercial New Construction and Substantial Renovation Space by Space Method:

TABLE C405.4.2(2) INTERIOR LIGHTING POWER ALLOWANCES: SPACE-BY-SPACE METHOD

TABLE C405.4.2(2)—continued INTERIOR LIGHTING POWER ALLOWANCES: SPACE-BY-SPACE METHOD COMMON SPACE TYPES* LPD (watta/sq.ft)

0.47

1.43 1.81 0.6 0.47

1.8 0.64 1.06 0.59 2.0 0.9 0.75 0.92 0.73

1.11 0.98 0.19 1.68

1.21 0.98 1.59 0.54 0.69 0.63 0.67 1.59 LPD (watts/sq.ft)

2.21

0.38

0.72

COMMON SPACE TYPES	LPD (watts/sq.ft)	COMMON SPACE TYPES*	LPD (
Atrium	LPD (wattered.it)	Food preparation area	
Atrium	0.02	Guest room	-
Less than 40 feet in height	0.03 per foot in total height	I IT 1	
		In or as a classroom	
Greater than 40 feet in height	0.40 + 0.02 per foot in total height	Otherwise	
A 11	in total neight	Laundry/washing area	
Audience seating area	3	Loading dock, interior	
In an auditorium	0.63	Lobby	
In a convention center	0.82	In a facility for the visually impaired (and not used primarily by the staff) ^b	
In a gymnasium	0.65	For an elevator	
In a motion picture theater	1.14	In a hotel	
In a penitentiary	0.28	In a motion picture theater	
In a performing arts theater	2.43	In a performing arts theater	
In a religious building	1.53	Otherwise	
-	0.43	Locker room	1
In a sports arena		Lounge/breakroom	
Otherwise	0.43	In a healthcare facility	1
Banking activity area	1.01	Otherwise	5 1
Breakroom (See Lounge/Breakroom)	-0.0	Office	
Classroom/lecture hall/training room	7	Enclosed	
In a penitentiary	1.34	Open plan	
Otherwise	1.24	Parking area, interior	
	1.23	Pharmacy area	
Conference/meeting/multipurpose room	(27/7/7/10)	Restroom	d.
Copy/print room	0.72	In a facility for the visually impaired (and not used primarily by the staff	
Corridor	103	Otherwise	2
In a facility for the visually impaired (and	0.92	Sales area	2
not used primarily by the staff) ^b	0.52	Seating area, general	
In a hospital	0.79	Stairway (See space containing stairway)	2
In a manufacturing facility	0.41	Stairwell	
Otherwise	0.66	Storage room	
Courtroom	1.72	Vehicular maintenance area	
Computer room	1.71	Workshop	
	1./1	BUILDING TYPE SPECIFIC SPACE TYPES*	LPD (
Dining area		Facility for the visually impaired ^b	
In a penitentiary	0.96	In a chapel (and not used primarily by the staff)	
In a facility for the visually impaired (and not used primarily by the staff) ^b	1.9	In a recreation room (and not used primarily by the staff)	
In bar/lounge or leisure dining	1.07	Automotive (See Vehicular Maintenance Area a	horra)
In cafeteria or fast food dining	0.65	Convention Center—exhibit space	10010)
In family dining	0.89	Dormitory—living quarters	-
	1 1000000000000000000000000000000000000	Fire Station—sleeping quarters	- 1
Otherwise	0.65	Gymnasium/fitness center	
Electrical/mechanical room	0.95	In an exercise area	1
Emergency vehicle garage	0.56	In a playing area	

(continued) (continued)

TABLE C405.4.2(2)—continued INTERIOR LIGHTING POWER ALLOWANCES: SPACE-BY-SPACE METHOD

BUILDING TYPE SPECIFIC SPACE TYPES*	LPD (watts/sq.ft)
healthcare facility	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
In an exam/treatment room	1.66
In an imaging room	1.51
In a medical supply room	0.74
In a nursery	0.88
In a nurse's station	0.71
In an operating room	2.48
In a patient room	0.62
In a physical therapy room	0.91
In a recovery room	1.15
Library	
In a reading area	1.06
In the stacks	1.71
Manufacturing facility	
In a detailed manufacturing area	1.29
In an equipment room	0.74
In an extra high bay area (greater than 50' floor-to-ceiling height)	1.05
In a high bay area (25-50' floor-to-ceiling height)	1.23
In a low bay area (less than 25' floor-to- ceiling height)	1.19
Museum	9
In a general exhibition area	1.05
In a restoration room	1.02
Performing arts theater—dressing room	0.61
Post Office—Sorting Area	0.94
Religious buildings	3 1 1 2 1 2
In a fellowship hall	0.64
In a worship/pulpit/choir area	1.53
Retail facilities	11363
In a dressing/fitting room	0.71
In a mall concourse	1.1
Sports arena—playing area	1,070
For a Class I facility	3.68
For a Class II facility	2.4
For a Class III facility	1.8
For a Class IV facility	1.2
Transportation facility	10000
In a baggage/carousel area	0.53
In an airport concourse	0.36
At a terminal ticket counter	0.8
Warehouse—storage area	14460
For medium to bulky, palletized items	0.58
For smaller, hand-carried items	0.95

a. In cases where both a common space type and a building area specific space type are listed, the building area specific space type shall apply

b. A 'Facility for the Visually Impaired' is a facility that is licensed or will be licensed by local or state authorities for senior long-term care, adult daycare, senior support or people with special visual needs.

The exterior lighting design will be based on the building location and the applicable "Lighting Zone" as defined in IECC 2015 Table C405.5.2(1) which follows. This table is identical to IECC 2012 Table C405.6.2(1) and IECC 2009 Table 505.6.2(1).

TABLE C405.5.2(1) EXTERIOR LIGHTING ZONES

LIGHTING ZONE	DESCRIPTION		
1	Developed areas of national parks, state parks, forest land, and rural areas		
2	Areas predominantly consisting of residential zoning, neighborhood business districts, light industrial with limited nighttime use and residential mixed-use areas		
3	All other areas not classified as lighting zone 1, 2 or 4		
4	High-activity commercial districts in major metropoli- tan areas as designated by the local land use planning authority		

The lighting power density savings will be based on reductions below the allowable design levels as specified in IECC 2009 Table 505.6.2(2), IECC 2012 Table C405.6.2(2) or IECC 2015 Table C405.5.2(2).

Allowable Design Levels from IECC 2009

TABLE 505.6.2(2) INDIVIDUAL LIGHTING POWER ALLOWANCES FOR BUILDING EXTERIORS

	8	Zone 1	Zone 2	Zone 3	Zone 4	
Base Site Allowance (Base allowance may be used in tradable or nontradable surfaces.)		500W	600W	750W	1300W	
0,000			Uncovered Parking Areas			
	Parking areas and drives	0.04 W/ft ²	0.06 W/ft ²	0.10 W/ft ²	0.13 W/ft ²	
	Building Grounds					
	Walkways less than 10 feet wide	0.7 W/linear foot	0.7 W/linear foot	0.8 W/linear foot	1.0 W/linear foot	
	Walkways 10 feet wide or greater, plaza areas special feature areas	$0.14~\mathrm{W/ft^2}$	0.14 W/ft ²	0.16 W/ft ²	0.2 W/ ft ²	
	Stairways	0.75 W/ft ²	1.0 W/ft ²	1.0 W/ft ²	1.0 W/ft ²	
Tradable Surfaces	Pedestrian tunnels	0.15 W/ft ²	0.15 W/ft ²	0.2 W/ft ²	0.3 W/ft ²	
(Lighting power		В	uliding Entrances and Exi	ta		
densities for uncovered parking areas, building grounds, building	Main entries	20 W/linear foot of door width	20 W/linear foot of door width	30 W/linear foot of door width	30 W/linear foot of door width	
entrances and exits, canopies and overhangs and outdoor sales areas	Other doors	20 W/linear foot of door width	20 W/linear foot of door width	20 W/linear foot of door width	20 W/linear foot of door width	
may be traded.)	Entry canopies	0.25 W/ft ²	0.25 W/ft ²	0.4 W/ft ²	0.4 W/ft ²	
	Sales Canopies					
	Free-standing and attached	0.6 W/ft ²	0.6 W/ft ²	0.8 W/ft ²	1.0 W/ft ²	
	Outdoor Sales					
	Open areas (including vehicle sales lots)	0.25 W/ft ²	0.25 W/ft ²	0.5 W/ft ²	0.7 W/ft ²	
	Street frontage for vehicle sales lots in addition to "open area" allowance	No allowance	lOW/linear foot	lOW/linear foot	30 W/linear foot	
Nontradable Surfaces (Lighting power density calculations for the following applications can be used only for the specific application and cannot be traded between surfaces or with other exterior lighting. The following allowances are in addition to any aldition to iny are addition to the "Tradable Surfaces"	Building facades	No allowance	0.1 W/ft ² for each illuminated wall or surface or 2.5 W/linear foot for each illuminated wall or surface length	0.15 W/ft ² for each illuminated wall or surface or 3.75 W/linear foot for each illuminated wall or surface length	0.2 W/ft ² for each illuminated wall or surface or 5.0 W/linear foot for each illuminated wall or surface length	
	Automated teller machines and night depositories	270 W per location plus 90 W per additional ATM per location	270 W per location plus 90 W per additional ATM per location	270 W per location plus 90 W per additional ATM per location	270 W per location plus 90 W per additional ATM per location	
	Entrances and gatehouse inspection stations at guarded facilities	0.75 W/ft ² of covered and uncovered area	0.75 W/ft ² of covered and uncovered area	0.75 W/ft ² of covered and uncovered area	0.75 W/ft ² of covered and uncovered area	
	Loading areas for law enforcement, fire, ambulance and other emergency service vehicles	0.5 W/ft ² of covered and uncovered area	0.5 W/ft ² of covered and uncovered area	0.5 W/ft ² of covered and uncovered area	0.5 W/ft ² of covered and uncovered area	
section of this table.)	Drive-up windows/doors	400 W per drive-through	400 W per drive-through	400 W per drive-through	400 W per drive-through	
	Parking near 24-hour retail entrances	800 W per main entry	800 W per main entry	800 W per main entry	800 W per main entry	

For SI: 1 foot = 304.8 mm, 1 watt per square foot = W/0.0929 m².

Allowable Design Levels from IECC 2012

TABLE C405.6.2(2) INDIVIDUAL LIGHTING POWER ALLOWANCES FOR BUILDING EXTERIORS

			LIGHTIN	IG ZONES		
		Zone 1	Zone 2	Zone 3	Zone 4	
Base Site Allowance (Base allowance is usable in tradable or nontradable surfaces.)		500 W	600 W	750 W	1300 W	
			Uncovered Parking Areas			
	Parking areas and drives	0.04 W/ft ²	0.06 W/ft ²	0.10 W/ft ²	0.13 W/ft ²	
	Building Grounds					
	Walkways less than 10 feet wide	0.7 W/linear foot	0.7 W/linear foot	0.8 W/linear foot	1.0 W/linear foot	
	Walkways 10 feet wide or greater, plaza areas special feature areas	0.14 W/ft ²	0.14 W/ft ²	0.16 W/ft ²	0.2 W/ft ²	
	Stairways	0.75 W/ft ²	1.0 W/ft ²	1.0 W/ft ²	1.0 W/ft ²	
Tradable Surfaces	Pedestrian tunnels	0.15 W/ft ²	0.15 W/ft ¹	0.2 W/ft ²	0.3 W/ft ²	
(Lighting power		E	uilding Entrances and Ex	its		
densities for uncovered parking areas, building grounds, building	Main entries	20 W/linear foot of door width	20 W/linear foot of door width	30 W/linear foot of door width	30 W/linear foot of door width	
entrances and exits, canopies and overhangs	Other doors	20 W/linear foot of door width	20 W/linear foot of door width	20 W/linear foot of door width	20 W/linear foot of door width	
and outdoor sales areas are tradable.)	Entry canopies	0.25 W/ft ²	0.25 W/ft ²	0.4 W/ft ²	0.4 W/ft ²	
are tradable.)	Sales Canopies					
	Free-standing and attached	0.6 W/ft²	0.6 W/ft ²	0.8 W/ft ²	1.0 W/ft ²	
	Outdoor Sales					
	Open areas (including vehicle sales lots)	0.25 W/ft ²	0.25 W/ft ²	0.5 W/ft ²	0.7 W/ft ²	
	Street frontage for vehicle sales lots in addition to "open area" allowance	No allowance	10 W/linear foot	10 W/linear foot	30 W/linear foot	
Nontradable Surfaces (Lighting power density calculations for the following applications can be used only for the specific application and cannot be traded between surfaces or with other exterior lighting. The following allowances are in addition to any allowance otherwise permitted in the "Tradable Surfaces"	Building facades	No allowance	0.1 W/ft² for each illuminated wall or surface or 2.5 W/linear foot for each illuminated wall or surface length	0.15 W/ft² for each illuminated wall or surface or 3.75 W/linear foot for each illuminated wall or surface length	0.2 W/ft ² for each illuminated wall or surface or 5.0 W/linear foot for each illuminated wall or surface length	
	Automated teller machines and night depositories	270 W per location plus 90 W per additional ATM per location	270 W per location plus 90 W per additional ATM per location	270 W per location plus 90 W per additional ATM per location	270 W per location plus 90 W per additional ATM per location	
	Entrances and gatehouse inspection stations at guarded facilities	0.75 W/ft ² of covered and uncovered area	0.75 W/ft ² of covered and uncovered area	0.75 W/ft ² of covered and uncovered area	0.75 W/ft ² of covered and uncovered area	
	Loading areas for law enforcement, fire, ambulance and other emergency service vehicles	0.5 W/ft ² of covered and uncovered area	0.5 W/ft ² of covered and uncovered area	0.5 W/ft² of covered and uncovered area	0.5 W/ft ² of covered and uncovered area	
section of this table.)	Drive-up windows/doors	400 W per drive-through	400 W per drive-through	400 W per drive-through	400 W per drive-through	
and the same of	Parking near 24-hour retail entrances	800 W per main entry	800 W per main entry	800 W per main entry	800 W per main entry	

For SI: 1 foot = 304.8 mm, 1 watt per square foot = W/0.0929 m².

Allowable Design Levels from IECC 2015

TABLE C405.5.2(2) INDIVIDUAL LIGHTING POWER ALLOWANCES FOR BUILDING EXTERIORS

		LIGHTING ZONES				
0.0000000000000000000000000000000000000		Zone 1	Zone 2	Zone 3	Zone 4	
Base Site Allowance (Base allowance is usable in tradable or nontradable surfaces.)		500 W	600 W	750 W	1300 W	
			Uncovered Parking Area	S	100000000000000000000000000000000000000	
	Parking areas and drives	0.04 W/ft ²	0.06 W/ft ²	0.10 W/ft ²	0.13 W/ft ²	
	Building Grounds					
	Walkways less than 10 feet wide	0.7 W/linear foot	0.7 W/linear foot	0.8 W/linear foot	1.0 W/linear foot	
	Walkways 10 feet wide or greater, plaza areas special feature areas	0.14 W/ft²	0.14 W/ft²	0.16 W/ft²	0.2 W/ft²	
	Stairways	0.75 W/ft ²	1.0 W/ft ²	1.0 W/ft ²	1.0 W/ft ²	
Tradable Surfaces	Pedestrian tunnels	0.15 W/ft ²	0.15 W/ft ²	0.2 W/ft ²	0.3 W/ft ²	
(Lighting power densities for uncovered		E	Building Entrances and Ex	its		
parking areas, building grounds, building	Main entries	20 W/linear foot of door width	20 W/linear foot of door width	30 W/linear foot of door width	30 W/linear foot of door width	
entrances and exits, canopies and overhangs and outdoor sales areas	Other doors	20 W/linear foot of door width				
and outdoor sales areas are tradable.)	Entry canopies	0.25 W/ft ²	0.25 W/ft ²	0.4 W/ft ²	0.4 W/ft ²	
	Sales Canopies					
	Free-standing and attached	0.6 W/ft ²	0.6 W/ft ²	0.8 W/ft²	1.0 W/ft²	
	Outdoor Sales					
	Open areas (including vehicle sales lots)	0.25 W/ft ²	0.25 W/ft ²	0.5 W/ft²	0.7 W/ft²	
	Street frontage for vehicle sales lots in addition to "open area" allowance	No allowance	10 W/linear foot	10 W/linear foot	30 W/linear foot	
Nontradable Surfaces	Building facades	No allowance	0.075 W/ft² of gross above-grade wall area	0.113 W/ft² of gross above-grade wall area	0.15 W/ft² of gross above-grade wall area	
(Lighting power density calculations for the following applications can be used only for the specific application and cannot be traded between surfaces or with other exterior lighting. The following allowances are in addition to any allowance otherwise	Automated teller machines (ATM) and night depositories	270 W per location plus 90 W per additional ATM per location	270 W per location plus 90 W per additional ATM per location	270 W per location plus 90 W per additional ATM per location	270 W per location plus 90 W per additional ATM per location	
	Entrances and gatehouse inspection stations at guarded facilities	0.75 W/ft² of covered and uncovered area	0.75 W/ft² of covered and uncovered area	0.75 W/ft² of covered and uncovered area	0.75 W/ft² of covered and uncovered area	
	Loading areas for law enforcement, fire, ambulance and other emergency service vehicles	0.5 W/ft² of covered and uncovered area	0.5 W/ft² of covered and uncovered area	0.5 W/ft ² of covered and uncovered area	0.5 W/ft² of covered and uncovered area	
permitted in the "Tradable Surfaces"	Drive-up windows/doors	400 W per drive-through				
section of this table.)	Parking near 24-hour retail entrances	800 W per main entry				

For SI: 1 foot = 304.8 mm, 1 watt per square foot = $W/0.0929 \text{ m}^2$. W = watts.

MEASURE CODE

2.6.6 Lighting Controls

DESCRIPTION

The lighting controls measure is applicable to the installation of occupancy sensors, daylighting sensors, networked lighting controls (NLC) and luminaire level lighting controls (LLLC). Associated energy savings depends on the building type, location area covered, type of lighting, activity, occupancy pattern and control strategies.

This measure relates to the installation of lighting controls with a new or existing interior lighting system, that are not required by local building energy codes.

This measure was developed to be applicable to the following program types: TOS and RF. If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

The measure characterization applies to fixture-mounted occupancy sensors, remote mounted occupancy sensors, networked lighting controls (NLC) and LED fixtures equipped with light level luminaire control (LLLC). For LLLC fixtures, this measure applies to the control strategies (trimming the base wattage, dimming, occupancy, daylighting). The base watt reduction for LLLC fixtures over the existing or code based fixture is not characterized by this measure, but by measure 2.6.1 LED Bulbs and Fixtures. Also, not characterized for LLLC fixtures are HVAC temperature and humidity setback sensing.

DEFINITION OF BASELINE EQUIPMENT

The baseline efficiency case assumes lighting fixtures with only manual controls or no controls. When controls are installed with new fixtures, replacing existing fixtures, the controlled wattage is based on the new system.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life for occupancy sensors and daylight sensor is assumed to be 10 years.²³³

The expected measure life for NLC and LLLC controls is assumed to align with the fixture life, at 15 years.

DEEMED MEASURE COST

When available, the actual cost of the measure shall be used. When not available, the following default values are provided:

Lighting control type	Cost
Full cost of fixture mounted occupancy sensor, <200W	\$65 per sensor ²³⁴
Full cost of fixture mounted occupancy sensor, >200W	\$138 per sensor
Full cost of remote (ceiling) mounted occupancy sensor	\$105 per sensor
Luminaire lighting level controls with fixture	\$53 per fixture ²³⁵
Network lighting controls, less than 10,000 SF	\$0.86 per SF ²³⁶

²³³ Measure Life Report, Residential and Commercial/Industrial Lighting and HVAC Measures, GDS Associates, June 2007 (See page 1-3).

2025 MEEIA 4 Plan Revision 7.0 Page 166

²³⁴Ameren DSM participant reported costs, 266 participants, 1/1/2019 through 7/1/2024, weighted average of 14,228 sensor cost with installation.

²³⁵NEEA, Northwest Energy Alliance, Table 11 page 11, Average of three systems, "2022 Luminaire Level Lighting Controls Incremental Cost Study", (March 2023), https://neea.org/img/documents/2022-Luminaire-Level-Lighting-Controls-Incremental-Cost-Study.pdf.

²³⁶ Lawrence Berkeley National Laboratory, Energy Solutions, for the California Energy Commission (April 2019), Average incremental cost of three building types by area, Page 62-63 Table 18 to 20, https://www.energy.ca.gov/sites/default/files/2021-06/CEC-500-2019-041.pdf.

Network lighting controls, 10,000 SF to 100,000 SF	\$0.59 per SF
Network lighting controls, more than 100,000 SF	\$0.44 per SF

LOADSHAPE

Lighting BUS Miscellaneous BUS Ext Lighting BUS

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

 $\Delta kWh = \sum_{i=1}^{n} (kW_{Controlled}x \ Hours \ x(ESF_{Occ} + ESF_{Trim} + ESF_{Other})x(WHF_e - IF_{heat}))$

Where:

 ΔkWh = Summation of controlled watts, hours of use, savings factors, waste

heater factor for each unique usage area

kWControlled = Lighting load controlled, kilowatts.

=Actual, default from table below may be used for fixture or remote

occupancy sensing. NLC and LLC to use actual only.

Lighting Control Type	Default kW controlled ²³⁷
Fixture-mounted occupancy sensor	0.138 (per fixture)
Remote (ceiling) mounted occupancy sensor	0.338 (per control)
Network, Luminaire level control	Custom

Hours = Annual operating hours per unique usage area.

=Actual, if unknown the hours by Building Type may be applied.

ESFocc = Energy Savings Factor (represents the percentage reduction to the

operating hours for occupancy sensing from the non-controlled

baseline lighting system).

=Actual, if unknown, the default values below.

ESF_{Trim} =Energy Savings Factor for high end trim adjustment or tuning with

> Network Lighting Controls with or without Luminaire Lighting Level Controls (represents percentage reduction to the base fixture wattage)

=(Fixture full wattage - Trimmed wattage)/Full wattage

ESFOther =Energy Savings Factor for NLC with additional strategies beyond

occupancy sensing or scheduling. Includes daylight harvesting, dimming, luminaire level lighting control, personal control. =Actual, if unknown the default values below may be used.

Efficiency Vermont Technical Reference Manual 12.31.2018, Page https://puc.vermont.gov/sites/psbnew/files/doc_library/Vermont%20TRM%20Savings%20Verification%202018%20Version_FIN AL.pdf.

Lighting Strategy by Equipment Type	Energy Savings Factor ²³⁸
Occupancy Sensing – Fixture, Remote, NLC, LLC	0.24
High End Trim - NLC	0.11^{239}
High End Trim – NLC + LLLC	0.28
Other strategies – NLC + LLLC	0.10

WHF_e = Waste heat factor for energy to account for cooling energy savings

from more efficient lighting is provided in the table, "C&I Lighting

Deemed Hours and Waste Heat Factors by Building Type".

IF_{heat} = Lighting-HVAC Interaction Factor for electric heating impacts; this

factor represents the increased electric space heating requirements due to the reduction of waste heat rejected by the efficient lighting. Values are provided in the table, "C&I Lighting Deemed Hours and

Waste Heat Factors by Building Type".

SUMMER COINCIDENT PEAK DEMAND SAVINGS

$$\Delta kW = \Delta kWh \times CF$$

Where:

 ΔkWh = As calculated above

CF = Summer peak coincidence demand (kW) to annual energy (kWh) factor.

 $= 0.0001899635^{240}$ for indoor lighting

= 0.0001379439 for Miscellaneous

= 0.0000056160 for exterior lighting

Natural Gas Energy Savings

If gas heated building (or unknown), the heating penalty is:

$$\Delta Therms = kW_{controlled} * Hours * ESF * (-IF_{therms})$$

$$\Delta Therms = \sum (kW_{controlled} * Hours * (ESF_{occ} + ESF_{Trim} + ESF_{Other}) * (-IF_{heat}))$$

Where:

²³⁸ Lawrence Berkeley National Laboratory. A Meta-Analysis of Energy Savings from Lighting Controls in Commercial Buildings. Page & Associates Inc. 2011 (Page 1).

https://eta.lbl.gov/publications/meta-analysis-energy-savings-lighting.

LBNL's meta study of energy savings from lighting controls in commercial buildings bases its savings analysis on over 240 actual field installations. The report found that savings are over-represented and do not filter for external factors such as building orientation, location, use, weather, blinds, commissioning, changes in behavior after controls are set, etc. As such, their value of 24% represented the best conservative estimate of occupancy controls energy savings achievable in the field today.

²³⁹NEEA, Northwest Energy Efficiency Alliance, Table 10 page 56, "Energy Savings from Networked Lighting Control Systems With and Without Luminaire Level Lighting Controls", https://neea.org/img/documents/Energy-Savings-from-Networked-Lighting-Control-Systems-With-and-Without-LLLC.pdf. The Table 10 Control Factor values for NLC and NLC + LLLC, were set as incremental values from a typical occupancy sensor savings factor of 0.24. The sum of all ESF total the reported values of 0.63 for NLC + LLLC and 0.35 for NLC.

²⁴⁰ Ameren Missouri TRM Volume 1 - Appendix G: "Table 2 – Commercial and Industrial End Use Category Monthly Shapes and Coincident Peak Factors"

IFTherms

= Lighting-HVAC Integration Factor for gas heating impacts; this factor represents the increased gas space heating requirements due to the reduction of waste heat rejected by the efficient lighting and is provided in the table, "C&I Lighting Deemed Hours and Waste Heat Factors by Building Type".

WATER IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE:

2.7 Miscellaneous

2.7.1 Computer Server

DESCRIPTION

This measure estimates savings for an energy efficient computer server with that has been certified to ENERGY STAR® (ES) Version 4.0.

This measure was developed to be applicable to the following program type: TOS. If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

The efficient product is computer server meeting the requirements set forth by ENERGY STAR® Version 4.0. The measure characterization includes computer server, blade systems (one or more blade servers), resilient server, and multi-node server. Power supply efficiency must meet the PSU criteria for 10%,20%, 50% and 100% load. The power supply must also meet the power factor criteria for ENERGY STAR® Version 4.0. The server must also meet the active state efficiency score requirements, which include the CPU efficiency, memory efficiency and storage efficiency. The table lists the minimum active efficiency by server type and installed processors.

DEFINITION OF BASELINE EQUIPMENT

Non ENERGY STAR® qualified computer server.

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The life of this measure is 4 years.²⁴¹

DEEMED MEASURE COST

The actual incremental cost of the equipment should be used, if unknown, the following estimates may be used.

Number Installed Processors	Equipment	Incremental cost ²⁴²
1	Rack	\$331
1	Tower	\$323
	Resilient	\$5000
	Rack	\$452
2	Tower	\$668
	Blade or Multi-Node	\$1225
	Resilient	\$5000
≥3	Rack	\$452

²⁴¹ Consistent with Energy Star® computing equipment. It is important to note that lifetime doesn't necessarily reflect the expected functional lifetime of mechanical components, but rather the lifetime of operating system technology, which is generally assumed to become obsolete after a period of four years.

²⁴² Internet online manufacturer product pricing difference for rack and tower, resilient and blade servers estimated with 20% incremental cost for ENERGY STAR certified equipment. Local file: "Server incremental cost.xlsx."

Blade or Multi-Node	\$1225
---------------------	--------

LOADSHAPE

Miscellaneous BUS

Algorithm

CALCULATION OF ENERGY SAVINGS

ELECTRIC ENERGY SAVINGS²⁴³

Annual energy savings are based on the number of installed processor and equipment type, as estimated by the ENERGY STAR® Computer Server Analysis calculator, with the results summarized in the following table²⁴⁴:

Number Installed Processors	Equipment	Minimum Score Eff _{Active}	Electric Savings kWh
	Rack	26.4	1,459
1	Tower	24.4	723
	Resilient	6.6	1,474
	Rack	30.4	2,542
2	Tower	26.5	2,028
	Blade or Multi-Node	29.1	1,574
	Resilient	6.0	0
≥3	≥3 Rack		10,218
	Blade or Multi-Node	26.8	3,903

SUMMER COINCIDENT PEAK DEMAND SAVINGS

 $\Delta kW = \Delta kWh * CF$

²⁴⁴ ENERGY STAR®, "Computer Servers Final Data and Analysis Package", Energy and Cost Savings worksheet, https://view.officeapps.live.com/op/view.aspx?src=https%3A%2F%2Fwww.energystar.gov%2Fsites%2Fdefault%2Ffiles%2Fasset %2Fdocument%2FENERGY%2520STAR%2520Version%25204.0%2520Computer%2520Servers%2520Final%2520Data%2520 and%2520Analysis%2520Package.xlsx&wdOrigin=BROWSELINK.

Where:

 Δ kWh = Energy Savings as calculated above

CF = Summer peak coincidence demand (kW) to annual energy (kWh) factor

 $= 0.0001379439^{245}$

NATURAL GAS SAVINGS

N/A

WATER AND OTHER NON-ENERGY IMPACT DESCRIPTIONS AND CALCULATION

N/A

DEEMED O&M COST ADJUSTMENT CALCULATION

N/A

MEASURE CODE:

²⁴⁵ Ameren Missouri TRM Volume 1 - Appendix G: "Table 2 – Commercial and Industrial End Use Category Monthly Shapes and Coincident Peak Factors"

2.8 Motors and Pumps

2.8.1 Motors

DESCRIPTION

This measure applies to the one-for-one replacement of an old, working or failed/near failure 1-350 horsepower, constant speed, uniformly loaded HVAC fan or pumping motor with a new motor of the same rated horsepower that meets or exceeds National Electrical Manufacturers Association (NEMA) Premium efficiency levels. The measure includes induction, reluctance, electronically commutated, and permanent magnet motors. Fire pump motors are excluded.

This measure was developed to be applicable to the following program type: RF, NC. If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

To qualify for this measure, the installed equipment must be a new motor that meets or exceeds NEMA Premium efficiency levels.

DEFINITION OF BASELINE EQUIPMENT

The baseline equipment efficiency is the efficiency of the existing motor for early replacements, or the Federal Energy Standards for normal replacements. ²⁴⁶

DEEMED LIFETIME OF EFFICIENT EQUIPMENT

The expected measure life is assumed to be 18 years.²⁴⁷

DEEMED MEASURE COST

Actual incremental costs should be used if available. If actual costs are unknown, use default installed cost from table below.²⁴⁸

Motor Size (HP)	Installed Cost
1	\$730
1.5	\$725
2	\$800
3	\$840
5	\$860
7.5	\$1,165
10	\$1,298
15	\$2,242
20	\$2,522
25	\$2,873
30	\$3,095
40	\$3,716

 $[\]underline{\text{DOE}|\text{Motors}|\text{https://www.ecfr.gov/current/title-}10/\text{chapter-II/subchapter-D/part-}431.}$

²⁴⁷ ASHRAE, Chapter 38: Owning and Operating Costs, Table 4, "Heating, Ventilating and Air Conditioning Applications", (2023 edition) for electric motors.("Updated 2014 EUL table" rows 40,52,131,134,627).

Installed costs from 2015-2016 Demand-Side Management Plan, Xcel Energy https://www.xcelenergy.com/staticfiles/xe/PDF/Regulatory/CO-DSM-2015-16-DSM-Plan.pdf (page 440).