

Exhibit No.: Weather Normalization;
Issue: 365-day Year Adjustment;
Rate Switchers and
Customer Growth; Energy
Efficiency Annualization
Witness: Albert R. Bass, Jr.
Type of Exhibit: Direct Testimony
Sponsoring Party: Evergy Missouri Metro
Case No.: ER-2026-0143
Date Testimony Prepared: February 6, 2026

MISSOURI PUBLIC SERVICE COMMISSION

CASE NO.: ER-2026-0143

DIRECT TESTIMONY

OF

ALBERT R. BASS, JR.

ON BEHALF OF

EVERGY MISSOURI METRO

**Kansas City, Missouri
February 2026**

TABLE OF CONTENTS

I. INTRODUCTION	1
II. WEATHER NORMALIZATION.....	3
III. 365-DAY ADJUSTMENT	11
IV. RATE SWITCHERS AND CUSTOMER GROWTH	12
V. ENERGY EFFICIENCY ANNUALIZATION	13
VI. CONCLUSION.....	17

**DIRECT TESTIMONY
OF
ALBERT R. BASS, JR.**

I. INTRODUCTION

Q: Please state your name and business address.

A: My name is Albert R. Bass, Jr. My business address is 1200 Main, Kansas City, Missouri 64105.

Q: By whom and in what capacity are you employed?

A: I am employed by Evergy Metro, Inc. d/b/a as Evergy Missouri Metro. I serve as Sr. Manager of Energy Forecasting and Analytics.

Q: On whose behalf are you testifying?

9 A: I am testifying on behalf of Every Missouri Metro (“Every Missouri Metro,” “EMM,”
10 or the “Company”).

11 Q: What are your responsibilities?

12 A: My responsibilities include supervising three employees with responsibility for short-term
13 electric load forecasting, long-term electric load forecasting, weather normalization, and
14 various other analytical tasks.

15 Q: Please describe your education, experience, and employment history.

16 A: I received a Bachelor of Science in Business Administration degree with an emphasis in
17 Marketing from Missouri Western State University in 1989. I earned a Master of Business
18 Administration degree from William Woods University in 1995.

1 Prior to joining EMM, I worked for APS Technologies developing product forecast
2 models and conducting market analysis. In June 1998, I joined EMM as a Technical
3 Professional. In this role, I conducted market analysis, developed market options studies,
4 and research. In May 2000, I assumed the responsibilities for short-term budget forecasting,
5 long-term load forecasting for the integrated resource plan, monthly kilowatt-hour
6 (“kWh”) sales and peak weather normalization, and weather normalization for rate case
7 filings. As part of these duties, I assisted with the creation of the weather normalization
8 testimony filed by EMM. In July 2013, I was promoted to Manager of Market Assessment.
9 In March 2017, I was promoted to my current position as Sr. Manager of Energy
10 Forecasting and Analytics.

11 **Q: Have you previously testified in a proceeding before the Missouri Public Service
12 Commission (“Commission” or “PSC”) or before any other utility regulatory agency?**

13 A: Yes, I have provided written testimony in multiple rate cases, both before the PSC and the
14 Kansas Corporation Commission (“KCC”).

15 **Q: What is the purpose of your testimony?**

16 A: The purpose of my direct testimony is to support:

17 I. Test-year weather normalized kWh sales and peak loads for the test-year period
18 of July 2024 through June 2025. This includes the development of rate class
19 and system weather normalization models and the estimation of weather
20 impacts;

21 II. Test year adjustment to a 365-day year;

22 III. Customer rate switchers and customer growth;

23 IV. Energy efficiency annualization;

V. Conclusion.

Q: Are you sponsoring any schedules with your testimony?

3 A: Yes, I am sponsoring Schedules ARB-1 through ARB-5, which include weather
4 normalization, annualization of sales to 365-day, rate switching, customer growth, Large
5 Power (“LP”) adjustment, and energy efficiency adjustment of test year monthly kWh sales
6 and peak loads. I recommend that the Commission adopt these results in the current case.

II. WEATHER NORMALIZATION

8 Q: Please describe the purpose of weather normalization in the ratemaking context.

9 A: The purpose of weather normalization is to adjust test-year sales and load for abnormal
10 weather conditions that may increase or decrease a utility company's revenues,
11 corresponding fuel costs, and rate of return. Accordingly, revenues and expenses are
12 adjusted to reflect the Company's future rates in relation to the weather (i.e., "weather
13 normalization"). These adjustments are made by first adjusting kWh sales and hourly loads
14 and then using those results to adjust test-year revenues and incremental costs (i.e., fuel
15 and purchased power). Sales are weather normalized at the rate level, which accounts for
16 differences in rate specific weather and load responses. Both monthly and hourly kWh sales
17 are adjusted to reflect normal weather conditions. This is called a weather normalization
18 adjustment.

19 Q: Which classes are weather normalized for the purpose of Class Cost of Service
20 (“CCOS”)?

21 A: The customers representing the following rate classes were weather normalized:
22 Residential General Service (“RGS”) – Time of Use (“TOU”) Default, TOU High
23 Differential, TOU Three Period, TOU Two Period, and Non-AMI Meter; Small General

Service (“SGS”) Primary Voltage; SGS Secondary Voltage; Medium General Service (“MGS”) Primary Voltage; MGS Secondary Voltage; Large General Service (“LGS”) Primary Voltage; LGS Secondary Voltage; Large Power (“LP”) Primary Voltage; LP Secondary Voltage; LP Substation; LP Transmission and Sales for Resale (“SFR”).

Are the classes being weather normalized different than past rate cases?

Yes. The rate codes being weather normalized in this case are at a lower level than past cases. Historically, only RGS, SGS, MGS, LGS, LP, and SFR where weather normalized at the aggregate level and were not broken out by TOU rate code or Voltage level.

Why was this change made?

The purpose of moving to normalization at the voltage level improves accuracy by aligning weather adjustments with the actual load characteristics and delivery infrastructure for each segment, rather than averaging across an entire class. This increased level of detail enables revenues to be more closely aligned to costs by the tariffed rates and enhances precision in rate design. Additional information about this change can be found in Brad Lutz's testimony.

Are additional adjustments made to test-year kWh sales?

Yes. The kWh sales are further adjusted for customer growth that occurs between the test-year and true-up date of June 2026 and for customers who switched from one rate to another rate during or after the test-year. These customers are known as rate switchers. Then kWh sales are also adjusted for energy efficiency that occurs between the test-year and two months prior to the true-up date of June 2026. An additional adjustment is made to account for any new large loads that will come into EMM's service territory during the test year through the true-up.

Please describe the test-year weather conditions relative to normal weather.

: During the test year (July 2024 through June 2025) the winter months were warmer than normal, and the summer months were cooler than normal across EMM's service territory, causing lower than normal heating and cooling load. Taken together, this results in a positive weather adjustment or an increase in test-period kWh sales. Table 1 & 2 below show the weather variance as measured by heating and cooling degree days to normal.

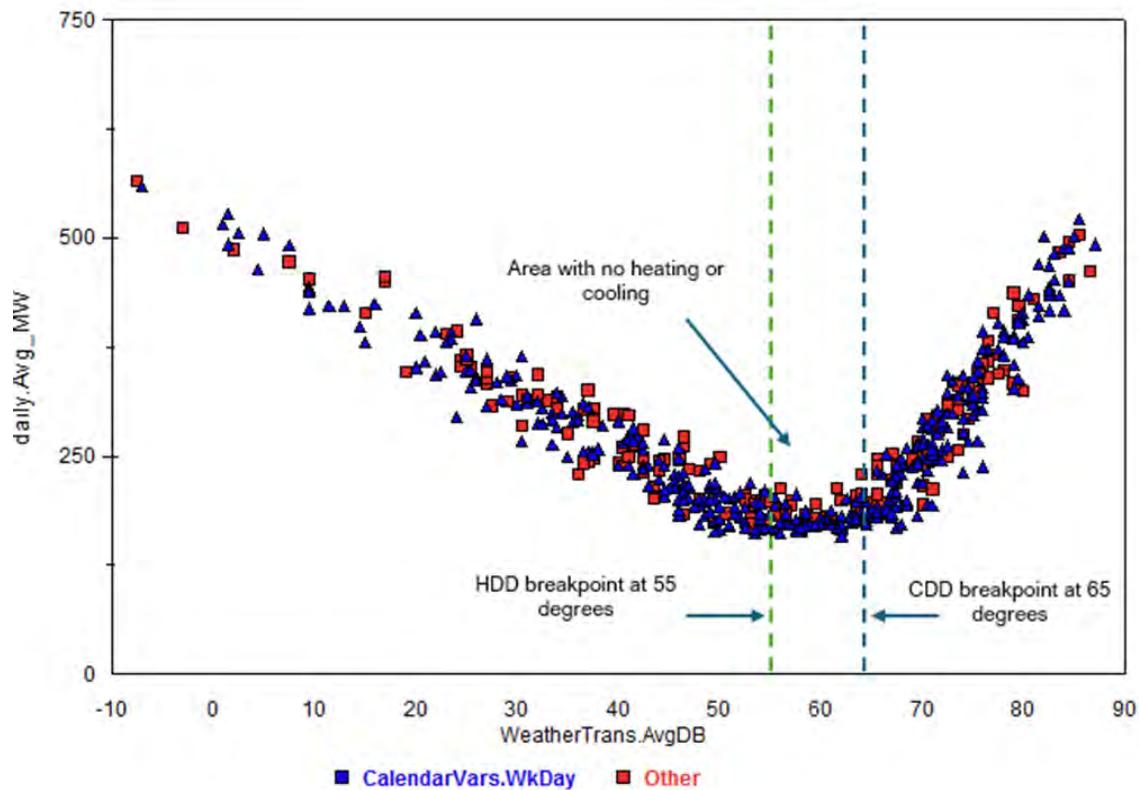
Table 1: Test-Year Weather Conditions

Weather Station	Heating Degree Day	Cooling Degree Day
Kansas City International Airport ("MCI")	5% below normal	5% below normal

Table 2: Test-Year Weather Conditions by Class

Class	Heating Degree Day	Cooling Degree Day
Res Non-TOU	9% below normal	7% below normal
Res Default TOU	6% below normal	6% below normal
Res TOU1 Three Period	9% below normal	6% below normal
Res TOU2 Two Period	9% below normal	6% below normal
Res TOU3 High Differential	9% below normal	6% below normal
SGS Secondary	2% below normal	4% below normal
SGS Primary	2% below normal	3% below normal
MGS Secondary	2% below normal	3% below normal
MGS Primary	2% below normal	3% below normal
LGS Secondary	5% below normal	3% below normal
LGS Primary	2% below normal	4% below normal
Large Power (All)	7% below normal	N/A

What are Heating Degree Days and Cooling Degree Days?


: Degree days are the difference between the daily temperature mean (high temperature plus low temperature divided by two) and a specified temperature breakpoint. Heating Degree Days (“HDD”) represent temperature below a specified temperature breakpoint and Cooling Degree Days (“CDD”) represent daily temperature above a specified temperature

1 breakpoint. Here is an example: a day with a high temperature of 80 degrees and low
2 temperature of 66 degrees has a mean temperature of 73 degrees. If the temperature
3 breakpoint is 65 degrees, then that day has 8 CDDs because the mean temperature of 73
4 degrees for the day is 8 degrees warmer than 65 degrees. Degree days are calculated for
5 cooling and heating because load response to temperature is a non-linear relationship. This
6 non-linear relationship results in increased load due to space heating when temperatures
7 are very low, reduced load during mild temperatures when there is minimal space heating
8 or space cooling, and increased load during warm temperatures due to space cooling.

9 **Q: What temperature variable, or breakpoints, did the Company use for normal HDD
10 and CDD?**

11 A: The Company used the temperature breakpoints between 50-55 (Class dependent) degrees
12 for HDD and between 55-65 (Class dependent) degrees for CDD for all classes. Based on
13 EMM customer load data as shown in Graph 1 below, electric load is lowest when daily
14 average temperatures are between 55 degrees and 65 degrees, indicating minimal use of
15 space heating and space cooling. This is referred to as a dead zone. Once daily average
16 temperatures rise above 65 degrees, electric load increases as cooling equipment is utilized.
17 Conversely, once daily average temperature falls below 50-55 degrees, electric load
18 increases as heating equipment is utilized. Table 3 shows the HDD variable, or breakpoint,
19 and CDD variable, or breakpoint, by class.

1

Graph 1: Residential Daily Average MW vs. Average Dry Bulb Temperature

2

3

Table 3: Test-Year Weather Variable and Conditions

Class	Heating Degree Day	Cooling Degree Day
Res Non-TOU	55	65
Res Default TOU	55	63
Res TOU1 Three Period	55	65
Res TOU2 Two Period	55	65
Res TOU3 High Differential	55	65
SGS Secondary	50	60
SGS Primary	50	60
MGS Secondary	50	60
MGS Primary	50	60
LGS Secondary	50	62
LGS Primary	50	60
LP Secondary	N/A	55
LP Primary	N/A	55
LP Substation	N/A	55
LP Transmission	N/A	55

1 **Q:** **What is the basis for normal HDD and CDD variables?**

2 A: Normal HDD and CDD are derived from National Oceanic and Atmospheric
3 Administration (“NOAA”) temperature data from Kansas City International Airport
4 (“KCI”) based on a 30-year average (1991-2020) of normal degree-days for the test-year
5 period. KCI weather station is utilized because it is the only Tier-1 weather station in the
6 region.

7 **Q:** **Why does the Company use a 30-year time interval to define normal weather?**

8 A: A 30-year normal helps to eliminate any outlier years of extreme weather (unusually hot
9 summer or cold winter) from biasing the entire data set. Traditionally, public utility
10 commissions have recommended using the time period that is used by NOAA to compute
11 normal weather statistics. NOAA computes normal weather statistics using the last three
12 decades, which are currently 1991-2020. NOAA re-computes and publishes normal
13 weather statistics every ten years at the end of a decade.

14 **Q:** **How are class hourly loads produced?**

15 A: The Company utilizes Advanced Metering Infrastructure (“AMI”) hourly load data, which
16 utilizes a convenience sample load for all customers with interval-capable meters in each
17 class (99+% sample for each class during the test year), scaled up to the total number of
18 class customers.

19 **Q:** **Describe how the cost-of-service class hourly load data was extracted from AMI.**

20 A: Metered hourly kWhs were extracted for each of EMM’s cost of service classes for the
21 period of July 1, 2024, through June 30, 2025. The hourly kWhs were adjusted each month
22 for any customers without interval capable meters by multiplying the class hourly kWh by

1 the following factor: $[\text{Billed Customer Count} - \text{AMI Customer Count}] \div \text{AMI Customer Count}$.

3 **Q: What classes had weather sensitivity?**

4 A: All classes showed some level of weather sensitivity. Some classes showed a higher level
5 of sensitivity (e.g., Residential General Service) while others showed a relatively small
6 weather impact (e.g., Large Power).

7 **Q: What method was used to weather-normalize kWh sales?**

8 A: The method used to weather-normalize kWh sales was based on AMI data, which was
9 derived by measuring hourly loads for EMM's customers representing the Residential
10 General Service, Small General Service - Primary and Secondary, Medium General Service
– Primary and Secondary, Large General Service - Primary and Secondary, and Large
12 Power – Primary, Secondary, Distribution and Transmission classes. The hourly loads
13 were grossed up by the ratio of the total number of customers to the number of customers
14 with AMI interval meters. There are seven steps to the process:

15 (1) The hourly AMI loads are validated.

16 (2) Hourly loads for the AMI data are calibrated to the annual billed sales of
17 all customers in each class. The ratio of the billed sales divided by the sum
18 of the hourly loads were multiplied by the load in each hour.

19 (3) The hourly loads are then estimated for lighting tariffs, and the loads for all
20 tariffs including full requirement (sales for resale) are grossed up for losses
21 and compared to the Net System Input (“NSI”). The difference between this
22 sum and the NSI was then allocated back to the AMI data in proportion to
23 the hourly class AMI data.

- (4) Regression analysis was used to model the hourly loads for each rate class. These models included a piecewise linear temperature response function of a two-day weighted mean temperature.
- (5) The temperature response function was used to compute daily weather adjustments as the difference between loads predicted with normal weather and loads predicted with actual weather. Weather data for normal and actual weather are from NOAA. Normal weather represents average weather conditions from 1991-2020.
- (6) The daily weather adjustments were split into hourly adjustments, and these were added to NSI to weather-normalize that series.
- (7) Finally, the daily weather adjustments were split into billing months based on the percentage of sales on each billing cycle and the meter reading schedule for the test year period. These weather adjustments then are used to create a weather factor for each class for each month, which are multiplied by billed kWh sales to weather-normalize monthly class billed kWh sales. The Large Power tariff weather factor is used to weather-normalize each individual customer within that class.

What is the weather impact on test-year sales?

During the test year, EMM saw an average of 2,672 HDD compared to the normal 2,840 HDD and 1,079 CDD compared to the normal 1,186 CDD. Table 4 below shows the test-year weather normalized sales for the customer classes whose usage is weather sensitive. Normalized sales reflect an adjustment to actual sales impacted by weather during the monthly billing period.

1

Table 4: Test-Year Weather Adjustments (MWh)

Class	Actual	Weather Normal	Weather Adjustment	Percent Weather Adjustment
Res Non-TOU	266	278	13	4.8%
Res Default TOU	2,333,294	2,447,622	114,328	4.9%
Res TOU1 Three Period	47,222	49,950	2,729	5.8%
Res TOU2 Two Period	204,638	215,553	10,914	5.3%
Res TOU3 High Differential	81,901	85,972	4,071	5.0%
SGS Secondary	678,140	683,010	4,870	0.7%
SGS Primary	2,885	2,896	12	0.4%
MGS Secondary	1,095,135	1,100,651	5,515	0.5%
MGS Primary	72,726	72,817	91	0.1%
LGS Secondary	1,541,407	1,549,225	7,819	0.5%
LGS Primary	517,795	519,810	2,015	0.4%
Large Power (All)	1,698,076	1,699,322	1,246	0.1%
Total	8,273,484	8,427,107	153,623	1.9%

2 The total weather adjustment over the test year period increased actual billed sales by 1.9%
 3 (153,623 megawatt-hours (“MWh”)). The effects of weather resulted in an upward
 4 adjustment due to a warmer than normal winter and a cooler than normal summer.
 5 Residential is the class most sensitive to weather, with an upward adjustment of 5.0%
 6 because of the warmer winter and cooler than normal summer. The other classes are less
 7 sensitive to weather and have an upward adjustment of 0.4%. **Schedules ARB-1 through**
 8 **ARB-5** show EMM's monthly weather impacts, energy efficiency impacts, normalized
 9 peaks, normalized coincident peak, and summary of all adjustments, per class.

10 III. 365-DAY ADJUSTMENT

11 **Q: Was an adjustment made to the test year sales to normalize them to a 365-day year?**
 12 A: Yes. An adjustment was made to the test year sales to normalize them for a 365-day test
 13 year. The Company's sales during the test year do not directly coincide with the dates July
 14 1, 2024, through June 30, 2025, because of the different billing dates for each customer's

1 billing cycle. The kWh sales billed during the test year billing months were adjusted to
2 represent a 365-day test year. The method employed by the Company is the same method
3 that Staff of the Commission (“Staff”) has historically utilized, whereby, test year billing
4 days are summed across customer bill cycles. A factor is computed to adjust sales upward
5 or downward for billing days different from 365. The 365-day adjustment is shown in
6 **Schedule ARB-5.**

7 **IV. RATE SWITCHERS AND CUSTOMER GROWTH**

8 **Q: What adjustment did you make for rate switchers?**

9 A: Each year a small percentage of customers are switched from their current tariff to another
10 that is expected to reduce their electric bills. The Company adjusted kWh sales for the LP
11 tariff for customers that switched into or out of this tariff. There was one LP customer who
12 switched rates during the test year. The customer growth adjustment accounted for rate
13 switchers in the other tariffs. The rate switcher and customer growth adjustment are shown
14 in **Schedule ARB-5.**

15 **Q: What adjustment did you make for customer growth?**

16 A: For each month in the test year, the weather-normalized sales per customer were multiplied
17 by the number of customers projected for the true-up date of June 2026. This adjustment
18 is made to weather-normalized sales to the Residential General Service, Small GS, and
19 Large GS classes. When the numbers become available, the Company will revise this
20 adjustment using the actual number of customers as of the true-up date of June 2026.

21 **Q: What adjustment did you make for Large Power?**

22 A: Sales to LP customers are adjusted for any changes in kWh usage that are assumed to be
23 permanent or ongoing, resulting in an annualization by account on an individual customer

1 basis. If any such changes are identified, sales during the test year are adjusted to reflect
2 the change.

3 There were 48 customers in the LP class at the beginning of the test year and one
4 customer switched to a Large General Service rate. This results in 47 LP customers
5 annualized for the test period. The customer that moved out of the LP class with partial
6 data during the test year is annualized for the full test year as a Large General Service
7 customer. The adjustment to class kWh will be revised using the most current data as of
8 the true-up date.

9 **V. ENERGY EFFICIENCY ANNUALIZATION**

10 **Q: Were any other adjustments made besides the adjustment for rate switchers and
11 customer growth?**

12 A: Yes, an additional adjustment is made to annualize the impact of the Company's energy
13 efficiency programs on test year sales. During the test year, EMM invested significantly in
14 programs designed to help customers use energy more efficiently. The result of this
15 investment in energy efficiency programs is a decline in the sales made by the Company
16 relative to the level of sales that would have been made absent the programs. Because the
17 Company programs generated customer savings during the test year and true up period, the
18 impact of those efficiency measures installed during the test year should be annualized to
19 reflect the full impact of the measures on the Company's sales.

20 **Q: Are installed efficiency measures and programs reflected in the sales?**

21 A: Yes. For example, if a residential customer who is not participating in any Company energy
22 efficiency programs has an annual average usage of 10,500 kWh and then decides to
23 participate in the Company's programs with four months left in the test year, which now

1 reduces their actual test year usage to 10,000 kWh, the Company would only see a
2 reduction of 500 kWh in the test year. In this example on an annual basis going forward,
3 the customer's true annual average consumption is reduced by 1,500 kWh because of the
4 energy efficiency actions promoted by the Company. The reason is that the change took
5 place during the test year, but the impacts of the installed measures are only reflected in
6 one-third of the test year load. The effect can be extreme when you start looking at all
7 customer participation rates because they sign up and participate in various programs
8 throughout the test year. Since the Company has documented participation rates and
9 measures installed in the test year, the annualized energy savings of those measures and
10 the installation dates of the measures, it is appropriate to reflect the full energy impact of
11 the measures in the test year. This is a known and measurable change in the energy
12 consumption that occurred before the end of the test year, which will continue going
13 forward and should be annualized.

14 **Q: What are the adjustments to annualize the impact of Company's energy efficiency
15 programs on the test year's sales?**

16 A: Upon filing a rate case, the cumulative, annualized, normalized kWh, and kilowatt ("kW")
17 savings will be included in the unit sales and sales revenues used in setting rates as of an
18 appropriate time where actual results are known prior to the true-up period, to reflect
19 energy and demand savings in the billing determinants and sales revenues used in setting
20 the revenue requirements and tariffed rates in the case.

21 **Q: Describe how you calculated the energy efficiency adjustment.**

22 A: The calculation of the energy efficiency adjustment is based on the Commission's
23 Amended Report and Order, No. EO-2019-0132 (Mar. 11, 2020).

1 In the first step, Evergy Missouri Metro takes test period weather-normalized kWh
2 usage for each customer class by billing month and adjusts it by adding back the monthly
3 kWh energy savings by customer class incurred during the test period from all active
4 Missouri Energy Efficiency Investment Act (“MEEIA”) programs, excluding Home
5 Energy Reports and Income-Eligible Home Energy Reports programs which have a one-
6 year measure life, determined using the same methodology as described in Tariff Sheets
7 138.4 and 138.5 (Evergy Missouri Metro). However, the calendar month load shape
8 percentages for each program, per month, will be converted to reflect billing month load
9 shape percentages for each program by computing a weighted average of the current and
10 succeeding month percentages.

11 In the second step, the adjusted test period sales from above are annualized for
12 customers and additionally adjusted further by subtracting the cumulative annual kWh
13 energy savings from the first month of the test period through the month ending where
14 actual results are available (most likely two months prior to the true-up date) by customer
15 class from all active MEEIA programs, excluding Home Energy Reports and Income-
16 Eligible Home Energy Reports, determined using the same methodology as described in
17 Tariff Sheets 138.4 and 138.5 (Evergy Missouri Metro). However, the calendar month load
18 shape percentages for each program, per month, are converted to reflect billing month load
19 shape percentages for each program, calculated by computing a weighted average of the
20 current and succeeding month percentages.

1 In the third step, the test period kW demand for each customer class is adjusted by¹
2 adding back the monthly kW demand savings by customer class incurred during the test
3 period from all active MEEIA programs, excluding Home Energy Reports, Income-
4 Eligible Home Energy Reports and Demand Response Incentive programs, determined
5 using the same methodology as described for kWh savings in Tariff Sheets 138.4 and 138.5
6 (Evergy Missouri Metro) and then subtracting the cumulative annual kW demand savings
7 from the first month of the test period through the month ending where actual results are
8 available (most likely two months prior to the true-up date) by customer class from all
9 active MEEIA programs, excluding Home Energy Reports, Income-Eligible Home Energy
10 Reports and Demand Response Incentive programs, determined using the same
11 methodology as described for kWh savings in Tariff Sheets 138.4 and 138.5 (Evergy
12 Missouri Metro).

13 In the fourth step, after the energy efficiency adjustment for kWh and kW has been
14 determined, weather-normalized kWh and kW are rebased with the energy efficiency
15 adjustment. kWh sales are rebased by subtracting the energy efficiency adjustment from
16 the weather normalized kWh and kW (demand) is determined by taking the monthly kWh
17 and spreading it across an hourly load shape to determine the monthly peak demand.

18 The impacts that are applied to the weather-normalized and customer-adjusted kWh
19 used to rebase the weather normalized sales are shown in Schedule ARB-2.

¹ Step 1. Begin with kW demand per class provided by Company. Step 2. Compute Monthly kW demand per program in the same manner as used for TD calculation. Step 3. kW demand before application of Energy Efficiency (EE) adjustment. Step 4. Cumulative Annual kW demand per program computed in the same manner as TD calculation as of Rebase Date. Step 5. Monthly Load Shape percentage per program converted to billing month equivalent by using a weighted average calendar month Load Shape percentage based on billing cycle information of the rate case. Step 6. Monthly EE Rebase Adjustment. Step 7. kW demand rebased for EE.

1 Q: What are the results of these normalization adjustments?

2 A: Schedule ARB-1 shows the monthly adjustments for normalization on kWh sales. Schedule
3 ARB-2 shows the annualized kWh energy efficiency impact. Schedule ARB-3 shows
4 weather-normalized customer annualized monthly peaks by class. Schedule ARB-4 shows
5 weather-normalized customer annualized loads by class at the time of the monthly system
6 peak load. Schedule ARB-5 shows a step through of adjustments made to test year period
7 sales.

8 Q: How are these results used?

9 A: Weather-normalized, customer-annualized kWh sales are used to calculate test year
10 revenues and fuel costs.

11 Q: Does Company plan to update the data series and weather normalization through the
12 update period ending December 2025.

13 A: Yes. The Company plans to perform the same steps as in the direct filing for the update
14 filing.

VI. CONCLUSION

16 Q: Please summarize your key conclusions and recommendations.

17 A: My testimony supports the Company's calculation of weather-normalized, customer
18 annualized test-year billing determinants and peak loads for EMM. As I discussed, EMM's
19 weather normalization methodology now uses a more granular, class-based approach. This,
20 coupled with adjustments for customer growth, rate switching, and the annualization of the
21 Company's energy efficiency programs ensures test year data accurately reflects expected
22 operations. I recommend that the Commission adopt these results, which show a positive
23 normalization adjustment, for use in determining test year revenues and fuel costs

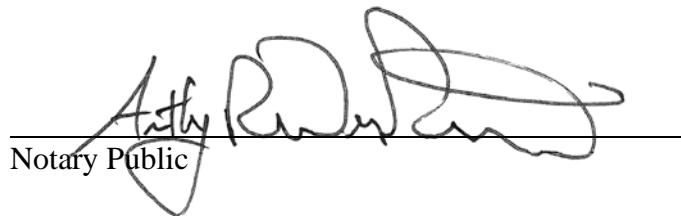
1 Q: Does that conclude your testimony?

2 A: Yes, it does.

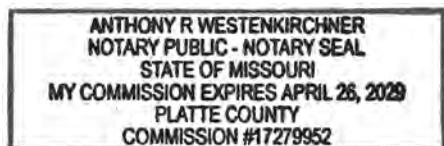
**BEFORE THE PUBLIC SERVICE COMMISSION
OF THE STATE OF MISSOURI**

In the Matter of Evergy Metro, Inc. d/b/a Evergy)
Missouri Metro's Request for Authority to) Case No. ER-2026-0143
Implement A General Rate Increase for Electric)
Service)

AFFIDAVIT OF ALBERT R. BASS, JR.


STATE OF MISSOURI)
) ss
COUNTY OF JACKSON)

Albert R. Bass, Jr., being first duly sworn on his oath, states:


1. My name is Albert R. Bass, Jr.. I work in Kansas City, Missouri and I am employed by Evergy Metro, Inc. as Sr. Manager of Energy Forecasting and Analytics.
2. Attached hereto and made a part hereof for all purposes is my Direct Testimony on behalf of Evergy Missouri Metro consisting of eighteen (18) pages, having been prepared in written form for introduction into evidence in the above-captioned docket.
3. I have knowledge of the matters set forth therein. I hereby swear and affirm that my answers contained in the attached testimony to the questions therein propounded, including any attachments thereto, are true and accurate to the best of my knowledge, information and belief.

Albert R. Bass, Jr.

Subscribed and sworn before me this 6th day of February 2026.

Notary Public

My commission expires: April 26, 2029

WEATHER ADJUSTMENTS TO MONTHLY BILLED SALES OF ENERGY METRO

Billed MWh Weather Impact - positive number indicates kwh usage response to above normal weather														
State	Tariff	Jul-24	Aug-24	Sep-24	Oct-24	Nov-24	Dec-24	Jan-25	Feb-25	Mar-25	Apr-25	May-25	Jun-25	TYE 202506
KS	Res	-20,155	-25,299	-4,071	9,707	-4,264	-10,687	6,894	19,555	-4,026	-8,345	-11,487	-6,673	-58,850
KS	Small GS	-1,362	-1,651	-109	782	-188	-701	486	1,181	-358	-416	-503	-237	-3,076
KS	Medium GS	-2,058	-2,592	-138	1,681	-81	-1,340	870	2,087	-324	-573	-528	-270	-3,267
KS	Large GS	-3,237	-3,655	-204	2,819	-119	-2,067	1,493	3,019	-527	-983	-1,064	-752	-5,278
KS	Large Power	-306	-247	-41	257	-11	-225	137	281	-39	-88	-104	-69	-455
KS	Lighting	0	0	0	0	0	0	0	0	0	0	0	0	
KS	Sales for Resale	0	0	0	0	0	0	0	0	0	0	0	0	
KS	Retail Total	-27,118	-33,443	-4,563	15,246	-4,664	-15,020	9,880	26,122	-5,272	-10,405	-13,687	-8,001	-70,926
MO	Res Non TOU	-1.3	-1.6	-0.4	0.4	-1.3	-2.3	-1.0	0.2	-1.8	-1.9	-1.1	-0.7	-13
MO	Res Default TOU	-13,947	-19,847	-4,815	4,543	-9,160	-20,109	-10,794	3,811	-9,846	-18,208	-8,489	-7,469	-114,328
MO	Res TOU1 Three Period	-327	-453	-101	105	-156	-410	-318	-67	-254	-373	-202	-172	-2,729
MO	Res TOU2 Two Period	-1,423	-2,020	-494	515	-543	-1,607	-1,173	-220	-978	-1,369	-851	-751	-10,914
MO	Res TOU3 High Differential	-508	-742	-167	134	-252	-623	-434	-41	-361	-564	-285	-228	-4,071
MO	Res TOUEV	0	0	0	0	0	0	0	0	0	0	0	0	0
MO	Sml Sec	-1,791	-2,654	-509	1,084	5	-1,155	237	1,683	226	-790	-504	-702	-4,870
MO	Sml Prim	-3	-5	-1	1	-2	-4	1	7	-2	-3	-1	-1	-12
MO	Med Sec	-2,662	-3,861	-674	1,808	508	-1,642	384	2,775	872	-862	-829	-1,331	-5,515
MO	Med Prim	-43	-133	-34	48	0	-144	1	243	90	-52	-29	-37	-91
MO	LGS Sec	-2,505	-3,605	-897	1,752	49	-1,743	168	2,716	584	-1,298	-1,221	-1,819	-7,819
MO	LGS Prim	-729	-923	-190	413	-29	-457	123	668	40	-281	-275	-375	-2,015
MO	LPS	-1,844	-1,781	-239	1,916	828	13	0	0	450	466	-600	-456	-1,246
MO	New LLPS	0	0	0	0	0	0	0	0	0	0	0	0	0
MO	EV	0	0	0	0	0	0	0	0	0	0	0	0	0
MO	Lighting	0	0	0	0	0	0	0	0	0	0	0	0	0
MO	Metered Lighting	0	0	0	0	0	0	0	0	0	0	0	0	0
MO	Sales for Resale	-135	-102	3	41	-47	-41	57	72	-72	-31	-73	5	-323
MO	Retail Total	-25,782	-36,025	-8,122	12,319	-8,753	-27,882	-11,806	11,575	-9,182	-23,337	-13,287	-13,341	-153,623

Data Source: WeatherNormalization_KCPL_RC_25\Data\BillMonthAdj.xls

ANNUALIZED ENERGY EFFICIENCY IMPACTS FOR ENERGY METRO

ENERGY EFFICIENCY ADJUSTMENT TO MONTHLY MWH SALES

State	Tariff	Jul-24	Aug-24	Sep-24	Oct-24	Nov-24	Dec-24	Jan-25	Feb-25	Mar-25	Apr-25	May-25	Jun-25	TYE 202506
KS	Res	-353,610	-349,656	-277,158	-103,598	-26,977	-13,477	0	0	0	0	0	0	-1,124,476
KS	Small GS	-51,852	-49,631	-37,489	-24,298	-17,171	-7,989	0	0	0	0	0	0	-188,430
KS	Medium GS	-153,563	-148,869	-126,361	-107,651	-99,792	-47,922	0	0	0	0	0	0	-684,157
KS	Large GS	-113,191	-113,240	-99,018	-88,781	-85,577	-40,387	0	0	0	0	0	0	-540,195
KS	Large Power	-40,694	-40,784	-37,150	-36,089	-36,924	-17,740	0	0	0	0	0	0	-209,381
KS	Retail Total	-712,910	-702,179	-577,176	-360,418	-266,441	-127,514	0	0	0	0	0	0	-2,746,639
MO	Res	-1,086,486	-1,166,006	-949,777	-571,219	-295,305	-174,118	-119,893	-118,171	-110,332	-103,003	-113,194	-342,884	-5,150,388
MO	SGS	-456,444	-462,444	-384,476	-274,502	-207,606	-134,839	-76,507	-73,876	-87,589	-97,689	-102,206	-186,752	-2,544,930
MO	MGS	-911,697	-910,112	-787,919	-595,564	-482,407	-290,984	-121,572	-117,107	-144,857	-163,135	-168,683	-301,008	-4,995,045
MO	LGS	-981,314	-1,000,261	-813,479	-547,738	-405,207	-292,912	-197,159	-190,189	-229,525	-259,981	-273,259	-478,144	-5,669,170
MO	LPS	-182,775	-190,953	-153,170	-90,308	-59,013	-54,280	-50,240	-48,420	-59,370	-67,791	-71,055	-123,807	-1,151,184
MO	New LLPS													
MO	Retail Total	-3,618,716	-3,729,777	-3,088,821	-2,079,332	-1,449,538	-947,133	-565,371	-547,764	-631,673	-691,599	-728,398	-1,432,594	-19,510,716

Data Source: Data/DSM/

WEATHER NORMALIZED MONTHLY PEAK LOADS (MW) for ENERGY METRO

WEATHER NORMALIZED MONTHLY PEAK LOADS WITH CUSTOMER GROWTH THROUGH June 2026 (MW) & EE Impact

State	Tariff	Jul-24	Aug-24	Sep-24	Oct-24	Nov-24	Dec-24	Jan-25	Feb-25	Mar-25	Apr-25	May-25	Jun-25	Test Year
KS	Residential	1,086	1,033	887	644	479	583	681	644	531	535	788	910	1,086
KS	Residential DG	6	6	5	3	4	5	6	6	5	3	5	6	6
KS	Small GS	118	110	97	78	69	84	88	84	78	71	93	105	118
KS	Medium GS	199	193	172	142	119	145	154	144	136	134	166	180	199
KS	Large GS	362	367	331	299	273	322	335	314	295	289	329	328	367
KS	Large Power	74	75	68	67	64	70	79	77	71	67	71	74	79
KS	Street Lights	0	0	0	0	0	0	0	0	0	0	0	0	0
KS	Traffic Signals	0	0	0	0	0	0	0	0	0	0	0	0	0
KS	Area Lights	1	1	1	1	1	1	1	1	1	1	1	1	1
KS	Off Peak Lighting	9	9	9	9	9	9	9	9	9	9	9	9	9
	Total Retail	1,794	1,628	1,511	1,105	940	1,182	1,332	1,232	1,106	1,003	1,394	1,553	1,794
MO	Residential Non TOU	0	0	0	0	0	0	0	0	0	0	0	0	0
MO	Residential TOU Defualt	785	747	632	460	385	486	571	514	430	362	541	674	785
MO	Residential TOU Three Pe	16	16	13	9	7	8	10	9	7	7	10	13	16
MO	Residential TOU Two Peri	59	58	47	35	25	28	32	30	25	28	43	52	59
MO	Residential TOU High Diff	28	27	21	15	13	17	19	17	13	13	18	24	28
MO	Residential TOU EV	0	0	0	0	0	0	0	0	0	0	0	0	0
MO	Small GS Primary	1	1	1	1	1	1	1	1	0	1	1	1	1
MO	Small GS Secondary	151	142	133	103	97	115	124	114	104	99	124	138	151
MO	Medium GS Primary	17	18	17	17	18	17	15	14	13	14	14	15	18
MO	Medium GS Secondary	239	227	208	169	156	187	202	183	169	176	205	218	239
MO	Large GS Primary	88	84	76	67	67	71	77	73	74	74	80	90	90
MO	Large GS Secondary	268	265	244	229	223	237	252	233	212	220	242	260	268
MO	Large Power Primary	127	117	111	106	100	99	100	103	103	109	116	124	127
MO	Large Power Secondary	35	34	32	29	27	26	25	27	28	32	33	35	35
MO	Large Power Substation	40	41	39	36	36	36	35	36	36	37	39	42	42
MO	Large Power Transmissio	56	55	54	54	50	47	50	48	49	51	54	54	56
MO	Street Lights	17	17	17	17	17	17	16	16	16	16	16	16	17
MO	Traffic Signals	0	0	0	0	0	0	0	0	0	0	0	0	0
MO	Area Lights	3	3	3	3	3	3	3	3	3	3	3	3	3
	Total Retail	1,819	1,699	1,561	1,186	1,107	1,345	1,459	1,346	1,217	1,106	1,428	1,655	1,819

Note: These numbers include losses.

WEATHER NORMALIZED MONTHLY COINCIDENT PEAK LOADS (MW) for EVERGY METRO

WEATHER NORMALIZED MONTHLY COINCIDENT PEAK LOADS WITH CUSTOMER GROWTH THROUGH June 2026 (MW) & EE Impact														
State	Tariff	Jul-24	Aug-24	Sep-24	Oct-24	Nov-24	Dec-24	Jan-25	Feb-25	Mar-25	Apr-25	May-25	Jun-25	Test Year
KS	Residential	1,023	891	874	644	406	583	681	622	525	535	788	845	1,023
KS	Residential DG	0	1	2	1	2	5	6	6	4	3	2	-1	6
KS	Small GS	118	105	94	66	66	75	82	76	77	54	84	105	118
KS	Medium GS	199	182	167	120	117	132	146	137	134	101	152	180	199
KS	Large GS	358	344	309	221	273	316	335	314	295	225	300	328	358
KS	Large Power	72	68	64	54	60	69	79	77	71	58	69	73	79
KS	Street Lights	0	0	0	0	0	0	0	0	0	0	0	0	0
KS	Traffic Signals	0	0	0	0	0	0	0	0	0	0	0	0	0
KS	Area Lights	0	0	0	0	0	0	0	0	0	1	0	0	1
KS	Off Peak Lighting	0	0	0	0	0	1	2	0	0	9	0	0	9
	Total Retail	1,769	1,591	1,511	1,105	925	1,182	1,332	1,232	1,106	987	1,394	1,530	1,769
MO	Residential Non TOU	0	0	0	0	0	0	0	0	0	0	0	0	0
MO	Residential TOU Default	744	684	621	460	331	486	571	504	427	362	536	633	744
MO	Residential TOU Three Pe	16	15	12	9	6	8	9	8	7	7	10	13	16
MO	Residential TOU Two Peri	59	55	46	35	20	26	31	27	24	28	43	52	59
MO	Residential TOU High Diff	28	26	20	15	11	16	19	17	13	13	16	24	28
MO	Residential TOU EV	0	0	0	0	0	0	0	0	0	0	0	0	0
MO	Small GS Primary	1	1	1	1	0	1	1	1	0	0	0	0	1
MO	Small GS Secondary	151	139	129	96	91	110	119	110	101	82	112	138	151
MO	Medium GS Primary	13	13	9	8	11	16	12	11	10	7	8	11	16
MO	Medium GS Secondary	235	221	196	139	156	182	198	180	167	127	177	216	235
MO	Large GS Primary	84	80	71	54	62	71	77	73	71	66	74	88	88
MO	Large GS Secondary	256	243	221	166	222	236	248	233	212	180	223	248	256
MO	Large Power Primary	114	104	110	96	92	94	83	87	89	104	115	118	118
MO	Large Power Secondary	33	31	31	27	22	23	23	23	23	30	32	34	34
MO	Large Power Substation	31	40	37	33	34	35	35	34	29	35	33	42	42
MO	Large Power Transmissio	55	48	50	48	48	40	31	38	42	44	47	37	55
MO	Street Lights	0	0	0	0	0	1.7	2.8	0	0	16.4	0	0	16.4
MO	Traffic Signals	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02
MO	Area Lights	0	0	0	0	0	0.3	0.5	0	0	2.9	0	0	2.9
	Total Retail	1819	1699	1554	1186	1107	1345	1459	1346	1215	1106	1428	1655	1819

Note: These numbers include losses.

Source: WeatherNormalization_KCPL_RC_25\Results\WN_Peaks

Files: WN_KS_ClassPeaks_Ending_Jun25_CustGrth.xls / WN_MO_ClassPeaks_Ending_Jun25_CustGrth.xls

EVERGY METRO TEST YEAR ADJUSTMENTS

Direct - Test Year July 2024 - June 2025

Kansas											
kWh by Rate Schedule	kWh As Billed	Billing Adjustments	Test Year Billed kWh	Large Customer Annualization	Weather	365 Day	Rate Switcher	Energy Efficiency	Customer Growth	Total Adjustments	KS Adjusted Jurisdictional
Residential	2,880,392,386	-	2,880,392,386		58,850,422	(15,766,284)	-	(555,626)	58,939,770	101,468,282	2,981,860,668
Small General Service	440,860,231	-	440,860,231		3,075,648	(2,222,987)	-	(24,313)	9,525,462	10,353,810	451,214,041
Medium General Service	797,065,944	-	797,065,944		3,266,841	(3,787,896)	-	(184,448)	(12,212,778)	(12,918,281)	784,147,663
Large General Service	1,745,496,985	-	1,745,496,985		5,277,899	(9,223,137)	-	(421,110)	3,662,711	(703,637)	1,744,793,348
Large Power Service	466,130,605	-	466,130,605	-	454,851	(2,361,367)	-	(189,849)	-	(2,096,365)	464,034,240
Lighting	46,675,630	-	46,675,630	-	-	-	-	-	-	-	46,675,630
Total Rate Revenue	6,376,621,782	0	6,376,621,782	0	70,925,661	-33,361,671	0	-1,375,346	59,915,164	96,103,808	6,472,725,590
Missouri											
kWh by Rate Schedule	kWh As Billed	Billing Adjustments	Test Year Billed kWh	Large Customer Annualization	Weather	365 Day	Rate Switcher	Energy Efficiency	Customer Growth	Total Adjustments	MO Adjusted Jurisdictional
Residential not TOU	265,755	-	265,755		12,663	(1,244)	-	(485)	165,454	176,387	442,143
Residential Default TOU	2,333,293,820	-	2,333,293,820		114,328,223	(15,919,682)	-	(4,465,647)	83,315,495	177,258,388	2,510,552,208
Residential TOU 3 pd	47,221,540	-	47,221,540		2,728,518	(321,739)	-	(96,194)	(313,832)	1,996,753	49,218,293
Residential TOU 2 pd	204,638,257	-	204,638,257		10,914,475	(1,420,364)	-	(428,246)	(43,540,703)	(34,474,837)	170,163,419
Residential TOU High Diff	81,901,365	-	81,901,365		4,070,738	(551,307)	-	(159,789)	7,428,020	10,787,662	92,689,027
Residential TOU EV	16,317	-	16,317	-	-	-	-	(27)	15,149	15,122	31,439
Small Secondary	678,140,243	-	678,140,243		4,869,926	(4,421,274)	-	(2,534,319)	4,297,878	2,212,211	680,352,454
Small Primary	2,884,715	-	2,884,715		11,718	(22,713)	-	(10,610)	419,679	398,074	3,282,789
Medium Secondary	1,095,135,433	-	1,095,135,433		5,515,407	(7,447,451)	-	(4,692,302)	(15,514,690)	(22,139,037)	1,072,996,396
Medium Primary	72,725,903	-	72,725,903		90,671	(353,279)	-	(302,742)	2,361,268	1,795,918	74,521,820
Large Secondary	1,541,406,636	-	1,541,406,636		7,818,777	(10,170,634)	1,728,863	(4,243,355)	(24,799,195)	(29,665,545)	1,511,741,091
Large Primary	517,794,892	-	517,794,892		2,015,214	(2,862,518)	-	(1,425,815)	10,450,248	8,177,130	525,972,022
Large Power Service	1,698,075,686	-	1,698,075,686	(0)	1,246,338	-	(1,728,863)	(1,151,184)	-	(1,633,708)	1,696,441,978
New LLPS	-	-	-	249,606,000	-	-	-	-	-	249,606,000	249,606,000
Electric Vehicle	2,625,344	-	2,625,344		-	-	-	-	-	-	2,625,344
Lighting	11,698,523	-	11,698,523		-	-	-	-	-	-	11,698,523
Metered Lighting	35,932,807	-	35,932,807		-	-	-	-	-	-	35,932,807
Total Rate Revenue	8,323,757,234	0	8,323,757,234	249,606,000	153,622,669	-43,492,206	0	-19,510,716	24,284,771	364,510,519	8,688,267,752