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analytical foundation for the assumptions and reserve requirement results that the
study team carried forward to the production simulations.

The team'’s analysis of reserve requirements with substantial amounts of wind
generation resulted in the following findings and conclusions:

* The assumptions made about how the Eastern Interconnection will be
operated in 2024 played an important role in minimizing the additional
amounts of spinning reserve that would be required to manage the
variability of large amounts of wind generation.

* The large size of the market areas assumed in the study allows substantial
benefits of geographic diversity to be realized.

» The pooling of larger amounts of load and discrete generating resources via
regional markets also realizes diversity benefits. The per-unit variability of
load declines as the amount of load increases; larger markets also have more
discrete generating units of diverse fuel types and capabilities for meeting
load and managing variability.

¢ With real-time energy markets, changes in load and wind that can be forecast
over a short interval-—10 minutes in EWITS, 15 to 20 minutes in current
practice—are compensated for through economic movements of participating
generating units. Because load changes over 10-minute intervais can be

accurately forecast, they can be cleared in a subhourly market.

e The fastest changes in balancing area demand—on time scales from a few to
tens of seconds-—are dominated by load, even with very large amounts of
wind generation.

* Incremental regulating reserve requirements are driven by errors in
short-term (e.g., 10 to 20 minutes ahead) wind generation forecasts.

* Data from the Eastern Wind Data Study can be used to characterize both
variability and uncertainty for a defined scenario. With more wind generated
over a larger geographic area, percentages of aggregate wind variability
and uncertainty decrease. These quantitative characterizations are useful for
estimating incremental reserve requirements.

* Current energy market performance shows that, on average, subhourly
market prices do not command a premium over prices in the day-ahead
market. Consequently, the hourly production simulation will capture most
of the costs associated with units moving in subhourly markets,
and the spinning reserve requirements for regulation and contingency will
appropriately constrain the unit commitment and dispatch.

The EWITS analysis addresses these requirements only; as wind displaces
marginal conventional generation, those nonwind resources deliver less energy
and thus realize less revenue. With large amounts of wind generation such as those
considered in EWITS, additional costs could be agsociated with those displaced
marginal units that are not captured in the production modeling.
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As is expected in a study of this type, especially when a wide variety of
technical experts and stakeholders are giving ongoing input, a number of
important variations on the 2024 future scenario can be envisioned. In addition,
several technical areas in the study present opportunities for further technical
investigation that could deepen understanding or reveal new insights:

* Further analysis of production-cost simulation results: The output from the
many annual production simulations performed in EWITS contains detail
on every generator and monitored transmission interface in the Eastern
Interconnection. Because of scope and schedule constraints, the EWITS
analysis was necessarily limited to summary results. Further analysis of
these output data would likely generate additional valuable insights on
impacts of wind generation on nonwind generation, and help define more
detailed analyses that could be conducted in the future.

« Smart grid implications and demand response sensitivities: The Eastern
Interconnection load considered in EWITS was based on regional projections
out to the study year (2024). For the most part, load was considered “static.”
Major industry initiatives are currently exploring means by which at least a
portion of the load might respond like a supply resource, thereby relaxing
the constraints on scheduling and dispatch of conventional generating units.
The implications for wind generation are potentially very significant, which
is why alternative 2024 scenarios that consider the range of smart grid
implications for the bulk electric system merit further consideration (scope
limitations prevented these from inclusion in this phase of EWTTS).

+ Nighttime charging of PHEVs: Widespread adoption of eleciric vehicles has
the potential to alter the familiar diurnal shape of electric demand. Because
the wind resource is abundant at night and during the low-load seasons,
increases in electric demand during these times could ease some of the
issues associated with integration.

* Commitment/optimization with high amounts of wind: The approach for
scheduling and dispatching generating resources used in the production
simulations is based on current practice. In the future, new operating
practices and energy market structures might be implemented that take
advantage of the fact that uncertainty declines as the forecast horizon is
shortened (for both load and wind generation). Intraday energy markets
that allow reoptimization of the supply resources more frequently could
offer some advantage for accommodating large amounts of variable and
uncertain wind energy.

* Fuel sensitivity: In this phase of EWITS, the study team considered a single
future for prices of other fuels used for electric generation. As history attests,
there is much uncertainty and volatility inherent in some fuel markets,
especially for natural gas. Alternate scenarios that explore the impacts of
other fuel price scenarios on integration impacts and overall costs would
be valuable.
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Several of these techniques were demonstrated in EWTTS, and are also being used
in other large-scale wind integration analyses. The data sets compiled for the study
represent the most detailed view to date of high-penetration wind energy futures
and potential transmission. Given the significant changes coursing through the
electric power industry, many alternative scenarios for the Eastern Interconnection
in 2024 can be postulated. In that sense, EWITS is a solid first step in evaluating
possibilities for the twenty-first century grid in the United States, with many

more to follow.
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variability of the net demand and introduce some heightened uncertainty into
operational considerations.

Section 5 discusses the approach for assessing how operating reserves would
be affected by these large amounts of wind generation, and presents results by
scenario and operating region.

Section 6 presents the range of operational impacts as determined
from chronological hourly production simulations of the entire Eastern
Interconnection.

Section 7 summarizes the analytical effort to determine how wind generation
contributes to resource adequacy, an important element of power system
reliability.

Section 8 explores the broader implications of the EWITS results.

Section 9 presents findings and conclusions drawn from the study’s quantitative
results. It also gives recommendations for future work should this effort be
continued. These recommendations are drawn from comments and discussions
among members of the project team and the TRC, along with project sponsors.
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First, a preliminary unit dispatch is performed without enforcing unit runtime
and downtime constraints, ramp rates, and start-up cost effects. This preliminary
solution is designed to create a starting point for the price of energy in each hour
that is not subject to multihour commitment constraints. This dispatch incorporates
a full view of transmission congestion and other detailed operations. Wind units
can be set up to be dispatched in the preliminary solution by designating them
as “Firm” resources, or they can be excluded in the preliminary price formation
by designating them as “Non-Firm.” The preliminary dispatch is performed for
a 7-day period, starting Monday at 1:00 am. and ending Sunday at 12:00 p.m.
(midnight). This gives each generation injection site (bus) a unique 168-hour
forecast for energy prices. The 168-hour look-ahead from Monday to Sunday is
designed to be long enough to account for unit-commitment decisions based on
multiday constraints (e.g., 48-hour minimum downtime).

The second step in the unit-commitment process is to optimize the operation

of each generator given the price forecast at its bus, subject to unit-specific
operating constraints and unit bid (or cost) inputs. A mixed-integer program

is used to optimize unit profit. If energy prices are higher than the unit bid in

a given houy, it is assumed the unit must be committed in that hour for load

or reliability, and the program optimizes the run schedule for the surrounding
hours to meet runtime constraints and maximize profits or minimize losses.

If a unit runs at a loss for any day (including start-up cost), a new unit bid

is calculated by determining the price increase needed to allow the unit to
break even over the given run period. This new bid is added to the unit cost
from the preliminary unit dispatch for the next dispatch pass. Each unit is
processed individually based on the forecast prices at its injection bus. The unit
commitment is done for the entire week without knowing if any forced outages
will occur. If a forced outage does transpire during the week, the rest of the week
is re-optimized from the hour in which the unit returns to service.

When all units have been processed, a second complete dispatch pass is done
with all unit constraints in place and all commitment bid adders applied. The
second dispatch results in a new forecast of bus prices and the commitment is re-
optimized for each unit within the mixed-integer program to reflect the effect of
unit operating constraints and bids on bus prices. This final commitment is then
“locked in” for the final dispatch pass.

During the final dispatch, the commitment schedule from the final mixed-integer
solution for each unit is honored. The final dispatch also includes any Non-Firm
resources that were not inciuded in the preliminary passes. The dispatch process
itself is a linear program optimization that includes a DC load flow solution

to monitor flows on transmission lines, calculates and applies marginal loss
factors at each generation node, recognizes market import-export tariffs, and co-
optimizes for spinning reserve requirements.
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Power Pool (SPP), the PJM Interconnection (PJM), the Tennessee Valley Authority
(TVA), the Mid-Continent Area Power Pool (MAPP), and other interested parties
to develop conceptual interregional transmission plans required for a 5% wind
energy scenario and a 20% wind energy scenario.

The method takes a top-down view by defining what transmission would be
needed and possibly justified by benefits exceeding cost for a future year, given
the locations of both loads and the sources of energy. In EWITS, the objective is to
evaluate the transmission that would be needed to facilitate 20% and 30% wind
penetration levels across the Eastern Interconnection. To ensure economic energy
delivery across a large geographical area, energy-based regional transmission
planning is necessary to incorporate comprehensive economic assessment using
production-cost simulations. By linking the markets across the entire Eastern
Interconnection with large energy price differences, the benefits of such a
regional transmission plan could outweigh its cost.

Because the JCSP also focused on a 20% scenario, the results from that effort
served as an appropriate starting point for EWITS. Other regional transmission
plans such as the Midwest ISO's Regional Generation Outlet Study: Phase I
Executive Summary Report (Midwest ISO 2009; known as RGOS; Phase Iof a
765-kV [kilovolt] wind outlet transmission overlay) and the SPP’s Draft 2008 SPP
EHV Overlay Report (SPP 2008) were considered to help facilitate the collection
of the high-quality wind resources in the Great Plains and Upper Midwest. A
similar level of regional detail was not available for other parts of the Eastern
Interconnection.

The transmission development methodology is a sequential process that focuses
on a snapshot of a single future year. The steps in the process follow:
1. Defining the location of “sinks” for energy (loads) in the year of interest.

2. Determining what generation capacity would be necessary to reliably
serve the defined loads given the existing transmission infrastructure.
This is accomplished through a formal generation expansion process
that begins with the present and ends in the target year. Wind generation
is accounted for by assigning an estimated capacity value, which is
the fractional amount of nameplate rating that can be considered firm
capacity for planning purposes. The expansion program then considers
the new generation that must be built to meet regional planning margin
requirements given the growth in loads and possible retirements of
existing generators. Projected capital and operating costs over the
planning horizon are used to optimize the expansion by minimizing total
costs while maintaining resource adequacy.
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Figure 4-4. Scenario 3 installed capacity sites
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