

÷

Exhibit No.: 047 Sponsoring Party: Union Electric Company Type of Exhibit: Direct Testimony Case No.: ER-2007-0002 Date Testimony Prepared: July 5, 2006

Issues: Callaway Power Plant Witness: Charles D. Naslund

MISSOURI PUBLIC SERVICE COMMISSION

CASE NO. ER-2007-0002

DIRECT TESTIMONY

OF

CHARLES D. NASLUND

ON

BEHALF OF

UNION ELECTRIC COMPANY d/b/a AmerenUE

St. Louis, Missouri July, 2006

Ameren UE Exhibit No. ____ Case No(s). <u>PL-2001-0</u> Date <u>3/29/07</u> Rptr_P

TABLE OF CONTENTS

· · · · ---

- {

ļ

I.	INTRODUCTION	1
II.	PURPOSE AND SUMMARY OF TESTIMONY	2
III.	BACKGROUND OF CALLAWAY'S PERFORMANCE	3
IV.	MAJOR CAPITAL ADDITIONS	4
V.	PERIODIC REFUELINGS	8
VI.	FUTURE DECISIONS REGARDING CALLAWAY	. 9

1		DIRECT TESTIMONY
2		OF
3		CHARLES D. NASLUND
4		CASE NO. ER-2007-0002
5		I. INTRODUCTION
6	Q.	Please state your name and business address.
7	Α.	Charles D. Naslund, Ameren Services Company ("Ameren Services"), One
8	Ameren Plaz	a, 1901 Chouteau Avenue, St. Louis, Missouri 63103.
9	Q.	What is your position with Ameren Services?
10	А.	I am Senior Vice President and Chief Nuclear Officer.
11	Q.	What is Ameren Services?
12	А.	Ameren Services provides various corporate, administrative and technical
13	support servi	ces for Ameren Corporation ("Ameren") and its affiliates, including Union
14	Electric Con	pany d/b/a AmerenUE ("Company" or "AmerenUE"). Because AmerenUE is
15	the only Am	eren company owning or operating a nuclear power plant, all of Ameren
16	Services' act	ivities relating to nuclear generation are provided to AmerenUE.
17	Q.	Please describe your educational background and employment
18	experience.	
19	А.	I earned a bachelor's degree in Electrical Engineering in 1974 from the
20	University o	f Missouri-Rolla and have completed 27 of 30 hours toward a master's degree in
21	Civil Engine	ering Construction Management at the University of Missouri - Columbia.
22		I began my career at Union Electric Company in December 1974 as an
23	assistant eng	ineer in substation design. In February 1976 I became Construction Supervisor

. !

}

1

1

1	for the new Callaway Nuclear Power Plant ("Callaway Plant"), working at the Callaway
2	Plant at the time of its groundbreaking. In 1980, I was promoted to Supervising Engineer
3	Start-up and I became Superintendent of Start-up in 1983. After the nuclear core of the
4	Callaway Plant was loaded in June 1984, I became the Superintendent of Instrument &
5	Controls. Over the next thirteen years, I held the following additional positions at the
6	Callaway Plant: Manager of Operations Support, 1986 to 1991; Manager of Nuclear
7	Engineering, 1991 to 1998; and Assistant Vice-President of Power Operations, July 1998 to
8	January 1999. From 1999 to September 2004, I was in charge of the fossil and hydroelectric
9	generating fleet for AmerenUE. In September 2004, I returned to Callaway Plant as Vice-
10	President, Nuclear Operations, and in December 2004 I was promoted to Senior Vice-
11	President and Chief Nuclear Officer.
12	II. PURPOSE AND SUMMARY OF TESTIMONY
12 13	II. <u>PURPOSE AND SUMMARY OF TESTIMONY</u> Q. What is the purpose of your testimony in this proceeding?
12 13 14	II.PURPOSE AND SUMMARY OF TESTIMONYQ.What is the purpose of your testimony in this proceeding?A.The purpose of my testimony is to: (a) provide a background of the Callaway
12 13 14 15	II.PURPOSE AND SUMMARY OF TESTIMONYQ.What is the purpose of your testimony in this proceeding?A.The purpose of my testimony is to: (a) provide a background of the CallawayNuclear Plant's performance and its importance to Missouri; (b) discuss the substantial
12 13 14 15 16	II.PURPOSE AND SUMMARY OF TESTIMONYQ.What is the purpose of your testimony in this proceeding?A.The purpose of my testimony is to: (a) provide a background of the CallawayNuclear Plant's performance and its importance to Missouri; (b) discuss the substantialcapital additions made to the Callaway Plant since the Company's last rate proceeding (Case
12 13 14 15 16 17	II. PURPOSE AND SUMMARY OF TESTIMONY Q. What is the purpose of your testimony in this proceeding? A. The purpose of my testimony is to: (a) provide a background of the Callaway Nuclear Plant's performance and its importance to Missouri; (b) discuss the substantial capital additions made to the Callaway Plant since the Company's last rate proceeding (Case No. EC-2002-1, initiated in July, 2001); (c) provide up-to-date information on several
12 13 14 15 16 17 18	II. PURPOSE AND SUMMARY OF TESTIMONY Q. What is the purpose of your testimony in this proceeding? A. The purpose of my testimony is to: (a) provide a background of the Callaway Nuclear Plant's performance and its importance to Missouri; (b) discuss the substantial capital additions made to the Callaway Plant since the Company's last rate proceeding (Case No. EC-2002-1, initiated in July, 2001); (c) provide up-to-date information on several changes to the Callaway Plant's security infrastructure and the associated operation and
12 13 14 15 16 17 18 19	II. PURPOSE AND SUMMARY OF TESTIMONY Q. What is the purpose of your testimony in this proceeding? A. The purpose of my testimony is to: (a) provide a background of the Callaway Nuclear Plant's performance and its importance to Missouri; (b) discuss the substantial capital additions made to the Callaway Plant since the Company's last rate proceeding (Case No. EC-2002-1, initiated in July, 2001); (c) provide up-to-date information on several changes to the Callaway Plant's security infrastructure and the associated operation and maintenance ("O&M") cost increases, nearly all of which were driven by governmentally-
12 13 14 15 16 17 18 19 20	II. PURPOSE AND SUMMARY OF TESTIMONY Q. What is the purpose of your testimony in this proceeding? A. The purpose of my testimony is to: (a) provide a background of the Callaway Nuclear Plant's performance and its importance to Missouri; (b) discuss the substantial capital additions made to the Callaway Plant since the Company's last rate proceeding (Case No. EC-2002-1, initiated in July, 2001); (c) provide up-to-date information on several changes to the Callaway Plant's security infrastructure and the associated operation and maintenance ("O&M") cost increases, nearly all of which were driven by governmentally- mandated requirements following the September 11, 2001 terrorist attack; (d) discuss a key
12 13 14 15 16 17 18 19 20 21	II. PURPOSE AND SUMMARY OF TESTIMONY Q. What is the purpose of your testimony in this proceeding? A. The purpose of my testimony is to: (a) provide a background of the Callaway Nuclear Plant's performance and its importance to Missouri; (b) discuss the substantial capital additions made to the Callaway Plant since the Company's last rate proceeding (Case No. EC-2002-1, initiated in July, 2001); (c) provide up-to-date information on several changes to the Callaway Plant's security infrastructure and the associated operation and maintenance ("O&M") cost increases, nearly all of which were driven by governmentally- Callaway Plant operation, its regular (every 18 months) refueling outages; and (e) provide

the Company should seek to relicense the Callaway Plant. Attachment A is an Executive

- 2 Summary of my testimony.
- 3

4

III. BACKGROUND OF CALLAWAY'S PERFORMANCE

- Q. Please briefly describe the Callaway Plant.
- 5
- A. The Callaway Plant is a 1,292 megawatt ("MW") nuclear plant located in

6 Callaway County, Missouri. In 2005, the Callaway Plant was the third largest power

- 7 producer on the Ameren system, accounting for 10.3 percent of AmerenUE's total
- 8 generation. Only the coal-fired Labadie and Rush Island plants produced more power than
- 9 Callaway. Callaway's 2005 net generation of 8 million megawatt-hours ("MWh") was
- 10 enough to supply all the electricity needs of more than 656,000 homes.
- 11

12

Q. How has production from the Callaway Plant compared with production at other nuclear plants?

A. Callaway's production has exceeded that of most other nuclear units. Since beginning operation in 1984, Callaway has achieved the sixth highest lifetime generation among the 103 nuclear power plants operating in the U.S. (188,831,745 MWh through 2005). Callaway's lifetime generation through 2005 also ranked 22nd in the world, out of 443 nuclear plants operating in 30 countries.

Q. How has the operation of the Callaway Plant impacted the economy in Central Missouri?

A. Callaway is a major factor in both the state and local economy. More than 1,000 AmerenUE employees and contractors work there full time, with a total annual payroll of \$81 million. During refueling outages which occur every 18 months, hundreds of additional workers are usually brought in for several weeks—providing a significant boost to

1

ł

1	the local economy. The Callaway Plant is a major source of tax revenue to fund education
2	and other critical services. In 2005, the plant accounted for \$9.5 million of AmerenUE's
3	property taxes paid to Callaway County, with \$6.5 million of that amount going to local
4	schools. In addition, assessed values based on AmerenUE's investment in the plant resulted
5	in another \$20.9 million in taxes shared by the remaining 68 counties in AmerenUE's
6	Missouri service area.
7	IV. MAJOR CAPITAL ADDITIONS
8	Q. Please summarize the capital additions made to the Callaway Plant since
9	2001.
10	A. Significant major component replacements have been made to the Callaway
11	Plant since 2001, including the 2005 replacement of the plant's four steam generatorsthe
12	giant boilers that produce steam for generating electricity. In addition, in 2005 AmerenUE
13	replaced one high pressure and three low pressure turbines and their associated casings and
14	diaphragms. Turbines are the components of the plant which spin with steam pressure to
15	operate the generators. Finally, the Company replaced the main feedwater isolation valve
16	actuators, and installed new distributed control systems. In the area of plant security
17	infrastructure, the Company installed a number of new security barriers, devices and systems
18	required to meet federal guidelines. In total, the Company made \$449,677,723 in capital
19	additions to the Callaway Plant over approximately the past 5 years. Schedule CDN-1
20	summarizes each of these additions and their associated costs.
21	Q. Please explain some of the key drivers that necessitated the nearly \$450
22	million of capital additions at the Callaway Plant over this period.

- - - -

Q.

A. From a general perspective, each of these additions to the Callaway Plant was necessary to ensure that Callaway remains a reliable source of power for AmerenUE and its Missouri ratepayers. The Callaway Plant has now been in operation for more than 20 years. Many of its components are at end of their useful lives and/or have become obsolete due to the unavailability of replacement parts necessary to perform proper maintenance on them.

6

Are there more specific drivers?

7 Yes. Several components were fabricated almost 30 years ago from "alloy A. 8 600" materials. "Alloy 600" is a special type of stainless steel metal used to fabricate steam 9 generator tubing, piping and as a weld filler metal for many of the welds made in Callaway's 10 reactor coolant system. In the 1970's when Callaway was being designed and components 11 fabricated, alloy 600 was the best alloy available for the required temperature and pressure 12 operating conditions. It is now known that alloy 600 materials were not able to withstand the 13 operating temperature and pressure they were subjected to in a nuclear power plant, over the 14 periods for which they were designed. As a result, the alloy 600 materials have failed 15 prematurely. Among other consequences, the premature failure of the alloy 600 materials 16 necessitated the replacement of all four of the Callaway Plant's steam generators.

17

Q. What materials were used to replace the alloy 600 materials?

A. In designing the new components, including the new steam generators, AmerenUE selected state-of-the-art materials that we expect to last for the remaining life of the plant. For the new steam generator tubing, alloy 690, a more durable stainless steel alloy was utilized. In addition, AmerenUE utilized modern design technologies to increase the efficiency of the components. This allowed the Company to improve both durability and plant output.

ł

1	Q. What was involved in replacing the Callaway steam generators?
2	A. Replacing the steam generators was no small task, because each one is about
3	70 feet tall and 17 feet in diameter, and weighs about 400 tons. The new steam generators
4	were manufactured in France and contain tubing from Sweden. They feature improved
5	technology that has proven to be more efficient and durable than the original units. The
6	improved efficiency of the new steam generators, combined with turbine upgrades that were
7	also performed during the 2005 outage, increased Callaway's net generating capacity by 60
8	MW. The cost of the steam generator replacement and turbine upgrade projects was
9	approximately \$200 million.
10	Q. Please address the increase in plant output more specifically.
11	A. As a byproduct of replacing the newly designed steam generators, turbines
12	and actuators in 2005, the Company was able to increase the output of the Callaway Plant
13	from 1,232 MW gross to 1,292 MW, or a 60 MW output increase. This increase in plant
14	output further assists the Company in serving its growing loads with a low-cost supply of
15	energy.
16	Q. Was the Company successful in completing its replacement projects in
17	2005?
18	A. Yes. In 2005, Callaway set a new world record for the shortest time it took to
19	replace four steam generators. Callaway's replacement time of 63 days and 13 hours was
20	more than a day shorter than the previous record of 64 days and 17 hours set by the South
21	Texas Project in 2002.
22	The entire 2005 outage was completed on time, under budget, and with no
23	lost-time accidents among either Ameren employees or contractors. This was the most

• -

,

1	complex and challenging outage since construction, because it included replacement of all
2	four steam generators as well as replacement of all four turbines. The plant shut down
3	September 17 and returned to service on November 19.
4	As in past refueling outages, which occur approximately every 18 months,
5	thousands of maintenance activities, modifications, inspections and tests were performed
6	throughout the plant to ensure top safety and reliability until the next refueling. About 3,000
7	people worked on the project, including more than 2,000 contractors and Ameren employees
8	from other locations who joined the plant's regular staff to help handle the large volume of
9	work. They completed approximately 2.1 million work hours.
10	Q. You previously mentioned post-9/11 upgrades in security infrastructure
11	and related costs. Please elaborate.
12	A. After September 11, 2001, the Nuclear Regulatory Commission ("NRC")
13	issued a series of orders to all U.S. nuclear plants, requiring major changes in how nuclear
14	power plant operators must provide security for and defense of their nuclear plants. These
15	changes were primarily driven by a revised Design Basis Threat, or "DBT." A DBT is the
16	set of threat assumptions imposed by the NRC for which each nuclear plant must be able to
17	defend against and protect the safety of the nuclear core. In order to meet these new
18	requirements, the Company implemented a number of capital modifications by October
19	2004. Schedule CDN-2 summarizes the capital costs incurred to meet this new DBT. In
20	addition to the security/defense related capital additions to the plant itself, the new DBT
21	required a substantial increase in staffing requirements and other O&M expenses. These
22	security-related costs have added \$5 million per year to the Callaway Plant's O&M cost
23	structure. These costs increases are also shown in Schedule CDN-2.

1 О. What was the nature of these security changes? The security changes to the plant include a concrete barrier around the entire 2 Α. site perimeter to act as a vehicle barrier to defend against the design basis threat. A portal 3 through this barrier system to allow the processing of materials in and out of the plant was 4 constructed. Multiple new fences with detection and monitoring systems were installed. 5 Elevated hardened defense positions that provide 100% oversight of the site's perimeter were 6 7 also constructed. Finally a new training facility and firing range were constructed to meet the 8 training requirements established for the security force. 9 V. PERIODIC REFUELINGS **O**. You mentioned in the purpose section of your testimony the subject of 10 11 periodic refuelings of the Callaway Plant. Please explain the need for those refuelings 12 and what a "refueling outage" entails. 13 Α. The Company completed the most recent refueling outage at the Callaway Plant in November of 2005. Like all nuclear power plants, the Callaway Plant's nuclear fuel 14 15 must be replaced; i.e., the reactor must be "refueled" periodically. In the case of the Callaway Plant, refuelings must occur nominally every 18 months. During a refueling 16 17 outage, the Company not only completes the necessary refueling, but also uses the outage as 18 an opportunity to perform required maintenance of the plant and implement any 19 capital/maintenance modifications required to meet regulatory requirements, address 20 reliability issues or replace obsolete equipment. By combining scheduled maintenance and 21 capital addition work with refuelings, the Company can minimize outage time and maximize the efficiency of the necessary operations. Schedule CDN-3 summarizes the duration and 22

1 costs of each outage since Callaway went online in December 1984. During this 21 year period and 14 outage cycles, Callaway has averaged 49.4 days per outage. 2

3

VI. FUTURE DECISIONS REGARDING CALLAWAY

You indicated earlier that the Callaway Plant had been in operation for 4 **Q**. over 20 years and that the age of the plant required these rather major upgrades. What 5 is the life of the Callaway Plant? 6

7 Α. When the Callaway Plant commenced operations in 1984, the NRC granted 8 the Company a 40 year license for the plant. This license will expire approximately 18 years 9 from now in 2024. The plant is thus just over one-half of the way through its licensing 10 period. The NRC has established a process for extending the original licenses an additional 20 years. This process normally is started about 10 years before the license is scheduled to 11 expire. Consequently, AmerenUE will not be deciding whether or not to commence the 12 13 relicensing process until around 2014. As of now, AmerenUE has made no decision as to 14 whether it should request an extension of the Callaway license. The Company continues to 15 engage in extensive data gathering, including monitoring critical plant components for life 16 impacts due to radiation exposure and high temperature environments. The single most 17 critical consideration in determining whether or not relicensing may be feasible is the 18 condition of the reactor vessel itself. Extensive monitoring is in place to measure neutron 19 embrittlement of the vessel wall. The additional data gained over the next approximately eight years will be critical in assisting the Company in making a relicensure decision. While 20 no decision can be made for a number of years, the Company continues to do all the things 21 22 necessary to preserve this option.

1	Q.	Are there other factors that AmerenUE will consider in deciding whether
2	to seek a licer	se extension for the Callaway Plant?
3	А.	Yes. The overall cost of continuing to operate the plant will also be a
4	consideration.	The cost can be impacted by a number of factors including changing
5	regulatory req	uirements, increases in the cost of purchasing fuel or disposing of spent fuel
6	rods and incre	ases in O&M costs. In addition, the relative costs of other power sources will
7	have to be con	sidered at the time the decision is made.
8	Q.	Does this conclude your testimony?
9	А.	Yes, it does.

. . . -

.

.....

BEFORE THE PUBLIC SERVICE COMMISSION OF THE STATE OF MISSOURI

)

)

)

)

)

In the Matter of Union Electric Company d/b/a AmerenUE for Authority to File Tariffs Increasing Rates for Electric Service Provided to Customers in the Company's Missouri Service Area.

Case No. ER-2007-0002

AFFIDAVIT OF CHARLES D. NASLUND

STATE OF MISSOURI)) ss CITY OF ST. LOUIS)

Charles D. Naslund, being first duly sworn on his oath, states:

1. My name is Charles D. Naslund. I work in the City of St. Louis, Missouri, and I am employed by Ameren Services Company as Senior Vice President and Chief Nuclear Officer.

2. Attached hereto and made a part hereof for all purposes is my Direct

Testimony on behalf of Union Electric Company d/b/a AmerenUE consisting of 10 pages,

Attachment A and Schedules CDN-1 through CDN-3, all of which have been prepared in

written form for introduction into evidence in the above-referenced docket.

3. I hereby swear and affirm that my answers contained in the attached testimony

to the questions therein propounded are true and correct.

Subscribed and sworn to before me this 5th day of July, 2006.

Notary Public

My commission expires: 8-3-2007

EXECUTIVE SUMMARY

Charles D. Naslund

Senior Vice President and Chief Nuclear Officer

* * * * * * * * * *

The purpose of my testimony is to: (a) provide a background of the Callaway Nuclear Plant's performance and its importance to Missouri; (b) discuss the substantial capital additions made to the Callaway Plant since the Company's last rate proceeding (Case No. EC-2002-1); (c) provide up-to-date information on several changes to the Callaway Plant's security infrastructure and the associated operation and maintenance ("O&M") cost increases, nearly all of which were driven by governmentally-mandated requirements following the September 11, 2001 terrorist attack; (d) discuss a key Callaway Plant operation, its regular (every 18 months) refueling outages; and (e) provide information related to a future decision that will have to be made regarding whether or not the Company should seek to relicense the Callaway Plant.

Callaway's production has exceeded that of most other nuclear units. Callaway's lifetime generation was the sixth highest among the 103 operating U.S. nuclear power plants, and 22nd in the world, out of 443 nuclear plants operating in 30 countries. Callaway has over 1,000 full-time employees and contractors. In 2005, the plant accounted for \$9.5 million of AmerenUE's property taxes paid to Callaway County, with \$6.5 million of that amount going to local schools.

Significant major component replacements have been made to the Callaway Plant since 2001, including the 2005 replacement of the plant's four steam generators--the giant

Attachment A - 1

boilers that produce steam for generating electricity. In total, the Company made \$449,677,723 in capital additions to the plant over approximately the past 5 years.

In order to meet new security requirements imposed by the Nuclear Regulatory Commission ("NRC") after September 11, 2001, the Company implemented a number of capital modifications by October 2004 and substantially increased staffing and other O&M expenses. These security-related costs have added \$5 million per year to the Callaway Plant's O&M cost structure.

The Company completed a regular refueling outage at the Callaway Plant in November of 2005. By combining scheduled maintenance and capital addition work with such refuelings, the Company minimizes outage time and maximizes the efficiency of these necessary operations.

The NRC license for the Callaway Plant will expire approximately 18 years from now in 2024. The NRC's process for extending licenses an additional 20 years normally is started about 10 years before the license is scheduled to expire. Consequently, AmerenUE will not be deciding whether or not to commence the relicensing process until around 2014. The single most critical consideration in determining whether or not relicensing may be feasible is the condition of the reactor vessel itself. The additional data gained over the next approximately eight years will be critical in assisting the Company in making a relicensure decision. During that time, the Company will continue to do all the things necessary to preserve this option.

Ameren Corporation Project Based Proj Sum - Cap In-Budget Row Only

Escalated, Accountable Dollars

Grand Total Opening Balance Year 2001 Year 2002 Year 2003 Year 2004 Year 2005 Closing Balance 02000 - RADIATION DETECTION INSTRUMENTS 109,782 14,831 13,926 81,025 2003 2004 2005 Balance 02000 - RADIATION DETECTION INSTRUMENTS 109,782 14,831 13,926 81,025 4,683 28,918 71,096 1,211 02030 - UPGRADE LAB MATERIAL CONDITION 105,909 4,683 28,918 71,096 1,211 02037 - LOAD INDICATORS FOR THE POLAR CRANE 104,982 103,213 1,769 103,213 1,769 02460 - LN CONTININT SUMPS WITH STNLS STEEL 233,348 111,185 110,847 7,575 3,741 02483 - STATOR COOLING WATER LEAK MONITORING 107,446 62,417 9,763 35,266 170,479 170,479 0A113 - OFFICE FURNITURE 239,321 229,974 33,481 1,047,270 501,496 0A173 - WORK CONTROL CAPITAL FOOL PURCHASE 170,479 170,479 170,479 170,479 0A320 - MISC CHE OPERTIONS CAPITAL EOUNNT	Project								
Total Balance 2001 2002 2003 2004 2005 Balance 02000 - RADIATION DETECTION INSTRUMENTS 109,782 14,831 13,926 81,025		Grand	Opening	Year	Year	Year	Year	Year	Closing
02000 - RADIATION DETECTION INSTRUMENTS 109,782 14,831 13,926 81,025 02050 - UPGRADE LAB MATERIAL CONDITION 105,909 4,683 28,918 71,096 1,211 02069 - NIS COMPUTER ROOM HVAC 143,380 81,828 61,552 81,828 61,552 02337 - LOAD INDICATORS FOR THE POLAR CRANE 104,982 97,824 192 103,213 1,769 02480 - LN CONTRING WATER LEAK MONITORNG 107,446 62,417 9,763 35,266 90,023 51,869 02485 - LAN CONNECTED TELEMETRY 141,891 90,023 51,869 107,479 02415 - CAPITAL SP PART (UOP) & INITIAL PUR 1,812,221 229,974 33,481 1,047,270 501,496 02416 - OFFICE FURNITURE 233,321 170,479 170,479 133,887 2,120 10376 - MP FEDWATER HEATER DUMP VALVE RPLC 386,902 250,894 133,887 2,120 108,802 10376 - MP FEDWATER HEATER DUMP VALVE RPLC 386,902 250,894 133,887 2,120 108,802 10376 - MP FEDWATER HEATER DUMP VALVE RPLC 386,902 25		Total	Balance	2001	2002	2003	2004	2005	Balance
02000 - RADIATION DETECTION INSTRUMENTS 109,782 14,831 13,926 81,025 02050 - UPGRADE LAB MATERIAL CONDITION 105,909 4,683 28,918 71,096 1,211 02069 - NIS COMPUTER ROOM HVAC 143,380 81,828 61,552 103,213 1,769 02233 - PERM PLTFRMS ON ISOPHASE STRUCTURE 98,016 97,824 192 103,213 1,769 02460 - LN CONTININT SUMPS WITH STNLS STEEL 233,348 111,185 110,847 7,575 3,741 02485 - LAN CONNECTED TELEMETRY 141,891 90,023 51,869 170,479 0A173 - WORK CONTROL CAPITAL TOOL PURCHASE 170,479 170,479 239,321 170,479 0A216 - OFFICE FURNITURE 239,321 1008,802 1008,802 188,802 0A505 - MISC CHEMISTRY CAPITAL EQUIPMENT 106,802 239,321 239,321 239,321 0A505 - MISC CHEMISTRY CAPITAL EQUIPMENT 106,802 150,656 150,656 150,656 0A505 - MISC CHEMISTRY CAPITAL EQUIPMENT 106,802 259,787 29,424 108,802 10579 - UPGRD OF TERRY TURB CNTL-									
02050 - UPGRADE LAB MATERIAL CONDITION 105,909 4,683 28,918 71,096 1,211 02069 - NIS COMPUTER ROOM HVAC 143,380 81,828 61,552 02233 - PERM PLTFRMS ON ISOPHASE STRUCTURE 98,016 97,824 192 02397 - LOAD INDICATORS FOR THE POLAR CRANE 104,982 103,213 1,769 02460 - LN CONTIMMIT SUMPS WITH STNLS STEEL 233,348 111,185 110,847 7,575 3,741 02463 - STATOR COOLING WATER LEAK MONITORING 107,446 62,417 9,763 35,266 170,479 02463 - LAN CONNECTED TELEMETRY 141,891 90,023 51,869 170,479 0A015 - CAPITAL SP PART (LOP) & INITIAL PUR 1,812,221 229,974 33,481 1,047,270 501,496 0A173 - WORK CONTROL CAPITAL TOOL PURCHASE 170,479 239,321 239,321 239,321 239,321 239,321 239,321 108,802 0A205 - MISC HP - OPERATIONS CAPITAL EQMINT 150,656 150,656 108,802 108,802 108,802 108,802 108,802 108,802 108,802 108,802 108,802 108,802 108,802 108,802 108,802 108,802 <	02000 - RADIATION DETECTION INSTRUMENTS	109,782	14,831	13,926	81,025				
02069 - NIS COMPUTER ROOM HVAC 143,380 81,828 61,552 02233 - PERM PLTFRMS ON ISOPHASE STRUCTURE 98,016 97,824 192 02397 - LOAD INDICATORS FOR THE POLAR CRANE 104,982 103,213 1,769 02460 - LN CONTNMNT SUMPS WITH STNLS STEEL 233,348 111,185 110,847 7,575 3,741 02483 - STATOR COOLING WATER LEAK MONITORNG 107,446 62,417 9,763 35,266	02050 - UPGRADE LAB MATERIAL CONDITION	105,909			4,683	28,918	71,096	1,211	
02233 - PERM PLTFRMS ON ISOPHASE STRUCTURE 98,016 97,824 192 02337 - LOAD INDICATORS FOR THE POLAR CRANE 104,982 103,213 1,769 02460 - LN CONTINMIT SUMPS WITH STNLS STEEL 233,348 111,185 110,847 7,575 3,741 02485 - LAN CONNECTED TELEMETRY 141,891 90,023 51,869	02069 - NIS COMPUTER ROOM HVAC	143,380				81,828	61,552		
02397 - LOAD INDICATORS FOR THE POLAR CRANE 104,982 103,213 1,769 02460 - LN CONTNMNT SUMPS WITH STNLS STEEL 233,348 111,185 110,847 7,575 3,741 02463 - STATOR COOLING WATER LEAK MONITORNG 107,446 62,417 9,763 35,266	02233 - PERM PLTERMS ON ISOPHASE STRUCTURE	98,016			97,824	192			
02460 - LN CONTNMNT SUMPS WITH STNLS STEEL 233,348 111,185 110,847 7,575 3,741 02483 - STATOR COOLING WATER LEAK MONITORNG 107,446 62,417 9,763 35,266 02485 - LAN CONNECTED TELEMETRY 141,891 90,023 51,869 0A015 - CAPITAL SP PART (UOP) & INITIAL PUR 1,812,221 229,974 33,481 1,047,270 501,496 0A173 - WORK CONTROL CAPITAL TOOL PURCHASE 170,479 170,479 170,479 170,479 0A250 - MISC HP - OPERATIONS CAPITAL EQUIPMENT 150,656 150,656 150,656 150,656 0A350 - MISC CHEMISTRY CAPITAL EQUIPMENT 108,802 250,894 133,887 2,120 103,802 10579 - UPGRD OF TERRY TURB CNTL-DIG CNTLR 425,069 56,679 167,632 162,614 22,748 14,751 646 10591 - RADIATION DETECTN INSTR CALIBRATOR 108,888 108,888 108,888 106,802 10704 - VOLTAGE CORRECTION EQUIPMENT 4,767,032 2,524,589 1,783,411 439,117 11,406 8,509 10806 - TUBE BUNDLE REPLCMATER HTRS 4,981,129 1,049,892 3,928,779 2,457 24,457 100	02397 - LOAD INDICATORS FOR THE POLAR CRANE	104,982					103,213	1,769	
02483 - STATOR COOLING WATER LEAK MONITORNG 107,446 62,417 9,763 35,266 02485 - LAN CONNECTED TELEMETRY 141,891 90,023 51,869 0A015 - CAPITAL SP PART (UOP) & INITIAL PUR 1,812,221 229,974 33,481 1,047,270 501,496 0A173 - WORK CONTROL CAPITAL TOOL PURCHASE 170,479 170,479 170,479 170,479 0A216 - OFFICE FURNITURE 239,321 239,321 239,321 239,321 0A502 - MISC HP - OPERATIONS CAPITAL EQUIPMENT 150,656 108,802 108,802 10376 - HP FEEDWATER HEATER DUMP VALVE RPLC 336,902 250,894 133,887 2,120 10579 - UPGRD OF TERRY TURB CNTL-DIG CNTLR 425,069 56,679 167,632 162,614 22,748 14,751 646 10591 - RADIATION DETECTN INSTR CALIBRATOR 108,888 108,888 108,888 106,888 1066,93 176,632 162,614 22,748 14,751 646 10591 - RADIATION DETECTN INSTR CALIBRATOR 108,888 108,888 108,888 106,888 10669 - COOLING TOWER FILL ADDITION 559,211 529,787 29,424 174,406 8,509 10806 - TUBE BUNDL	02460 - LN CONTINMIT SUMPS WITH STALS STEEL	233,348		111,185	110,847	7,575	3,741		
02485 - LAN CONNECTED TELEMETRY 141,891 90,023 51,869 0A015 - CAPITAL SP PART (UOP) & INITIAL PUR 1,812,221 229,974 33,481 1,047,270 501,496 0A173 - WORK CONTROL CAPITAL TOOL PURCHASE 170,479 170,479 239,321 239,321 0A505 - MISC HP - OPERATIONS CAPITAL EQUIPMENT 150,656 150,656 150,656 0A505 - MISC CHEMISTRY CAPITAL EQUIPMENT 108,802 1036,902 250,894 133,887 2,120 10376 - HP FEEDWATER HEATER DUMP VALVE RPLC 336,902 250,894 133,887 2,120 108,802 10376 - HP FEEDWATER TOR TURB CNTL-DIG CNTLR 425,069 56,679 167,632 162,614 22,748 14,751 646 10591 - RADIATION DETECTN INSTR CALIBRATOR 108,888 108,888 108,888 106,888 1066,92 20,252,787 29,424 14,751 646 10704 - VOLTAGE CORRECTION EQUIPMENT 4,767,032 2,524,589 1,783,411 439,117 11,406 8,509 10806 - TUBE BUNDLE REPLCMANT-FEEDWATER HTRS 4,981,129 1,049,892 3,928,779 2,457 563,610	02483 - STATOR COOLING WATER LEAK MONITORNG	107,446	62,417	9,763	35,266				
0A015 - CAPITAL SP PART (UOP) & INITIAL PUR 1,812,221 229,974 33,481 1,047,270 501,496 0A173 - WORK CONTROL CAPITAL TOOL PURCHASE 170,479 170,479 170,479 0A216 - OFFICE FURNITURE 239,321 239,321 239,321 0A502 - MISC HP - OPERATIONS CAPITAL EQPMNT 150,656 150,656 0A505 - MISC CHEMISTRY CAPITAL EQUIPMENT 108,802 108,802 10376 - HP FEEDWATER HEATER DUMP VALVE RPLC 386,902 250,894 133,887 2,120 10579 - UPGRD OF TERRY TURB CNTL-DIG CNTLR 425,069 56,679 167,632 162,614 22,748 14,751 646 10591 - RADIATION DETECTN INSTR CALIBRATOR 108,888 108,888 1068,888 10669 250,787 29,424 10704 - VOLTAGE CORRECTION EQUIPMENT 4,767,032 2,524,589 1,783,411 439,117 11,406 8,509 10806 - TUBE BUNDLE REPLCMNT-FEEDWATER HTRS 4,981,129 1,049,892 3,928,779 2,457 24,457	02485 - LAN CONNECTED TELEMETRY	141,891			90,023	51,869			
0A173 - WORK CONTROL CAPITAL TOOL PURCHASE 170,479 170,479 0A216 - OFFICE FURNITURE 239,321 239,321 0A502 - MISC HP - OPERATIONS CAPITAL EQPMNT 150,656 150,656 0A505 - MISC CHEMISTRY CAPITAL EQUIPMENT 108,802 108,802 10376 - HP FEEDWATER HEATER DUMP VALVE RPLC 386,902 250,894 133,887 2,120 10579 - UPGRD OF TERRY TURB CNTL-DIG CNTLR 425,069 56,679 167,632 182,614 22,748 14,751 646 10591 - RADIATION DETECTN INSTR CALIBRATOR 108,888 108,888 108,888 1069,868 10069,802 10704 - VOLTAGE CORRECTION EQUIPMENT 4,767,032 2,524,589 1,783,411 439,117 11,406 8,509 10806 - TUBE BUNDLE REPLCMNT-FEEDWATER HTRS 4,981,129 1,049,892 3,928,779 2,457 524,510	0A015 - CAPITAL SP PART (UOP) & INITIAL PUR	1,812,221			229,974	33,481	1,047,270	501,496	
CA216 - OFFICE FURNITURE 239,321 239,321 CA216 - OFFICE FURNITURE 239,321 150,656 CA502 - MISC HP - OPERATIONS CAPITAL EQUIMENT 150,656 150,656 CA505 - MISC CHEMISTRY CAPITAL EQUIPMENT 108,802 108,802 10376 - HP FEEDWATER HEATER DUMP VALVE RPLC 386,902 250,894 133,887 2,120 10579 - UPGRD OF TERRY TURB CNTL-DIG CNTLR 425,069 56,679 167,632 162,614 22,748 14,751 646 10591 - RADIATION DETECTN INSTR CALIBRATOR 108,888 108,888 108,888 108,888 1069,888 1069,808 10704 - VOLTAGE CORRECTION EQUIPMENT 4,767,032 2,524,589 1,783,411 439,117 11,406 8,509 10806 - TUBE BUNDLE REPLCMNT-FEEDWATER HTRS 4,981,129 1,049,892 3,928,779 2,457 24,457	0A173 - WORK CONTROL CAPITAL TOOL PURCHASE	170,479						170,479	
0A502 - MISC HP - OPERATIONS CAPITAL EQPMNT 150,656 150,656 0A502 - MISC CHEMISTRY CAPITAL EQUIPMENT 108,802 108,802 10376 - HP FEEDWATER HEATER DUMP VALVE RPLC 386,902 250,894 133,887 2,120 10579 - UPGRD OF TERRY TURB CNTL-DIG CNTLR 425,069 56,679 167,632 162,614 22,748 14,751 646 10591 - RADIATION DETECTN INSTR CALIBRATOR 108,888 108,888 108,888 108,888 10669 - COOLING TOWER FILL ADDITION 559,211 529,787 29,424 10704 - VOLTAGE CORRECTION EQUIPMENT 4,767,032 2,524,589 1,783,411 439,117 11,406 8,509 10806 - TUBE BUNDLE REPLOMNT-FEEDWATER HTRS 4,981,129 1,049,892 3,928,779 2,457 563,610	0A216 - OFFICE FURNITURE	239,321						239,321	
0A505 - MISC CHEMISTRY CAPITAL EQUIPMENT 108,802 108,902 109,902 162,614 22,748 14,751 646 646 10591 RADIATION DETECTN INSTR CALIBRATOR 108,888 108,888 108,888 108,888 108,888 108,888 108,888 10669 - COOLING TOWER FILL ADDITION 559,211 529,787 29,424 10704 - VOLTAGE CORRECTION EQUIPMENT 4,767,032 2,524,589 1,783,411 439,117 11,406 8,509 10806 - TUBE BUNDLE REPLOMENT -FEEDWATER HTRS 4,981,129 1,049,892 3,928,779 2,457 524,519 54610	0A502 - MISC HP - OPERATIONS CAPITAL EQPMNT	150,656						150,656	
10376 - HP FEEDWATER HEATER DUMP VALVE RPLC 386,902 250,894 133,887 2,120 10579 - UPGRD OF TERRY TURB CNTL-DIG CNTLR 425,069 56,679 167,632 162,614 22,748 14,751 646 10591 - RADIATION DETECTN INSTR CALIBRATOR 108,888 108,888 108,888 10669 - - - - - - 646 10669 - COOLING TOWER FILL ADDITION 559,211 529,787 29,424 -<	0A505 - MISC CHEMISTRY CAPITAL EQUIPMENT	108,802						108,802	
10579 - UPGRD OF TERRY TURB CNTL-DIG CNTLR 425,069 56,679 167,632 162,614 22,748 14,751 646 10591 - RADIATION DETECTN INSTR CALIBRATOR 108,888 108,888 108,888 106,888 108,888 10669 - COOLING TOWER FILL ADDITION 559,211 529,787 29,424 529,787 29,424 10704 - VOLTAGE CORRECTION EQUIPMENT 4,767,032 2,524,589 1,783,411 439,117 11,406 8,509 10806 - TUBE BUNDLE REPLOMNT-FEEDWATER HTRS 4,981,129 1,049,892 3,928,779 2,457 563,610	10376 - HP FEEDWATER HEATER DUMP VALVE RPLC	386,902	250,894	133,887	2,120				
10591 - RADIATION DETECTN INSTR CALIBRATOR 108,888 106,888 10669 - COOLING TOWER FILL ADDITION 559,211 529,787 29,424 10704 - VOLTAGE CORRECTION EQUIPMENT 4,767,032 2,524,589 1,783,411 439,117 11,406 8,509 10806 - TUBE BUNDLE REPLOMNT-FEEDWATER HTRS 4,981,129 1,049,892 3,928,779 2,457 553,610	10579 - UPGRD OF TERRY TURB CNTL-DIG CNTLR	425,069	56,679	167,632	162,614	22,748	14,751	646	
10669 - COOLING TOWER FILL ADDITION 559,211 529,787 29,424 10704 - VOLTAGE CORRECTION EQUIPMENT 4,767,032 2,524,589 1,783,411 439,117 11,406 8,509 10806 - TUBE BUNDLE REPLOMNT-FEEDWATER HTRS 4,981,129 1,049,892 3,928,779 2,457 553,610	10591 - RADIATION DETECTN INSTR CALIBRATOR	108,888		108,888					
10704 - VOLTAGE CORRECTION EQUIPMENT 4,767,032 2,524,589 1,783,411 439,117 11,406 8,509 10806 - TUBE BUNDLE REPLOMNT-FEEDWATER HTRS 4,981,129 1,049,892 3,928,779 2,457 563,610	10569 - COOLING TOWER FILL ADDITION	559,211		529,787	29,424				
10806 - TUBE BUNDLE REPLCMNT-FEEDWATER HTRS 4,981,129 1,049,892 3,928,779 2,457	10704 - VOLTAGE CORRECTION EQUIPMENT	4,767,032	2,524,589	1,783,411	439,117	11,406	8,509		
653 610 651 G/O	10806 - TUBE BUNDLE REPLOMNT-FEEDWATER HTRS	4,981,129	1,049,892	3,928,779	2,457				
10878 - 98-1027 REPL 2 IN CS PIPE WITH SS 553,019 533,019	10878 - 98-1027 REPL 2 IN CS PIPE WITH SS	653,619						653,619	
11009 - STEAM GENERATOR REPLACEMENT 1,625,542 267,225 1,119,597 203,394 35,327	11009 - STEAM GENERATOR REPLACEMENT	1,625,542	267,225	1,119,597	203,394	35,327			
1013 - INSTALL SVC WATER BASKET STRAINERS 673,443 17,352 656,091	11013 - INSTALL SVC WATER BASKET STRAINERS	673,443	17,352	656,091					
100a - RENOVATE THE HP ACCESS AREA 373.012 217.155 155.857	11028 - RENOVATE THE HP ACCESS AREA	373,012	217,155	155,857					
1000 - RPI C MN STEAM ISOLATION VLV ACTUATR 12,614,905 763,999 2,545,407 1,181,731 4,597,524 1,089,149 2,437,095	11030 - RPLC MN STEAM ISOLATION VLV ACTUATR	12,614,905		763,999	2,545,407	1,181,731	4,597,524	1,089,149	2,437,095
1001 - REMOVE & DISPOSE OF FILTER ABSORBER 156.472 11,219 141,156 4,098	11031 - REMOVE & DISPOSE OF FILTER ABSORBER	156,472		11,219	141,156	4,098			
1000 - CARBON STEEL PIPING REPLACEMENT 1,608,381 4,510 476,630 266,207 206,316 541,392 113,326	11040 - CARBON STEEL PIPING REPLACEMENT	1,608,381	4,510	476,630	266,207	206,316	541,392	113,326	
1001 WERASTRUCTURE FOR DIGITAL CNTL SYS 2,852,759 8,301 838,021 1,199,831 696,814 109,686 105	11041 - INFRASTRUCTURE FOR DIGITAL CNTL SYS	2,852,759	8,301	838,021	1,199,831	696,814	109,686	105	
11042 DIESEL GEN EXCITOR CONTROLS RPLCMNT 4,688,685 6,797 49,948 140,215 957,574 792,450 2,741,701	11042 - DIESEL GEN EXCITOR CONTROLS RPLCMNT	4.688.685		6,797	49,948	140,215	957,574	792,450	2,741,701
1003 DIGIT EDWATER HEATER LVL CNTLS RPL 3,217,289 330,920 1,346,864 237,050 1,302,456	11042 - DIGITI FOWATER HEATER LVL CNTLS RPL	3,217,289				330,920	1,346,864	237,050	1,302,456
1004 UIGRD CNTLS-POLSHR WASTE WATER PROC 5 239.302 934.002 1.500.659 1.328.473 1.371.704 113.743 (9.280)	11044 - UPGRD CNTLS-POLSHR WASTE WATER PROC	5.239.302	934.002	1.500.659	1,328,473	1,371,704	113,743	(9,280)	
1005 INSTALL MN STEPLIP XERMR GAS MONITRS 364.939 100.779 51.127 164.207 48.584 242	11045 INSTALL MN STEPLIP XERME GAS MONITRS	364.939	100.779	51,127	164,207	48,584	242		
1000 100 10 5W ISOLATION VLVS FOR 5 RM 739 897 15.863 186.087 198.866 105.356 233.725	11054 ADD 10 ESW ISOLATION VLVS FOR 5 RM	739.897	15.863	186.087	198,866	105.356	233,725		
THUR DO CAMOSPHERIC STEAM DIMP SUENCE 157,733 157,733	11100 - DOLC ATMOSPHERIC STEAM DUMP SILENCE	157.733	,	157.733					
11123 - REELANG ONTAINMENT COOLER COLES 4818 198 84 131 3 053 096 1 651 924 29.048	11123 - REECATINGOT TELNIG OTEL IN JOINT OLEFICIT	4 818 198	84.131	3 053 096	1.651.924	29.048			
1146 CONDENEE TUBE REPLACEMENT 32 785 662 9.223,586 23 530.703 31.373	1140 - REFERRESER TUBE REPLACEMENT	32 785 662	0 11 0 1	210 001000	.,	9.223.586	23,530,703	31,373	
THIS CONDENSE TO EXECTION SYSTEM FORMAT 1 158 538 18 795 228.154 338.683 582.956 (10.051)	ALLO DE CERE PROTECTION SYSTEM FORMAT	1 158 538		18,795	228,154	338,683	582.956	(10,051)	
Hide CONT OF PK118PK12 BATTERY BANKS 339 547 317.458 22,089	ATTAC OPLOWNT OF PK11&PK12 BATTERY BANKS	339.547			317,458	22,089		,	
11180- RECOMPT 2017 107,464 120,387 97,425 130,197 251 22,214	11180 - UPGRD RDWSTE BLDG DRUM STORAGE AREA	477,937		107,464	120,387	97,425	130,197	251	22,214

Schedule CDN-1-1

:

ł

Ameren Corporation Project Based Proj Sum - Cap In-Budget Row Only

.

Escalated, Accountable Dollars

Project

	Grand	Opening	Year	Year	Year	Year	Year	Closing
	Total	Balance	2001	2002	2003	2004	2005	Balance
11218 - OFFICE FURN FOR CALLAWAY FOR 2001	216 528		200 165			16 362		
11219 - FURNITIRE 2002	283 097		200,100	282 958	140	10,502		
11220 - EURNITURE 2003	232 378			202,000	232 318	60		
11220 - FURNITURE 2004	196 788				202,010	198 786	(1 QQB)	
11234 - LOW PRESSURE BOTOR ELEMENT RELOWNT	60 861 174			71 961	594 749	23 653 560	35 435 564	1 105 341
11283 - REPLACEMENT HEALTH PHYSICS SOFTWARE	510 803		65 417	445 386	004,010	20,000,000	00,400,004	1,100,041
11286 - TRAINING CENTER HVAC UNITS	323.865		26 800	1.338	253,331	42 396		
11289 - MAIN FEED PUMP EHC UPGRADE	4.579.005			.,	348,328	862 162		3 368 516
11293 - MN TURBINE GENERATOR GOVERNOR CNTLS	3.431.636				315.827	1.075.640	671.157	1.369.011
11298 - BOP NON-1E ANALOG CONTROLS REPLCMNT	424.344				265,409	147 427	11,507	
11307 - MAIN CONTROL BOARD UPGRADE	759.695				269.256	532,612	(82,297)	40, 124
11308 - LSELS, ESFAS, MSFIS UPGRADE	14,572,038			1.502.355	1.181.269	7.525.779	(583,964)	4.946.601
11309 - DCS ACTIVITIES	282,136			139,519	467.817		(325,200)	-1
11311 - BCMS UPGRADE	366,225		20,628	162,180	130,465	50,258	2.694	
11312 - FLUX MAPPING SYSTEM UPGRADE	1,957,632		•	235,215	1,088,372	632,251	1,794	
11316 - WASTE GAS H2 ANALYZER REPLACEMENT	964,262		4,226	806,402	76,623	89.012	(35,405)	23,404
11339 - CONTROL ROOM SIMULATOR UPGRADE	4,660,514			846,186	1,456,573	1,257,880	1,099,875	.,
11342 - PLANT COMPUTER UPGRADE	9,813,035		248,917	1,009,430	1,034,148	2,570,478	1,533,043	3,417,018
11470 - 2004 WALKUP COPIER REPLACEMENT	145,737		-			145,737	. ,	
11472 - 2003 HIGH VOLUME COPIER REPLACEMENT	226, 101				205,917	20,184		
11683 - REPLACE HVAC UNITS - 2 FL SERV BLDG	295,278		269,855	25,129	294	·		
11692 - MOLD REMOVAL IN CENTRAL PROCESS FAC	105,276		105,276					
11806 - RETIRE PASS	158,370		49,624	104,625	4,121			
12077 - INSTLL DIVERSION VLV:NEW HELPER TWR	492,679		492,679					
12319 - VIDEO CAPTURE & IRIS SCAN DOOR COMP	116,988		,		29,827	87,161		
12636 - STEAM GENERATOR REPLACEMENT	188,629,606		1,279,111	20,271,228	34,151,787	23,786,892	105,606,430	3.534.158
12748 - GAMMA 10 UPGRADE/REPLACEMENT	254,696		, .		254,696			-,
12774 - REPLACE AUX BUILDING ROOF	628,792					394,176	228,381	6,235
12780 - CYCLE 12 SEC SIDE EROSION PIPE RPLC	1,762,403			1,750,157		12,246		,
12817 - X-RAY MACHINE REPLACEMENTS	102,390			51,504	50,885	•		
12821 - BACKFILL UNIT 2 EXCAVATION	884,821		5,896	870,672	8,252			
12825 - REFUEL 13 NON SGR ACTIVITIES	2,142,469				121,314	2,594,090	(572,935)	
12828 - SGRP SUPPORT FACILITY	2,574,195				49,762	2,522,447	1,986	
12829 - DOCKING FACILITY	3,718,106		115	6,827	301,238	1,664,241	1,745,685	
12830 - SECURITY UPGRADE	1,461,152			8,534	265,195	1,177,339	10,084	
12866 - 01-1001 RPLC LIQUID RADWASTE SYSTEM	242,461				93,626	139,811	9,023	
12940 - UPGRADE MN GSU TRANSFORMER COOLERS	1,083,233				27,230	907,941	54,915	93,147
12970 - REPLACE MAIN FEEDWATER PIPING	2,959,407			2,959,407				
13128 - INSTALL VNDR SUPPLIED CHEM ADD EQPT	3,083,837		9,646	1,688,779	395,864	894,270	95,278	
13129 - RPLC ACID ADDTN EQPT FOR COOLNG TWR	554,080			360,914	40,601	66,389	40,773	45,403

Schedule CDN-1-2

_

÷

.

Ameren Corporation Project Based Proj Sum - Cap In-Budget Row Only

Escalated, Accountable Dollars

Project

	Grand	Opening	Year	Year	Year	Year	Year	Closing
	Total	Balance	2001	2002	2003	2004	2005	Balance
13143 - REPLACE PK13 AND PK14 BATTERY BANKS	326,000				310,589	15,411		
13144 - REPLACE PJ11 BATTERY BANK	228,890					228,890		
13169 - RCP MOTOR CHANGEOUT SPPT COSTS RF13	331,826					331.826		
13201 - A LOOP FEEDWATER PIPING REPLACEMENT	127,221		125,543	1,678				
13254 - PLANT SECURITY UPGRADE	3,256,405			3,051,592	120,803	62,306	21,704	
13297 - CAPITAL SHOP TOOLS OVER \$1,000	868,614				29,312	104,487	19	734,796
13342 - 02-1013 VIDEO MONITORING FOR HP ACC	563,156				231,219	331,764	173	
13411 - 02-1017 INSTALL SIRENS AROUND SITE	201,150				148,325	52,825		
13412 - AUTOMATIC RECIRCULATION VALVE SYS	783,945				169,137	604,875	9,933	
13417 - SF6 GAS RECLAIMER	124,292					124,292		
13457 - 2 RELIEF VLV TEST MACHINES PURCHASE	252,255				230,082	22,174		
13509 - 2003 SECURITY UPGRADES	22,315,170				1,340,781	19,673,838	1,300,551	
13673 - 1E FOXBORO CABINETS UPGRADE	398,011				206,130	181,088	10,793	
13731 - REPLACE EP8818 VALVES	1,302,607				1,720	85,264	1, 182, 432	33, 191
13908 - TRAINING FACILITIES IMPROVEMENTS	204,974				56,775	23,458	124,741	
13925 - REPLACE WHOLE BODY COUNTERS	257,659				257,659			
14150 - REPLACE 2 CIRCULATING PUMPS	988,386				973,336	15,050		
14187 - RPLC MN GEN HYDROGEN COOLER BUNDLES	330,300				127,902	206,593	(4,195)	
14207 - C13&R13 SEC SIDE EROSION PIPE RPLC	3,532,836				318,173	3,307,047	(92,384)	
14754 - DOSE ASSESSMENT SOFTWARE	183, 161				50,708	132,759	(306)	
14838 - C14&R14 ESW CARBON STEEL PIPE RPLC	1,430,902					2,919	1,427,983	
14842 - REPLACE PN01 AND PN02 INVERTERS	114,630					11,464	103,165	
14998 - REPLACE-RETIRE FEF02A AND FEF02B	1,291,262					10,071	1,281,191	
15127 - PORTLAND RIVER SAMPLER CNTRLS UPGRD	174,626					121,849	3,775	49,002
15203 - PRCHS 120 TON HYDRLIC TELESCPNG CRN	949,459					976,892	(27,433)	
15210 - REPLC SENE0061 POST ACCIDENT DETECT	144,514					144,514		
15889 - MILES GEAR, GUNS AND OPTICS	227,808						227,808	
15954 - REACTOR VESSEL HEAD MTCE EQUIPMENT	1,684,604						136,496	1,548,108
16155 - MET TOWER REPLACEMENT	362,115					6,322	93,525	262,268
16169 - CALLAWAY DIRECTOR SYSTEM	768,434						768,434	
16229 - REPLACE SWITCHYARD BATTERIES	168,172						168,172	
16265 - X-RAY MACHINE REPLACEMENTS	162,937						162,937	
19271 - REPLACE LOWER TURBINE BLDG ROOF	263,848						92,327	171,522
	449,677,723	5,608,620	18,794,331	46,354,763	62,357,798	133,300,302	156,010,601	27,251,308

Capital Costs Relating to NRC Orders

2002 Interim Compensatory Measures Order

Supplemental Vehicle Barrier System

- New Owner Controlled Access Facility
- Pavement of construction parking lot and roads
- Lighting of construction parking lot

2003 Orders

Design Basis Threat Security Training Security Working Hours

- New permanent Vehicle Barrier System
- New active Vehicle Barrier System (sally port)
- New hardened fixed security response positions
- New delay fences
- Modifications to our Secondary Alarm Station due to Design Basis Threat
- Movement of security multiplexer
- New intrusion detection system

- Upgrades to the Security Firing Range

\$28.6 million

Schedule CDN-2-1

\$3.3 million

\$25.3 million

- New camera system
- Electrical upgrades to security equipment

Total Orders

O&M Increases in Costs 2001-2005

Total O&M Security Budget (By Year):

2001 \$4.8 million

2002 \$6.9 million

- Implementation of the Interim Compensatory Measures Order
- Additional security personnel to accommodate Order requirements
- Additional searches of vehicles and personnel
- Additional training requirements
- 2003 \$6.8 million
- 2004 \$9 million
 - Implementation of the Design Basis Threat Order, the Security Training Order, and the Security Working Hours Order.
 - Change in security strategy required additional staffing
 - Additional security weapons
 - Moving security presence out to OCA required additional staffing
 - Security Training Order required additional training with required us to move to a 5-crew schedule
 - Security working hours limits required less scheduled overtime therefore more people to cover the shifts

2005

- NRC evaluated Force on Force Exercise
- Support of RF14

\$9.8 million

Increase from 2001 to 2004: \$5 million

Schedule CDN-2-2

CALLAWAY REFUEL OUTAGE MAINTENANCE COSTS

	Refuel 1 Spring 1986	Refuel 2 Fall 1987	Refuel 3 Spring 1989	Refuel 4 Fall 1990	Refuel 5 Spring 1992	Refuel 6 Fall 1993	Refuel 7 Spring 1995
Maintenance Projects Excluding AmerenUE Wages			\$14.0	\$16.1	\$23.0	\$19.8	\$20.7
Incremental AmerenUE Overtime Wages			\$4.0	\$5.7	\$5.1	\$5.0	\$4.5
Replacement Energy			\$8.3	\$7.2	\$7.7	\$13.6	\$8.6
TOTAL	Available	Not Available	\$26.3	\$29.0	\$35.8	\$38.4	\$33.8
Duration	49 days	65 days	53 days	60 days	60 days	52 days	48 days

	Refuel 8 Fall 1996	Refuel 9 Spring 1998	Refuel 10 Fall 1999	Refuel 11 Spring 2001	Refuel 12 Fail 2002	Refuel 13 Spring 2004	Refuel 14 Fall 2005
Maintenance Projects Excluding AmerenUE	\$16.8	\$16.3	\$22.0	\$23.1	\$22.6	\$40.1	\$21.5
Wages				_			
Incremental AmerenUE	\$3.5	\$5.1	\$5.0	\$8.0	\$4.9	\$9.7	\$9.3
Overtime wages							
Replacement Energy	\$10.0	<u>\$7.7</u>	\$12.7	\$18.1	\$10.2	\$24.3	\$25.4
TOTAL	\$30.0	\$29.1	\$39.7	\$49.2	\$37.7	\$74.1	\$56.2
Duration	31 days	31 days	35 days	45 days	34 days	65 days	63D 13H

Schedule CDN-3-1